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Abstract

The problem of identifying a fixed-order FIR approximation of linear systems with un-
known structure, assuming that both input and output measurements are subjected to
quantization, is dealt with in this paper. A fixed-order FIR model providing the best
approximation of the input-output relationship is sought by minimizing the worst-case
distance between the output of the true system and the modeled output, for all possible
values of the input and output data consistent with their quantized measurements. The
considered problem is firstly formulated in terms of robust optimization. Then, two dif-
ferent algorithms to compute the optimum of the formulated problem by means of linear
programming techniques are presented. The effectiveness of the proposed approach is

illustrated by means of a simulation example.

Key words: FIR models, Linear programming, Quantized identification, Robust

optimization.

1. Introduction

In many engineering applications, only binary-valued or quantized measurement data
are available. Typical examples include vision systems which commonly make use of
pixelized information; robotics applications where digital rotary or linear encoders are

employed to measure position and velocity; wireless sensor networks where signals are
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quantized and converted into a finite number of bits before being transmitted through

communication channels with limited bandwidth.

Identification of dynamical systems from binary and quantized observations has at-
tracted the attention of many researchers in the last years. More precisely, a maximum
likelihood approach for parameter estimation of a static function from binary-valued out-
put data is discussed in [1], while identification of linear dynamical systems which are
equipped with only binary-valued sensors is addressed in [2] in the case of stochastic and
deterministic description of the disturbances affecting the model. The methodologies
discussed in [2] have been extended to system identification with quantized observations
[3] and to identification of Wiener models [4]. Identification of linear dynamical systems
from quantized output observations is dealt with in [5, 6, 7, 8, 9, 10, 11]. In particular,
local convergence results in identification of ITR models from binary measurements are
given in [10] and extended in [11] for the identification of FIR models from measurements
subjected to non-uniform quantization. Global convergence results to a parameter set-
ting corresponding to a perfect input-output model or to the boundary of the chosen
model set are also provided. Other approaches for the identification of linear systems
from quantized output measurements can be found in [12] and [13], where identification
of Wiener-like models with non-invertible nonlinearity is dealt with. The problem of
state estimation for linear systems from quantized measurements is considered in [14]
and [15]. In the framework of bounded-error identification, that is when disturbances
are supposed to be unknown-but-bounded, recent results are presented in [16], [17] and
[18] on optimal input design for FIR model identification from binary and quantized
observations. The reader is referred to the book [19] and references therein for a detailed
discussion on system identification from quantized measurements.

All the papers mentioned above assume that only the output signal is subjected to
quantization, while the input of the system is perfectly known. When also the input mea-
surements are quantized, the identification problem can be formulated in terms of error-
in-variables problems with unknown-but-bounded measurement noise. In this case the
solution to the identification problem can be obtained by applying the results discussed
in [20], [21], [22] and [23] where different algorithms are presented to compute bounds on
the parameters of ITR models consistent with the assumed model structure, noise bounds

and measured data. Linear system identification from quantized input/output (I/O) data
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in the presence of additive measurement noise on the output signal is tackled in [24] and
[25] by means of least-square and instrumental-variable approaches. Identification of au-
toregressive moving average models from binary measurements of the input and output
signals is addressed in [26], which provides an algorithm yielding consistent parameter
estimates under the assumption that the input/output power ratio of the system is a-
priori known and white disturbances with known distributions affect the input/output
measurements.

The aim of this paper is to evaluate the parameters of a fixed-order FIR model which
provides the best worst-case approximation of the (I/O) relationship of a linear system
with unknown structure. More precisely, the FIR model parameters are identified in
order to minimize the worst-case distance between the output of the true system and
the modeled output for all possible values of input and output data consistent with their
quantized measurements. The paper is organized as follows. Computation of optimal
worst-case FIR parameters is formulated as a robust optimization problem in Section
2. Two different approaches are presented in Section 3 to compute the solution of the
formulated robust optimization problem by means of linear programming techniques.
Capabilities of the proposed identification scheme, together with a comparison with the

standard least square algorithm, are discussed in Section 4.

