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Abstract

Minimizing the ℓ0-seminorm of a vector under convex constraints is a combinatorial (NP-hard) problem. Replacement of the ℓ0-
seminorm with the ℓ1-norm is a commonly used approach to compute an approximate solution of the original ℓ0-minimization
problem by means of convex programming. In the theory of compressive sensing, the condition that the sensing matrix satisfies
the Restricted Isometry Property (RIP) is a sufficient condition to guarantee that the solution of the ℓ1-approximated problem
is equal to the solution of the original ℓ0-minimization problem. However, the evaluation of the conservativeness of the ℓ1-
relaxation approaches is recognized to be a difficult task in case the RIP is not satisfied. In this paper, we present an alternative
approach to minimize the ℓ0-norm of a vector under given constraints. In particular, we show that an ℓ0-minimization problem
can be relaxed into a sequence of semidefinite programming problems, whose solutions are guaranteed to converge to the
optimizer (if unique) of the original combinatorial problem also in case the RIP is not satisfied. Segmentation of ARX models is
then discussed in order to show, through a relevant problem in system identification, that the proposed approach outperforms
the ℓ1-based relaxation in detecting piece-wise constant parameter changes in the estimated model.
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1 Introduction

Finding a sparse solution which satisfies a set of equality
or inequality constraints is a relevant problem in many
engineering areas. A typical example is the selection of a
suitable model structure in linear regression, where one
has to select the relevant regressors, i.e., the associated
non-negligible parameters to be estimated, from a large
set of possible regressors [23]. Other examples come from
the compressive sensing (CS) theory, where a sparse sig-
nal has to be recovered from a fewer number of samples
than what is required by traditional sampling methods
based on Shannon’s theorem (see, e.g., [4,12,7] for details
on the theory of compressive sensing). Recent applica-
tions of the CS paradigm are in the field of compressive
imaging [13], robotics [25], control [3], and geophysical
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data analysis [18].

Mathematically, the problem of finding the sparsest so-
lution satisfying a system of linear equations Aθ = b
with more unknowns than equalities can be formulated
as

min
θ∈Rn

∥θ∥0 s.t. Aθ = b, (1)

where A ∈ Rm,n, with m < n, b ∈ Rm and ∥ · ∥0 denotes
the ℓ0-seminorm, which gives the number of nonzero
components of its argument. In case the entries of the
matrix A or the components of the vector b are affected
by noise, the equality constraint Aθ = b can be relaxed
and an error tolerance ε can be allowed in the equation
Aθ = b. This leads to the following variation of Problem
(1):

min
θ∈Rn

∥θ∥0 s.t. ∥Aθ − b∥22 ≤ ε. (2)

Problem (2) is often considered in system identification
[32,22,30,33]. In fact, consider the case when b is the
vector of the (noise corrupted) output observations of a
system So to be identified, A is the regression matrix,
and θ is the parameter vector defining a model structure
for So in the form of

b = Aθ + e, (3)
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with e being the residual vector. Then, Problem (2) aims
at computing the sparsest parameter vector θ under the
constraint that the ℓ2-loss function of the prediction er-
ror in the form of (3) (i.e., ∥Aθ − b∥22) is lower than a
given error threshold ε. The term ε is then tuned by the
user to balance the tradeoff between sparsity of θ and
minimization of ∥Aθ − b∥22. Note that, Problem (2) can
be also written in the Lagrangian form:

min
θ∈Rn

∥Aθ − b∥22 + γ∥θ∥0, (4)

with γ > 0 as a tuning parameter. This means that for
a given value of ε, there exists a value of γ such that the
minima of (2) and (4) are equal.

Unfortunately, Problems (1), (2) and (4) are NP-hard
and they are difficult to solve in practice for large values
of n. Several methods have been developed to compute
an approximate solution of such problems. More pre-
cisely, nonlinear optimization approaches which aim at
computing (local) minimizers of nonconvex problems ap-
proximating (1), (2) and (4) are proposed in [9,14], while
efficient greedy algorithms based on the so-calledmatch-
ing pursuit approach are discussed in [24,11,34,35]. An-
other common method to compute an approximate so-
lution of (1), (2) and (4) is based on the replacement of
the ℓ0-seminorm of the vector θ with its ℓ1-norm. This
leads to the minimization of the following convex ap-
proximations of (1), (2) and (4):

min
θ∈Rn

∥θ∥1 s.t. Aθ = b, (5)

min
θ∈Rn

∥θ∥1 s.t. ∥Aθ − b∥22 ≤ ε, (6)

min
θ∈Rn

∥Aθ − b∥22 + γ∥θ∥1, (7)