2. Problem formulation

Consider a stable discrete-time single-input single-output linear dynamical system

described by
= h(t)u, (1)
t=1

where {h(t)}$2, is the impulse response, while u; and y; are the continuous-amplitude
input and output signals at the time instant ¢, respectively. Measurements u} of the

input signal u; are obtained by the following m,-level quantizer Q,,(+):

{%J Ay+C, if C, <u<Cy,
uf = Qu(u))=4  C,, if ue>C,, (2)
Q if Ut S Qu7

where |-] denotes the floor operator, [C,; C.] is the range of the quantizer and A, =

C;’;u%% is the quantization step. Similarly, quantized measurements y{ of the output
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signal y; are given by the quantizer Q,(-) with m, levels described by

|55 ay+e, i €, <u<Cy,
Qy, if Yt é va
with A, = C;;i;_%y

Assumption 1. We assume that quantizers Q,(-) and Q,(-) are designed so that the
input and the output signals u; and y: belong, respectively, to the quantization ranges

[C.; Cu] and [C,; C,). u

In view of Assumption 1, the unknown noise-free input u; ranges within the open interval
[ut) defined as [uy) = [uf; uf + A, ), while the unknown noise-free output y; takes values
in the open set [y;) = [yf; yf + Ay).

For a given integer n > 1 and for a given sequence of input and output quantized
measurements u? = [u? , w? o, .. wl]" and y? = [yf, vi, ..., y}]", the aim of
our work is to estimate the parameters 6 = [0y, 01,...,0,]" of an n-order finite-impulse-

response (FIR) model F:

F @t = Zekut,k. (4)
k=0

Remark 1. Note that, since a finite record of input/output data is collected, Assumption
1 can be relaved by assuming that u, € [C,,; C.] only for the time indexes t = —n, —n +
1,...,N and y; € [Qy; éy] fort=1,...,N. Indeed, rough a-priori information on the
upper/lower bound of the input signal can be used to calibrate the quantizer Q. (-) in order
to satisfy Assumption 1. Nevertheless, if such rough a-priori information is not available,
the user can calibrate the quantizer Q,(-) by gradually increasing the quantization range
[C; Cul, until there is no value of the measured inputs uf equal to C,, or C,. If fact,
if there is no value of ul equal to C,, or C.,, then the true input signal u; is guaranteed
to belong to the interval [C,; C.]. The same considerations can be applied in order to

calibrate the output quantizer Qy(-). |

The FIR model F is computed in order to minimize the worst-case distance be-

T

tween the noise-free output sequence y = [y1, ¥y2, ..., yn|* and the predicted out-

put ¥y = [41, ¥2, ..., gn]* for all possible admissible values of the noise-free input
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u = [u_p, U_pnt1, ..., uy|* and output signals y, that is, for all values of ug € [uy)
and yr € [y), with K = —n,...,N and t = 1,...,N. Thus, the optimal worst-case

parameters 6* can be computed by solving the following optimization problem:

0" = argr%in max 1y — ¥l (5)

where [ug] and [yx] denote the closure of the open set [ug) and [yx), respectively, that is

[ue] = [uf; uf+A,] and [y:] = [yf; yf+A,], while ||y —y]|  is the co-norm of vector y—y.

Remark 2. Problem (5) can be interpreted as a game between designer and nature,
where the designer has to look for a strategy (FIR parameters 8 ) which minimizes a given
criterion (|| — ylleo) against the nature, which in turn plays the most disadvantageous
strategy for the designer (looking for the values of uy € [ut] and yi € [y;] maximizing
|lU—ylloo ). The interested reader is referred to [27] for an overview of the main principles

of game theory. [ |

Remark 3. If the 2-norm is considered in the objective function of Problem (5), the
deterministic total least square (TLS) approach described in [28] (Chapter 2.8) could
be used to solve the minmax problem (5). However, although by means of the TLS
approach it is possible to deal with the case of bounded input and output errors, the
solution computed by applying the deterministic TLS method described in [28] is, in
general, affected by some conservativeness. In fact, the algorithm proposed in [28] is
based on the implicit assumption that the uncertain variables affecting the different rows
of the regressor are independent with each others. Unfortunately, that is not the case in
Problem (5) where the uncertainties affecting the rows of the regressors are correlated,
due to the presence of different occurrences of the same uncertain input samples. On the
contrary, in this paper we propose two different methods to exactly solve Problem (5) by

taking into account such a correlation. |



3. Computation of optimal worst-case FIR parameters 6*

In this section we present two different approaches to compute the optimal worst-case
parameters 8* by means of linear programming optimization.

First, we note that, by introducing the slack variable £ and by substituting equation
(4) into (5), problem (5) can be written as the following robust optimization problem

(07,8) = argmin §

B

s.t.