whose solution can be computed in polynomial time by
means of convex programming techniques. Evaluation of
the level of approximation introduced by Problems (5)-
(7) is recognized to be a difficult task. Some results in
this topic are given in [6,5], where it is shown that the
solution of (5) is equal to the solution of (1) under the
favorable conditions that θ is sufficiently sparse and the
matrixA obeys the so-called restricted isometry property
(RIP) [6]. However, such conditions are not satisfied in
application areas such as system identification, due to
the correlation of the columns of A (see, e.g., [33,31]).
In this paper, we propose an alternative approach to
solve problems (1), (2) and (4). First, we show how such
problems can be equivalently written as polynomial op-
timization problems with bilinear equality constraints.
Then, by using recent results proposed in [19,10,29] on
convex relaxations of semialgebraic optimization prob-
lems, the solution of the formulated polynomial prob-
lems is computed by constructing a sequence of convex
semidefinite programming (SDP) problems, whose op-
tima are guaranteed to converge to the global optimum
of (1), (2) and (4). This means that no structural ap-
proximation of the ℓ0-norm is introduced in solving the
original ℓ0-minimization problem, and its solution can

be then computed with arbitrary precision by means of
convex programming. Indeed, the latter is the main ad-
vantage of the approach presented in this paper with re-
spect to the sparse approximation methods available in
literature. To summarize, the main contributions of the
paper are:

• Showing that Problems (1), (2) and (4) can be ap-
proximated in terms of SDP problems with arbitrary
precision.

• Illustrating the applicability of the approach on ARX
segmentation.

The paper is organized as follows: themain notation used
throughout the paper is defined in Section 2. In Section 3,
we show how ℓ0-minimization problems can be formu-
lated in terms of polynomial optimization and how they
can be solved by exploiting convex relaxation techniques
based on the theory of moments. In Section 4, the pre-
sented method is applied to the problem of segmentation
of ARX models. The obtained results are compared, by
means of a simulation example, with the identification
approach proposed in [27].

2 Notation

The following notation will be used throughout the pa-
per.

M ≽ 0 matrix M is positive semidefinite.

[M ]i,j (i, j)-entry of matrix M .

Nn
0 set of n-dimensional vectors with nonnegative

components.

Inm set of indices defined as {m,m+ 1, . . . , n}.
xi i-th component of the vector x ∈ Rn.

x(I) subset of variables xi with index i in I ⊆ In1 ,
i.e., x(I) = {xi | i ∈ I}.

xα shorthand notation for xα1
1 xα2

2 · · ·xαn
n =

n∏
i=1

xαi
i .

An
d set defined as

{
α ∈ Nn

0 :
n∑

i=1

αi ≤ d

}
.

Rn
d [x] set of real-valued polynomials in the

indeterminant x∈Rn with maximum degree d.

hn
d canonical basis of Rn

d [x], i.e., h
n
d = [1 x1 · · · xn

x2
1 · · · x1xn x2

2 x2x3 · · · x2
n · · · x3

1 · · · xd
n

]⊤
.

3 SDP-relaxation for ℓ0-minimization

In this section, we show that the combinatorial prob-
lem (1) can be reformulated as a constrained polynomial
optimization problem whose solution can be accurately
approximated by means of convex relaxation techniques
based on the theory of moments. Similar considerations
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hold when the problem of computing a solution of (2)
and (4) is considered.

3.1 Polynomial formulation of ℓ0-minimization

Let us denote with θ∗ and f∗ the minimizer and the
minimum of Problem (1), respectively, i.e.,

θ∗ = arg min
θ∈Rn

∥θ∥0 s.t. Aθ = b, (8)

and f∗ = ∥θ∗∥0. An equivalent formulation of the com-
binatorial problem (1) is given by the following proposi-
tion.

Proposition 1 [The ℓ0 polynomial form]
Consider the optimization problem:

(θ∗,p , w∗,p) = arg min
θ,w∈Rn

n∑
i=1

wi (9a)

s.t. gj(θ, w) = Ajθ − bj = 0, j ∈ Im1 , (9b)

gm+i(θ, w) = (1− wi)θi = 0, i ∈ In1 , (9c)

gm+n+i(θ, w) = wi ≥ 0, i ∈ In1 , (9d)

with Aj denoting the j-th row of A. Problems (1) and
(9) are equivalent in the following sense:

(i) they share the same minimum, i.e.,

f∗ = f∗,p =
n∑

i=1

w∗,p
i ;

(ii) if θ∗ is a global minimizer of (1), then

θ∗,p = θ∗ and w∗,p
i =

{
1 if θ∗i ̸= 0;

0 if θ∗i = 0;
(10)

is a global minimizer of (9). On the other way around,
if (θ∗,p, w∗,p) is a global minimizer of (9), then θ∗,p is
also a global minimizer of (1).