— <Y Ohur g —y <& Yug € [u, Vo € [yl
k=0

k=-n N; t=1 N.

P yeeey

Note that in (6) there are infinitely many constraints, since the inequalities —¢ <

n

Zﬁkut,k — 1y < & must be satisfied for all possible values of u; and y; in the un-
k=0
certainty intervals [ug] and [y], respectively. This kind of problems are known as robust

optimization problems or semi-infinite programming problems, namely problems with
finitely many decision variables and infinitely many constraints [29]. In the following,
two different techniques are presented to reduce (6) to a linear programming problem
with a finite number of constraints. These two methods will be referred to as vertex

approach and nonnegative-scalar approach.

3.1. Vertex-approach

Let B; be an n + 2-dimensional box defined as
By = [ug] X [ug—1] X ... X [ug—n] X [y¢] (7)

and by = [ug, Up—1, ..., Ut—p, yt] be an element of B;. Let b{, with j =1,...,2"*2 be the

j-th vertex of B;.

Proposition 1. Condition

—£ < Zekut—k -y <& (8)
k=0
holds for all uy_y, € [ug—g] and for all y; € [y¢], with k =0,...,n if and only if
_€ S Z 9kbz,k+1 - b{,n+2 S g? v.] = 17 ceey 2n+27 (9)
k=0
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where b{ . denotes the k-th component of the vertex b{.

Proof The proof of Proposition 1 follows from the fact that maximum/minimum of
n

Z Oxus—p, — ys is attained at some vertex b{ of box B;. In particular, for a given 6, the

k=0
n

maximum of E Oxus_p, — yp over By is
k=0

Zek (uf_, + I Au) — yt,
k=0

while the minimum value is
Zek [ugfk + (1 - Iek) Au] - (yt + Ay)a
k=0

where Iy, is defined as

1 if 0y > 0

I — BO= (10)
0 if g <O.

]

On the basis of Proposition 1, the optimal worst-case FIR parameters 6* solution to

problem (6), can be obtained by solving the following linear programming problem:
(07,6") = argrg}gl&

_ggzakbg,k+l_b{,n+2 Sfa vj:]_,“',2n+2’ t:1,...,N.
k=0

It is worth remarking that the number M of linear constraints involved in (11) is
M = 2N2"*2, Thus, since M increases exponentially with the order n of the FIR model
F, application of the presented procedure is limited to small values of n. In order to
compute a solution of problem (6) also for large values of n, in the following we present
an alternative method which leads to a linear programming problem whose number of

constraints increases linearly with n.

3.2. Nonnegative-scalar approach

Let us rewrite the following robust constraint appearing in the optimization problem

(6)

-¢< g Orue—r —ye <& Yy € ]y Vup—p € [ue—i], k=0,...,n, (12)
k=0
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as

Do Orue— — yf <&,

D h—o Okue—r — (yf +Ay) > =€, (13)
Vug—g € [ug—g], k=0,...,n,

or equivalently in terms of nonnegative robust constraints, i.e.
=D hmo Ortu—k +yf +€ >0,

Yoho Okti—k =yl — Ay +€ >0, (14)
Yui—k € [ur—g), £=0,...,n.

It is worth remarking that only 65 and £ are the decision variables in (14), while w;_g
is an uncertain variable which is assumed to belong to the uncertainty set [u;_j]. This
means that 0 and £ have to be computed so that the constraints — ZZ:O Opus—_pk+yi+€ >

0 and ZZ:O Orui—i —yi — Ay +E& > 0 are satisfied for all possible values of u;_j in [u;_g).

Proposition 2. The collection of robust constraints

— Y onohu—k +yf + € >0, Yup_ € [up—gl,

(15)
k=0,....n; t=1,...,N
18 equivalent to the following set of constraints:
= ko Okt Ty + & =
:BtJrZZ:oAk (—ud_p 4 w—n) +>no ok Wy + Ay — i) (16)

for some A\, > 0; ), > 0; p, > 0;
k=0,...,n; t=1,...,N.