Proof First, note that any solution (θ∗,p, w∗,p) of (9)
satisfies the following condition

w∗,p
i =

{
1 if θ∗,pi ̸= 0;

0 if θ∗,pi = 0.
(11)

This follows from the constraint (1 − wi)θi = 0 in (9)
defining the feasibility set. In terms of this constraint, if
θ∗,pi ̸= 0 then w∗,p

i = 1. On the other hand, if θ∗,pi = 0
then, in order to minimize the objective function of (9),
w∗,p

i = 0. As a consequence,

f∗,p =
n∑

i=1

w∗,p
i = ∥θ∗,p∥0. (12)

Indeed, the vector θ∗,p is a feasible solution for Problem
(1) since θ∗,p satisfies the equality constraint Aθ∗,p = b
(eq. (9b)). Therefore,

f∗,p = ∥θ∗,p∥0 ≥ f∗. (13)

Let us now consider the point (θ∗, w∗), where θ∗ is a
minimizer of (1) and w∗ is such that

w∗
i =

{
1 if θ∗i ̸= 0;

0 if θ∗i = 0.
(14)

Note that ∥θ∗∥0 =
∑n

i=1 w
∗
i = f∗. Since the point

(θ∗, w∗) is a feasible solution of Problem (9), we have
that

f∗ = ∥θ∗∥0 ≥ f∗,p. (15)
By combining (13) and (15), Part (i) of the proposition
follows. Part (ii) of the proposition follows straightfor-
wardly from Part (i). In fact, if θ∗ is a global minimizer
of (1), then f∗,p = f∗ = ∥θ∗∥0. As (θ∗, w∗) is a fea-
sible solution of Problem (9), then

∑n
i=1 w

∗
i = ∥θ∗∥0.

Therefore, f∗,p =
∑n

i=1 w
∗
i , which means that the point

(θ∗, w∗) is a global minimizer of (9), as stated in Part (ii)
of the proposition. Based on the same considerations, it
can be proven that if (θ∗,p, w∗,p) is a global minimizer
of (9), then θ∗,p is also a global minimizer of (1). �

Note that (9) is a polynomial optimization problem be-
cause of the product between the variables θi and wi.
Recently, efficient methods have been proposed in the
literature to compute approximate solutions of polyno-
mial problems by constructing a hierarchy of SDP prob-
lems of increasing size, whose optimal values converge
from below to the global minimum of the original polyno-
mial problem. Such SDP-relaxation techniques are dis-
cussed in [19,10,29] and they are based on the theory
of moments and on the dual representation of nonneg-
ative polynomials as sum-of-squares (SOS). In the fol-
lowing, we show how the theory of moments relaxation
presented in [19] can be applied to compute a solution
of Problem (9).

3.2 SDP-relaxation of Problem (9)

Let Z = [θ⊤ w⊤]⊤ ∈ R2n be the collection of the opti-
mization variables involved in Problem (9). For a given
integer δ ≥ 1, let us rewrite the objective function of
Problem (9) as

n∑
i=1

wi =
∑

α∈A2n
2δ

FαZ
α, (16)

with {Fα}α∈A2n
2δ

being the expansion coefficients of∑n
i=1wi in the polynomial basis {Zα=Zα1

1 · · ·Zα2n
2n }α∈A2n

2δ
.

Consider the following optimization problem

f∗
µ= inf

µ∈P(S)

∫ ∑
α∈A2n

2δ

FαZ
αµ(dZ)= inf

µ∈P(S)

∑
α∈A2n

2δ

Fα

∫
Zαµ(dZ),

(17)
where S is the feasibility set of Problem (9), i.e., S ={
(θ, w) :gj(θ, w)=0, j ∈ Im+n

1 ; gs(θ, w) ≥0, s ∈ Im+2n
m+n+1

}
and P(S) is the space of finite Borel signed measures
with support contained in S. According to Proposition
2.1 in [19], Problem (9) is equivalent to Problem (17),
that is

(a) f∗,p = f∗
µ;
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(b) if Z∗ is a global minimizer of the polynomial prob-
lem (9), then µ∗ = d(Z − Z∗), with d(·) being the
Dirac function on R2n.

To rewrite Problem (17) in a more convenient form, in-
troduce p = {pα}α∈A2n

2δ
as the (truncated) sequence of

moments up to order 2δ of a Borel probability measure
µ on R2n, i.e.,

pα =

∫
Zαµ(dZ). (18)

Note that pα represents the right hand side of the sum-
mands in (17). Now we can rewrite Problem (17) as

f∗
µ = inf

p

∑
α∈A2n

2δ

Fαpα (19a)

s.t. p is represented by a

Borel measure µ ∈ P(S). (19b)

It is worth noting that (19) is an optimization problem
in the variable p. Lemma 1 (below) provides necessary
conditions so that p is represented by a signed Borel
measure on S. First, the following definitions are intro-
duced. Let h2n

δ be the canonical basis of R2n
δ [Z]. Define

the truncated moment matrix (of order δ) associated
with the measure µ as

Mδ(p) =

∫
h2n
δ

(
h2n
δ

)⊤
µ(dZ). (20)