Proof We first prove that (16) implies (15). Indeed, for all u,_y € [wi—g), —uf_, +u—p >
0 and uf , +A, —u— > 0. Besides, since A\, > 0, g;, > 0 and P, = Oforallk=0,...,n

and for all t = 1,..., N, the right side of the equality in (16) is always positive, therefore

— Zﬁkut,k + yf + 5 >0 (17)
k=0

for any us_y € [up—g), with k = 0;...,n. Thus, condition (15) holds.
In order to prove that (15) implies (16) we have to show that, when (15) holds, there

exists some nonnegative constants p, Ay Opy With K =0,...,nand t = 1,..., N such

n
that the terms — ZQkut,k +yl+& with ¢ =1,..., N, can be written as
k=0
n n
P, M (g i)+ Y o (g + Au ) (18)

k=0 k=0
8



Such constants are equal to

0, if 0, >0
A = oo (19)
0, 0, <0
Ok, iffp >0
o =9 0 (20)
0, if 6, <0
Bt = - Zek (Ug_k +IQkAu) + yz? + fa (21>

k=0
with Zp, defined in (10). Indeed, A;, and g;, in (19) and (20) are nonnegative by definition.

Besides, from eq. (15), the term — Z Orus—k+yi +£€ is nonnegative for all uz_j € [up_g],
k=0
thus also P, is nonnegative since ugfk + Zp, Ay € [us—k]. By substituting A\, g, and P,

defined in (19)-(21) into eq. (18), the term in (18) becomes — Z Orur—i + yi + & This

k=0
completes the proof. [ ]

Remark 4. The equality constraint appearing in (16) is an equality between two polyno-
mials in the variables us—y, (with k =0,...,n), namely ZZ:O Orui—r —yi — Ay +&, and
Pt roMe We—k — uf_ )+ o Tk W) + Ay — wi—g) . As is well known, two polyno-
maals are equivalent if and only if the coefficients of the corresponding powers are equal.
Furthermore, the coefficients of the polynomials in (16) depend on the unknowns 6, &,
Ak, ) and p, (with k =0,...,n and t = 1,...,N). Therefore, the equivalence of the
polynomials in (16) leads to a set of equality constraints in the variables 0, &, Ay, &) and

B L]

Proposition 3. The set of robust constraints

Yono Ot —yf — Ay +£ >0, Yup_ € [us—p),
k=0,....,n; t=1,....N



is equivalent to the following set of constraints:

Soheo Ok —yi — Ay +E=

=Pt Dok (Ui k) 30 T (i + Ay — ugp)

for some A >0; 55 > 0; P > 0;

k=0,....,n; t=1,...,N.

(23)

Proof Proof of Proposition 3 follows by considerations similar to the ones used in the

proof of Proposition 2. In this case, the values of Ay, 7 and 5, which satisfy conditions

in (23) are given by

_ 05, if 8, > 0,
Ak =

0, if 9, <0,
_ 0, if 8, > 0,
O =

-0, if 0, <0,

P = Zek (i + (1= To)Au) =4 = Ay +¢.
k=0

On the basis of Propositions 2 and 3, the optimal worst-case FIR parameters 8* solution

to problem (6), can be obtained by solving the following optimization problem:

(0",6") =arg  min ¢
0,¢
Xkaak’aﬁt
AkanaBt

s.t.

Z Opur—r —yf — Ay +& = ﬁt‘*‘zxk (we—r — ui_y) +25k (Wi + Ay —ue_p); (27)
k=0

k=0 k=0

n

= Oy A E=p A Y Ny (Cul w0y [+ A — ) ;

k=0 k=0 k=0

for some A\, > 0; &1, > 0; p, > 0;
Ay =05 g5, 205 p, >0

k=0,....,n; t=1,...,N.

Property 1. Optimization problem (27) is a linear programming problem in the decision

variables 9767 Xkaﬁk;ﬁp A]wglmgt'
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Proof As highlighted in Remark 4, the polynomial Y }'_ Opui—r — yf — Ay + & (in the

variables u;_j (with £k =0,...,n)) is equivalent to the polynomial

Pt Ak ek — ud_ )+ Tk (Wl + Ay —ues)
k=0 k=0

if and only if the coefficients of the corresponding powers are equal. This leads to linear
constraints in the variables 6, £, A, &% and p,, with k =0,...,nand t =1,..., N. The
same considerations hold in order to impose that the polynomial — ZZ:O Opus_p +yi +&

is equivalent to polynomial

n n
B,ﬂrz&k (~uf_) + Ut—k)Jngk (Wl + Ay —upy) .
k=0 k=0

Remark 5. The feasible set of problem (27) is defined by M = 4N + 2n linear con-
straints, thus M increases linearly with the order n of the FIR F. Therefore, unlike the
“vertex” approach, the “nonnegative-scalar” approach can be efficiently applied also in