Let {gs,β}β∈A2n
2

be the sequence of the coefficients of

the bilinear polynomial gs(Z) ∈ R2n
2 [Z] (defining the

feasible set S) in the basis h2n
2 , i.e.,

gs(Z) =
∑

β∈A2n
2

gs,βZ
β . (21)

Let pαi,j be the (i, j)-entry of the truncated moment ma-
trix (of order δ−1) Mδ−1, i.e., pαi,j = [Mδ(p)]i,j . Define

the localizing matrix Mδ−1(gsp) of order δ − 1, associ-
ated with the moments p and the polynomial gs(Z), as

[Mδ−1(gsp)]i,j =
∑

β∈A2n
2

gs,βpαi,j+β , (22)

with αi,j + β being the componentwise sum of the vec-
tors αi,j and β. The size of Mδ−1(gsp) is equal to the
size of the moment matrix Mδ−1. The interested reader
is referred to [19] for explanatory examples on the con-
struction of moment and localizing matrices.

Lemma 1 [Sequence of moment conditions, [21]]
If p is the sequence of moments (truncated up to order
2δ) of a Borel signed measure on S, then: Mδ(p) ≽ 0;
Mδ−1(gsp) = 0 for all s ∈ Im+n

1 and Mδ−1(gsp) ≽ 0 for
all s ∈ Im+2n

m+n+1. �

On the basis of Lemma 1, Problem (19) can be relaxed
by replacing the constraint (19b) with the less restrictive

matrix constraints given in Lemma 1. This leads to the
following relaxation of (19) (or equivalently of (9)):

min
p

∑
α∈A2n

2δ

Fαpα (23a)

s.t. Mδ(p) ≽ 0, Mδ−1(gsp) = 0, s ∈ Im+n
1 , (23b)

Mδ−1(gsp) ≽ 0, s ∈ Im+2n
m+n+1. (23c)

It is worth remarking that the matrices Mδ(p) and
Mδ−1(gsp) depend linearly on the optimization vari-
ables p = {pα}α∈A2n

2δ
. Therefore, Problem (23) is a

convex SDP problem with linear objective function and
linear matrix inequality (LMI) constraints in the vari-
ables p. Example 1 For the sake of clarity, the above
introduced theory of moment relaxation is explained
here through a simple example. Consider the following
ℓ0-minimization problem:

min
θ1,θ2

∥ [θ1 θ2]
⊤ ∥0 s.t. a1θ1 + a2θ2 = b, (24)

where a1, a2 and b are known constants. The polynomial
problem associated with (24) is then

min
θ1,θ2
w1,w2

w1 + w2 (25)

s.t. g1(θ, w)=a1θ1 + a2θ2 − b = 0,

g2(θ, w)=(1−w1)θ1=0, g3(θ, w)=(1−w2)θ2=0,

g4(θ, w)=w1 ≥ 0, g5(θ, w)=w2 ≥ 0.

Based on the previously described theoretical results
concerning the relaxation of (9) with (23), it follows that
the SDP-relaxed problem of order δ = 1 associated with
(25) is given by:

min
p

p0010 + p0001 (26a)

s.t. M1(p) ≽ 0; M0(gsp) = 0, s ∈ I31; (26b)

M0(gsp) ≽ 0, s ∈ I54. (26c)

In (26b), the moment matrix M1(p) is

M1(p) =


p0000 p1000 p0100 p0010 p0001
p1000 p2000 p1100 p1010 p1001
p0100 p1100 p0200 p0110 p0101
p0010 p1010 p0110 p0020 p0011
p0001 p1001 p0101 p0011 p0002

 ,

and the localizing matrices are

M0(g1p) = a1p1000 + a2p0100 − bp0000,

M0(g2p) = 1− p1010, M0(g3p) = 1− p0101,

M0(g4p) = p0010, M0(g5p) = p0001. �

Property 1 [Convergence properties]

Denote with f̃∗ and p∗ the minimum and the minimizer,
respectively, of the SDP problem (23). Let p̂∗ be defined
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as

p̂∗ :=

{
p∗α |

2n∑
i=1

αi = 1

}
={p∗100···00, p∗010···00, . . . , p∗000···01}.

The following asymptotic convergence results hold as δ
goes to infinity:

(i) f̃∗ monotonically converges, from below, to the
global optimum of the combinatorial Problem (1).

(ii) If the global minimizer (θ∗,p, w∗,p) of Problem (9)
is unique, then p̂∗ converges to (θ∗,p, w∗,p). �

The features highlighted in Property 1 follow from the
application of Theorem 4.2 in [19] to the polynomial
optimization problem (9) and to the corresponding SDP-
relaxed problem (23).