the case of FIR models F with large order n. |

Remark 6. [t is worth remarking that both the vertex and the nonnegative-scalar ap-
proach can be applied, with minor modifications, also in the case the input and the output

signals are measured by means of centered quantizers described by:

round (%) A,+C, if C,<u< C,
ul = Qu(u)= C, if up > Cly, (28)
C. if ug <C,,
round (%) Ay +C, if C,<uyt< éy,
yi = Qy) = C,, if v >0y, (29)
c,, if yr <C,,

where round(-) denotes the closest integer approzimation. Extension of the proposed ap-

proaches to the case of nonuniform quantization is also straightforward. |
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4. Simulation example

In this section we show the performance of the discussed approach through a numerical

example. The true system generating the data is an ITR model described by

Y¢ =01Yi—1 + aoyi—o + bouy + brus—1 + baug_o, (30)

with a; = 0.15, as = 0.60, by = —0.10 by = 3.50, bo = —2.10. The input sig-
nal u; is a random variable uniformly distributed in [-0.2; 0.2]. Quantized measure-
ments of the input and of the output signal are obtained by means of uniform and
centered quantizers described by (28)-(29) with range [C,; C.] = [-0.2; 0.2] and
(C; C,] = [-2; 2], respectively. In order to show the effect of the input quantiza-

tion error, four different input quantizers with levels m,, = 4,6, 8, 10 are considered. The
N 2
_1(u
signal-to-noise ratios SNR, = 10log,, ]%:tfl( ) 7
pe (we — uf)?
sidered quantization levels m,,, are reported in Table 1. Similarly, four different output

, corresponding to the con-

quantizers with levels m, = 8,12,16,20 are considered in order to analyze the effect
of the output quantization error. Table 2 shows the values of the signal-to-noise ratios
N 2
> =1 (yt)
N

> (e — yi)?
tion levels m,. It worth pointing out that, in order to provide representative results,

SNR, = 10log,, ( ) corresponding to the considered output quantiza-

the input and the output quantizers are chosen to be different with each other. In fact,
for input quantization levels m, = 8,12, 16, 20, the corresponding signal-to-noise rations
are higher than 20 dB and the obtained results would not clearly show the effect of the
noise on the input measurements. All possible combinations of the input and the output
quantizers are analyzed in the simulation example. Furthermore, for each combination
of the input and the output quantizers, a MonteCarlo simulation with 100 runs is per-
formed with a new input realization in each run. The optimal worst-case parameters 6*
of a FIR model F* of order n = 30 are estimated, at each MonteCarlo run, from an

input/ouput sequence of length N = 200. It is worth remarking that, in the considered

Table 1: Signal-to-noise ratio (SNR,) on the input signal measurements vs number of quantization

levels my,.

my, 4 6 8 10
SNR, || 4dB 11dB 21dB 32dB

12



example, the feasible set of optimization problem (11) is described by 2N2"*2 ~ 1.7-10'2
constraints. Therefore, because of high computational complexity, the vertex approach
discussed in Section 3.1 can not be exploited to compute FIR parameters 6*. On the
other hand, the use of the nonnegative-scalar method leads to optimization problem (27)
with 4N + 2n = 860 constraints, that can be efficiently solved by means of linear pro-
gramming solvers like Matlab function linprog. The performance of the estimated FIR
model is tested on a validation set with N, = 50 input/output measurements. The

validation mean square error M SEy , defined as

Nual
1 .
MSEy = Noo Z (G —ve)?, (31)
va

t=1

is used to evaluate the matching between real data y; and estimated data ¢;. Besides,
performances of the identified FIR model F* with parameters §* are also compared
with performances of a FIR model F1 g of the same order n, whose parameters ;g are

computed by means of standard least-square (LS) estimation, that is

N n 2
QLS:argH}ginZ (k Oekug_ky;}> . (32)

t=1 \k=
Fig. 1 shows the real output signal y; in the validation data set and the estimated output
3 of FIR models F* and F g obtained in one of the Monte Carlo simulation runs with
quantization levels m, = 4 and m, = 12. The magnitude of the errors between real
output signal y; and outputs ¢; of FIR models F* and Frg is shown in Fig. 2. Figs. 1
and 2 show that the optimal worst-case FIR model F* achieves better performance with
respect to the performance of model Frg. In fact, the M SFEy obtained by using FIR
model F* is 0.0109, smaller than the M SEy obtained by the FIR model Fj g, which is
equal to 0.0478. The mean value of the validation mean square error M SEy obtained
over the 100 Monte Carlo runs are reported in Table 3. Such results show that, for low
values of the signal-to-noise ratios on the input measurements (i.e., m, = 4,6) optimal

worst-case FIR model F* achieves better performance, in terms of M SEy , with respect

Table 2: Signal-to-noise ratio (SNRy) on the output signal measurements vs number of quantization

levels my,.

m, 8 12 16 20
SNR, | 6dB 10dB 13dB 16 dB

13



to the performance of model Frg. The reason is due to the fact that the least-square
approach provides a poor estimate in case of noise-corrupted measurements of the input
signal. On the other hand, for high values of the signal-to-noise ratios on the input
measurements (i.e., m,, = 8,10) the performance of the two estimated models are quite
similar. It is worth remarking that when non-centered quantizers are used to measure
the output signal, the performance of the LS approach significantly drop because of the
nonzero average on the measurement noise. On the other hand, the optimal worst-case
approach presented in the paper is not affected by this drawback since no assumption on

the mean value of the quantization error is made.

5. Conclusions

The paper deals with the approximation problem of linear dynamical systems with
a fixed-order FIR model from input/output measurements subjected to quantization.
Parameters of a FIR model which minimize the worst-case distance between the true

output signal and the estimated output, for all possible values of the input signal, are

Table 3: Mean value M SFEy of the validation mean square error M SEy obtained over the 100 Monte
Carlo runs with the FIR models F* and Fr s and for all possible combinations of the quantizers used

to measure the input/output signals.

my, my | MSEy(F*) MSEy(FLs)
4 8 0.0276 0.0522
4 12 0.0185 0.0508
4 16 0.0113 0.0488
4 20 0.0104 0.0475
6 8 0.0097 0.0196
6 12 0.0092 0.0152
6 16 0.0084 0.0138
6 20 0.0082 0.0117
8 8 0.0078 0.0075
8 12 0.0069 0.0067
8 16 0.0057 0.0056
8 20 0.0055 0.0052
10 8 0.0075 0.0076
10 12 0.0048 0.0045
10 16 0.0043 0.0040
10 20 0.0039 0.0036
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-0.5;

0 10 20 30 40 50
Sample

Figure 1: Comparison between real output data (solid thick line), estimated output of filter F* (solid
thin line), estimated output of filter 7 g (dashed line).

05

04}

03}

Error

0.2}

0.1

Figure 2: Absolute value of the error between real data and estimated data of filter F* (solid thick line)

and error between real data and estimated data of filter Fr g (dashed line).

computed. The considered approximation problem is formulated in terms of robust op-
timization and two different methods are discussed in order to compute the solution of

the formulated robust optimization problem. The first method, referred to as wertex
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approach, requires the solution to a linear programming problem with a number of con-
straints which exponentially increases with the order of the FIR model. Thus, because of
high computational burden, the vertex approach can be exploited only for small values
of the FIR order. The second method, referred to as nonnegative-scalar approach, leads
to a linear programming problem with a number of constraints which linearly increases
with the order of the FIR model to be estimated. Therefore, the nonnegative-scalar
approach can be efficiently used to identify FIR models with high order. The reported
simulation example shows that the proposed identification algorithm provides a satis-
factory FIR approximation of the IIR data-generating system. In addition, the ability
of the proposed worst-case approach to deal with the presence of quantization error is
highlighted by comparing the response of the obtained FIR model with the response of

the FIR model estimated by means of the standard least squares approach.

6. Acknowledgments

This research was developed while Dr. D. Piga was a Ph.D student at the Politecnico

di Torino.

References

[1] E. Rafajlowicz, System identification from cheap, qualitative output observations, IEEE Trans.
Automatic Control 41 (1996) 1381-1385.

[2] L. Wang, J. F. Zhang, G. G. Yin, System identification using binary sensors, IEEE Trans. Automatic
Control 48 (2003) 1892-1907.

[3] L. Y. Wang, G. G. Yin, Asymptotically efficient parameter estimation using quantized output
observations, Automatica 43 (2007) 1178-1191.

[4] Y. Zhao, L. Y. Wang, G. G. Yin, J. F. Zhang, Identification of wiener systems with binary-valued
output observations, Automatica 43 (2007) 1752-1765.