The convergence properties highlighted in Property 1
can be interpreted as follows: the global optimum of
a (nonconvex) polynomial optimization problem can
be computed by solving a (convex) SDP problem with
infinite-size LMI constrains. To put it another way, the
nonconvexity of the problem can be equivalently re-
placed by infinite-dimensional convex constraints. It is
also important to point out that the convergence prop-
erties in Property 1 can be also achieved for finite δ.
However, the minimum value of δ which guarantees con-
vergence is not known a-priori. As a consequence, com-
puting the exact solution of the original ℓ0-minimization
problem through the SDP problem (23) might require
more time than using a brute-force algorithm. Never-
theless, the global optimum and the global minimizer of
the original combinatorial problem (1) are usually at-
tained in practice at a small value of δ (see, e.g., [16] for
a collection of polynomial optimization problems solved
with relaxation orders smaller than 4). Furthermore,
according to [17], the numerical test

rank(Mδ(p
∗)) = rank(Mδ−1(p

∗)), (27)

can be carried out in order to check if the global optimum
of (9) is attained by the corresponding SDP-problem
(23) at a given finite value of δ. In case condition (27)
is satisfied, the global minimizer θ∗ of the combinatorial
Problem (1) can be extracted from Mδ(p

∗) through the
procedure presented in [17]. It is worth pointing out that
the convergence properties stated in Property 1 (ii) are
guaranteed only if the global minimizer of (9) is unique.
Nevertheless, when the rank condition in (27) is satis-
fied, the extraction procedure in [17] provides a global
minimizer of Problem (9) also in case of multiple mini-
mizers.

Example 2 To demonstrate how the proposed ap-
proach can significantly outperform the standard ℓ1-
relaxation methods, a simple but illustrative example is
provided. Consider the optimization Problem (1) with

A =

 2 −1 31 3

10/3 3.33 44.17 2.5

−4/3 4.67 −26.67 −4

 ; b =

 6

10

−4

 .

The minimizer p̂∗ obtained by solving the SDP-problem
(23) for a relaxation order δ = 2 is equal to p̂∗ =

[3 0 0 0]
⊤
, which is indeed the global minimizer θ∗ of the

original nonconvex problem (1). On the other hand, the

optimizer θ̃ of the relaxed problem (5), obtained by re-
placing the ℓ0-seminorm of θ with its ℓ1-norm, is equal to

θ̃ =
[
0 22

99
22
99 − 22

99

]⊤
. Indeed, the computed value of θ̃ is

completely different from the true minimizer of Problem
(1). Furthermore, the support of θ̃ is the complement of
the support of θ∗. Of course, one can argue that the en-
tries of the matrix A do not allow a good approximation
of Problem (1) with its corresponding ℓ1-relaxed prob-
lem (5). Nevertheless, it is important to point out that
the ℓ1-relaxation can have a significant price in terms of
the accuracy of the approximate solution. On the other
hand, the solution computed through the proposed SDP-
approach asymptotically converges to the exact one. Fur-
thermore, convergence to the exact solution for a finite
degree δ is usually achieved in practice and it can be
verified via the numerical test (27). �

Unfortunately, because of the high computational bur-
den, SDP problems arising directly from the relaxation
of polynomial problems like (9) can be solved in commer-
cial workstations by means of state-of-the-art general-
purpose SDP solvers, like SeDuMi, only if the dimension
n of the vector θ is approximately not greater than 15.
In order to overcome such a limitation, two different ap-
proaches can be exploited:

• Use of numerical algorithms tailored to solve struc-
tured SDP problems arising from the relaxation of
polynomial problems via the theory of moments. The
algorithms proposed in [26] and [36] provide promis-
ing approaches in this direction.

• Exploit structure, if present, in the original ℓ0-
minimization problem. This allows to reduce the
size of the SDP problems arising from the moment-
relaxation theory.

The latter approach is illustrated in the next section via
an applied problem of segmentation of ARX models.

4 Segmentation of ARX models

The aim of this section is to show how to exploit the
structured sparsity in ℓ0-minimization problems in order
to reduce the computational complexity of the proposed
SDP-relaxation approach. In particular, inspired by [27],
we show how to apply the SDP-approach to the problem
of segmentation of ARX models, a well-known sparse
estimation problem in system identification.

4.1 Motivation and problem description

Consider the problem of identifying a time-varying
discrete-time auto regressive with exogenous input
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(ARX) model in the form of

y(k) = ϕ⊤(k)θ(k) + eθ(k), (28)

where y(k) ∈ R is the measured output of the data-
generating system So to be modelled, ϕ(k) ∈ Rn is the
regressor vector at time k with shifted input and output
signals of So, eθ(k) is the prediction error and θ(k) ∈ Rn

are the time-varying model parameters to be identified

based on a measured data recordDN = {ϕ(k), y(k)}Nk=1.
It is assumed that So can be represented by (28), i.e.,
there exists a set of parameters θo(k) such that eθ(k)
is white. The parameters θo(k) and hence θ(k) are as-
sumed to be piecewise constant and not to change fre-
quently. The time instants when the model parameters
change are a-priori unknown. The considered identifica-
tion problem, referred to as model or signal segmenta-
tion, is considered in various papers (see, e.g., [1,27,2,28])
and it has been successfully applied in real-world prob-
lems such as image representation [8] and econometric
analysis of stock markets [15].

A standard least-square (LS) estimate can be performed
by minimizing the ℓ2-loss function V(θ,DN ) of the pre-
diction in terms of (28), i.e.,

V(θ,DN ) =
N∑

k=1

(y(k)− ϕ⊤(k)θ(k))2. (29)

The estimate of the model parameters is then given by
the argument of:

min
θ

N∑
k=1

(y(k)− ϕ⊤(k)θ(k))2, (30)

where θ ∈ Rnθ : θ = [θ⊤(1) θ⊤(2) · · · θ⊤(N)]⊤ and
nθ = nN . However, in the time-varying case, the LS es-
timate leads to an overparameterized problem with nN
parameters and N measurements. One possible solution
to overcome such a problem is to introduce a regular-
ization term in (30) to penalize parameter variations.
Then, an estimate of the parameters θ can be obtained
by solving the minimization problem

min
θ

N∑
k=1

(
y(k)− ϕ⊤(k)θ(k)

)2
+ γ∥∆θ∥0, (31)

where γ > 0 is the so-called regularization parameter,
and the k-th component ∆θk of the vector ∆θ∈RN−1 is

∆θk = ∥θ(k + 1)− θ(k)∥q, (32)

for q = 1, 2 or ∞. Note that, because of the definition
of ∆θk in (32), the regularization term ∥∆θ∥0 counts
the number of times when θ(k + 1) − θ(k) is different
from the 0-vector (i.e., there is a variation from time k
to time k+1 of at least one component of the parameter
vector θ(k)). In [27], the combinatorial problem (31) is
relaxed by replacing the ℓ0-seminorm of ∆θ with its ℓ1-
norm. An estimate of the parameter sequence θ(k) is
then computed by minimizing the convex problem

min
θ

N∑
k=1

(
y(k)− ϕ⊤(k)θ(k)

)2
+ γ∥∆θ∥1. (33)

In this work we show how to solve Problem (31) through
the approach discussed in Section 3. In particular, we
show how to exploit the inherent structured sparsity of
Problem (31) to reduce the size of the SDP problems
arising from the theory-of-moment relaxation.

4.2 Segmentation as a sparse polynomial problem

Based on results similar to the ones reported in Propo-
sition 1, the combinatorial problem (31) can be equiva-
lently written as

min
θ,w

N∑
k=1

(
y(k)− ϕ⊤(k)θ(k)

)2
+ γ

N−1∑
k=1

wk (34)

s.t. g(k−1)n+i = (1− wk)(θi(k + 1)− θi(k)) = 0,

i ∈ In1 , k ∈ IN−1
1 ,

g(N−1)n+k = wk ≥ 0, k ∈ IN−1
1 .

Property 2 [Polynomial structure of ARX seg-
mentation]
Problem (34) enjoys the following features:

(i) The term
(
y(k)− ϕ⊤(k)θ(k)

)2
appearing in the ob-

jective function depends only on the parameters θ(k).

(ii) For every k ∈ IN−1
1 and for every i ∈ In1 , the con-

straints g(k−1)n+i = 0 are bilinear and only depend
on the variable wk and on the parameters θi(k) and
θi(k + 1).

(iii) For every k ∈ IN−1
1 , the constraint g(N−1)n+k ≥ 0

depends only on the variable wk. �
Thanks to Property 2, a structural pattern in Prob-
lem (34) can be easily detected and thus used to for-
mulate a reduced version of the theory of moments re-
laxation as described in the following. Collect the opti-
mization variables of Problem (34) into the vector X =[
θ⊤(1) . . . θ⊤(N) w⊤]⊤ ∈ RnN+N−1. For k ∈ IN−1

1 ,

define the index sets Ik ⊂ I0 = InN+N−1
1 and Sk ⊂

S0 = I(n+1)(N−1)
1 as

Ik = {(k − 1)n+ i, kn+ i,Nn+ k, i ∈ In1} , (35a)

Sk = {(k − 1)n+ 1, . . . , (k − 1)n+ n, (N−1)n+ k}.
(35b)

The index sets Ik and Sk are constructed on the basis of
the structure in Problem (34) highlighted by Property 2.
More precisely, the sets Ik and Sk are defined so that,
for all s ∈ Sk, the polynomial gs in (34) only depend on
θi(k), θi(k+1) (with i ∈ In1 ) and wk, which are precisely
the variables Xi with i ∈ Ik. The following property
highlights the features of the index sets Ik and Sk which
will play a crucial role in guaranteeing the key results
given in Proposition 4.

Property 3 [Features of the index sets]

For every k ∈ IN−1
1 , the index sets Ik and Sk are such

that:

(i) I0 =
N−1∪
k=1

Ik.
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(ii) S0 =

N−1∪
k=1

Sk.