[6] E. Weyer, S. Ko, M. C. Campi, Finite sample properties of system identification with quantized
output data, in: 48th IEEE Conference on Decision and Control, Shanghai, China, pp. 1532-1537.

[6] E. Colinet, J. Juillard, A weighted least-squares approach to parameter estimation problems based
on binary measurements, IEEE Trans. Automatic Control 55 (2010) 148-152.

[7] B. Godoy, G. Goodwin, J. Agiiero, D. Marelli, T. Wigren, On identification of FIR systems having
quantized output data, Automatica (2011) 1905-1915.

[8] D. Marelli, K. You, M. Fu, Identification of arma models using intermittent and quantized output
observations, in: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), IEEE, pp. 4076-4079.

[9] X. Liu, J. Wang, Q. Zhang, A quadratic-programming-based method to quantized system identifi-
cation, in: Proc. of IFAC world congress, Milan, Italy, pp. 9052-9057.

16



(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

20]

(21]

(22]

23]

[24]

23]

[26]

27]

28]
(29]

T. Wigren, Approximate gradients, convergence and positive realness in recursive identification of
a class of non-linear systems, International Journal of Adaptive Control and Signal Processing 9
(1995) 325-354.

T. Wigren, Adaptive filtering using quantized output measurements, IEEE Transactions on Signal
Processing 46 (1998) 3423-3426.

E. W. Bai, J. Reyland, Towards identification of Wiener systems with the least amount of a priori
information on the nonlinearity, Automatica 44 (2008) 910-919.

E. W. Bai, J. Reyland, Towards identification of Wiener systems with the least amount of a priori
information: IIR cases, Automatica 45 (2009) 956-964.

E. Sviestins, T. Wigren, Optimal recursive state estimation with quantized measurements, IEEE
Trans. Automatic Control 45 (2000) 762-767.

Z. Duan, V. P. Jilkov, X. R. Li, State estimation with quantized measurements: Approximate
mmse approach, in: 11th International Conference on Information Fusion, pp. 1-6.

M. Casini, A. Garulli, A. Vicino, Optimal input design for identification of systems with quantized
measurements, in: 47th IEEE Conference on Decision and Control, pp. 5506-5512.

M. Casini, A. Garulli, A. Vicino, Input design for worst-case system identification with uniformly
quantized measurements, in: Proc. of SYSID 2009, Saint-Malo, France, pp. 54-59.

M. Casini, A. Garulli, A. Vicino, Input design in worst-case system identification using binary
sensors, IEEE Trans. Automatic Control 56 (2011) 1186-1191.

L. Y. Wang, G. G. Yin, J. F. Zhang, Y. Zhao, System Identification with Quantized Observations,
Control: Foundations & Applications Systems & control, Springer, 2010.

V. Cerone, Feasible parameter set for linear models with bounded errors in all variable, Automatica
29 (1993) 1551-1555.

V. Cerone, D. Piga, D. Regruto, Set-membership error-in-variables identification through convex
relaxation techniques, IEEE Transactions on Automatic Control 57 (2012) 517-522.

V. Cerone, D. Piga, D. Regruto, Enforcing stability constraints in set-membership identification of
linear dynamic systems, Automatica 47 (2011) 2488-2494.

V. Cerone, D. Piga, D. Regruto, Improved parameters bounds for set-membership EIV problems,
International Journal of Adaptive Control and Signal Processing 25 (2011) 208-227.

H. Suzuki, T. Sugie, System identification based on quantized i/o data corrupted with noises and
its performance improvement, in: 45th IEEE Conference on Decision and Control, pp. 3684—-3689.
M. Ikenoue, S. Kanae, Z. J. Yang, K. Wada, Identification of errors-in-variables models from
quantized input-output measurements vai bias-compensate instrumental variable type method, In-
ternational Journal of Innovative Computing, Information and Control 6 (2010) 183198.

V. Krishnamurthy, Estimation of quantized linear errors-in-variables models, Automatica 31 (1995)
1459-1464.

T. Basar, G. J. Olsder, Dynamic noncooperative game theory, Classics in applied mathematics,
SIAM, 1999.

T. Kailath, A. H. Sayed, B. Hassibi, Linear estimation, Prentice Hall NJ, 2000.

A. Ben-Tal, L. El Ghaoui, A. Nemirovski, Robust Optimization, Princeton Series in Applied Math-

ematics, Princeton University Press, 2009.

17