(iii) The sets Sk are mutually disjoint, i.e., Sk ∩Sj = ∅
if k ̸= j.

(iv) For every s ∈ Sk, the generic polynomial gs defin-
ing the feasibility set of Problem (34) only depends on
the variables X(Ik) = {Xi : i ∈ Ik}.

(v) For every k ∈ IN−2
1 , the set Ik+1 is such that

Ik+1 ∩
k∪

j=1

Ij ⊆ Ik.

(vi) The objective function of Problem (34) can be writ-
ten as

N−1∑
k=1

fk (X(Ik)) , (36)

where fk (X(Ik)) is a polynomial function involving
only the variables X(Ik). More precisely:

fk
(
X(Ik)

)
=
(
y(k)− ϕ⊤(k)θ(k)

)2
+γwk if k ∈ IN−2

1 ,

fk (X(Ik))=
(
y(N − 1)− ϕ⊤(N − 1)θ(N − 1)

)2
+

+
(
y(N)−ϕ⊤(N)θ(N)

)2
+γwN−1 if k=N−1

�
For a given relaxation order δ ≥ 1, let p = {pα}α∈AnN+N−1

2δ

be the sequence of moments up to order 2δ associated
with the decision variables X of Problem (34). Based
on the ideas presented in [20], a sparse version of the
SDP-relaxation approach discussed in Section 3 can
be applied to relax (34) into the following convex SDP
problem

min
p

∑
α∈AnN+N−1

2δ

Cαpα (37)

s.t. Mδ(p, Ik) ≽ 0, k ∈ IN−1
1 ,

Mδ−1(gsp, Ik)=0, s∈
(
Sk ∩ I(N−1)n

1

)
, k∈IN−1

1 ,

Mδ−1(gsp, Ik)≽0, s∈
(
Sk ∩ I(N−1)(n+1)

(N−1)n+1

)
, k∈IN−1

1 ,

where C = {Cα}α∈AnN+N−1
2δ

is the coefficient vec-

tor of the objective function in (34) in the basis
{Xα}α∈AnN+N−1

2δ
, Mδ(p, Ik) is the moment matrix

of order δ associated with the variables X(Ik) and
Mδ−1(gsp, Ik) is the localizing matrix associated with
the variables X(Ik) realizing the constraint gs ≥ 0
which defines the feasibility set of Problem (34). The
moment matrices Mδ(p, Ik) (resp. the localizing matrix
Mδ−1(gsp, Ik)) can be obtained by retaining only those
rows and columns of the moment matrix Mδ(p) (resp.
of the localizing matrix Mδ−1(gsp)) where the variables
pα are such that Supp(α) ⊆ Ir, with Supp(α) denot-
ing the support of α. The interested reader is referred
to the papers [20,37] for more details on the construc-
tion of moment and localizing matrices for structured
polynomial problem relaxation.

Results similar to the ones stated in Property 1 hold,
according to the following proposition.

Property 4 [Convergence of the SDP problems]

Let f̃∗ and p∗ be the minimum and the minimizer,
respectively, of the SDP problem (37). Let p̂∗ be

defined as p̂∗ := {p∗α |
∑nN+N−1

i=1 αi = 1}, i.e.,
p̂∗ := {p∗100···00, p∗010···00, . . . , p∗000···01}. The following
asymptotic convergence results hold as δ goes to infin-
ity:

(i) f̃∗ monotonically converges, from below, to the
global optimum of the original nonconvex problem
(31);

(ii) p̂∗ converges to the global minimizer (if unique) of
Problem (34).

Furthermore, if for a finite value of δ

rank(Mδ(p
∗, Ik)) = rank(Mδ−1(p

∗, Ik)), ∀k ∈ IN−1
1 ,
(38)

and rank(Mδ−1(p
∗, Ik,q)) = 1 for all pairs (k, q) such

that Ik,q = Ik ∩ Iq ̸= ∅, then f̃∗ is equal to the global
minimum of Problem (34). �

Statement of the Property follows from the application
of Theorems 3.6 and 3.7 in [20] to (34) and to the corre-
sponding SDP-relaxed problem (37). Note that the fea-
tures enjoyed by the sets Ik and Sk and highlighted by
Property 3 are crucial to apply the theorems in [20] to
problems (34) and (37).

It is important to remark that, because of computational
complexity, the developed SDP-approach can only be
applied for relaxation orders δ ≤ 3. Nevertheless, since
only linear and bilinear constraints are involved in (34),
a good approximation of the exact solution of (34) is
obtained in practice (based on the authors’ experience)
for low relaxation orders, i.e., δ = 2.

4.3 A simulation example

In the sequel, a simulation example is given in order to
show the effectiveness of the presented approach in the
segmentation of ARX models. A comparison with the
method proposed in [27] is also provided.

The behavior of the data-generating system So is de-
scribed by the difference equation

y(k) =θo1(k)y(k − 1) + θo2(k)y(k − 2) + θo3(k)u(k)+

+θo4(k)u(k − 1) + θo5(k)u(k − 2) + eo(k), (39)

with parameters variations

θo1 = 0.6, θo2 = 0.3, θo3 = 1, θo4 = 0.5, θo5 = −0.3,

from k = 1 to k = 60;

θo1 = 0.7, θo2 = −0.6, θo3 = 1.4, θo4 = −0.4, θo5 = −0.2,

from k = 61 to k = 130,

θo1 = −0.5, θo2 = −0.4, θo3 = −0.2, θo4 = 1.3, θo5 = 0.9,
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from k = 131 to k = 200.

The input u(k) is a (zero-mean) white noise sequence
with uniform distribution U(−1, 1) and eo(k) is a white
noise process with normal distribution N (0, σ2

e) and
standard deviation σe = 0.05. This corresponds to a
signal to noise ratio (SNR) of 24 dB. The chosen model
structure is defined in the form of (39), i.e.,

y(k) =θo1(k)y(k − 1) + θ2(k)y(k − 2) + θ3(k)u(k)+

+θ4(k)u(k − 1) + θ5(k)u(k − 2) + e(k), (40)

The parameter sequence θ(k) is first estimated through
the ℓ1-relaxation approach proposed in [27] by approx-
imating (31) with the convex problem (33). In order to
improve the estimate, the iterative refinement algorithm
discussed in [27] is applied. The regularization parame-
ter γ is set to 50. The value of γ has been selected using
an exhaustive grid search in order to have 3 segments in
the estimates of the parameters. The time instants when
a model change occurs are detected and, by exploiting
this information, a final least-square fit is carried out by
constraining the system parameters to be constant over
fixed time intervals. Next, the time instants when the
parameter changes occur are estimated by using the pro-
posed SDP approach, solving Problem (37) for a relax-
ation order δ = 2 and for γ = 50. By means of the global
optimality check described in Proposition 4, the values
of the parameters computed by solving (37) are proven
to be the global minimizer of the original combinato-
rial problem (31). An extra least-squares fit is then per-
formed to estimate the values of the ARX model param-
eters. The CPU time taken by the Matlab SDP-solver
SeDuMi to compute the solution of Problem (37) is 2014
seconds on a 2.40-GHz Intel Pentium IV with 3 GB of
RAM, while the time taken to compute the parameter
estimates through the ℓ1 based method is 9 seconds. The

ℓ1-norm ∥θ̂i − θoi ∥1 (with i = 1, . . . , 5) of the difference
between the true parameters θoi and the estimated pa-

rameters θ̂i is reported in Table 1. The estimates of the

parameters θ̂1 and θ̂5 are plotted in Fig. 1 and Fig. 2.
The ℓ1-relaxation technique provides an estimate of the
parameter variations at time k = 128, while the true
parameters vary at time k = 131. On the other hand,
the time instants when parameter variations occur are
correctly detected by the SDP-relaxation approach. We
want to point out that, by our experience, the identi-
fication technique proposed in [27] provides, in many
examples, an exact estimate of the time instants when
model changes occur. Therefore, the SDP approach dis-
cussed in the paper should not necessarily be seen as an
improvement of [27], but as a promising alternative al-
gorithm for segmentation of ARX models in cases when
the ℓ1 relaxation introduces a significant error.

5 Conclusions

A novel approach to handle the combinatorial prob-
lem of minimizing the ℓ0-seminorm of a vector over a

set of constraints is presented in this paper. First, ℓ0-
seminorm based minimization is formulated in terms of
polynomial optimization. Then, by using recent results
on the optimization of semialgebraic problems through
the theory of moments relaxation, the optimal solution
of the formulated polynomial problem is computed by
constructing a sequence of relaxed semidefinite program-
ming (SDP) problems, whose optima converge to the
global optimum of the original ℓ0-seminorm minimiza-
tion problem. An example is presented in the paper to
show that, when the restricted isometry property is not
satisfied, ℓ1-relaxation based methods can fail in com-
puting the sparsest solution of an underdetermined sys-
tem of linear equations. On the other hand, the pro-
posed SDP approach is able to provide the exact so-
lution (if unique) of the considered problem. The pre-
sented method is applied to the segmentation of ARX
models, where the inherent structured sparsity of the
considered identification problem is exploited to reduce
the computational complexity of the proposed approach.
The main advantage of the SDP-relaxation method with
respect to the other approximation approaches avail-
able in the literature is that the optimal solution of
the original ℓ0-minimization problem can be computed
with arbitrary precision by means of convex program-
ming techniques. Furthermore, a numerical certificate
can be checked to detect if the global optimum of the ℓ0-
minimization problem is attained by the corresponding
SDP-relaxed problem at a given relaxation order.
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