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Technical trading represents a class of investment strategies for Financial Markets based on the analysis of
trends and recurrent patterns in price time series. According standard economical theories these strategies
should not be used because they cannot be profitable. On the contrary, it is well-known that technical traders
exist and operate on different time scales. In this paper we investigate if technical trading produces
detectable signals in price time series and if some kind of memory effects are introduced in the price
dynamics. In particular, we focus on a specific figure called supports and resistances. We first develop a
criterion to detect the potential values of supports and resistances. Then we show that memory effects in the
price dynamics are associated to these selected values. In fact we show that prices more likely re-bounce than
cross these values. Such an effect is a quantitative evidence of the so-called self-fulfilling prophecy, that is the
self-reinforcement of agents’ belief and sentiment about future stock prices’ behavior.

P
hysical and mathematical methods derived from Complex Systems Theory and Statistical Physics have been
shown to be effective tools1–4 to provide a quantitative description and an explanation of many social5–7 and
economical phenomena8–11.

In the last two decades Financial Markets have appeared as natural candidates for this inter-disciplinary
application of methods deriving from Physics because a systematic approach to the issues set by this field can
be undertaken. In fact since twenty years there exists a huge amount of high frequency data from stock exchanges
which permit to perform experimental analyses as in Natural Sciences. Therefore Financial Markets appear as a
good playground where models and theories can be tested. In addition the methods of Physics have proved to be
very effective in this field and have often given rise to concrete financial applications.

The major contributions of Physics to the comprehension of Financial Markets are focused on one hand on the
analysis of financial time series’ properties and on the other hand on agent-based modeling12,13. The former
contribution provides fundamental insights in the non trivial nature of the stochastic process performed by stock
prices14–18 and in the role of the dynamic interplay between agents in the explanation of the behavior of the order
impact on prices15,19–24. The latter approach instead has tried to overcome the traditional economical models
based on concepts like price equilibrium and homogeneity of agents in order to investigate the role of hetero-
geneity of agents and strategies with respect to the price dynamics13,25–33.

In this paper we focus our attention on a puzzling issue which can be put halfway between these two
approaches: technical trading. According to the standard economical theory of Financial Markets the strategies
based on the analysis of trends and recurrent patterns (known indeed as technical trading or chartist strategies)
should not be used if all agents were rational because prices should follow their fundamental values34,35 and no
exploitation opportunities should be present36. Consequently these speculative strategies cannot be profitable in
such a scenario.

It is instead well-known that chartists (i.e. technical traders) exist and operate on different time scales ranging
from seconds to months. Technical analysis has been widely used and studied over the years. A comprehensive
and recent review of the most important results about the existence of technical signals and their profitability is
the one of Park and Irwin37. They stress the existence of a number of problems in performing such studies and the
consequent presence of mixed conclusions. Here we quickly summarizes some of these studies.

Since the pioneering work of Smidt38 several studies have proved the widespread use of technical analysis
among traders (for a recent survey, see39). Despite this evidence, the academic world has remained quite skeptical
because of the acceptance of the efficient market hypothesis36 and the negative results found in early studies. More
recently, a renewed interest for technical analysis led to various papers. Here we will mainly consider the ones
regarding the specific techniques we are going to study in this paper, supports and resistances, which are the
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tendency to bounce on specific price values. Some of the most strik-
ing and seminal results have been obtained by Brock et al.40. They
showed a positive correspondence between the presence of supports
and resistance and the following returns. However, they did not
consider transaction costs, so the profitability issue was missing.
Sullivan et al.41 studied a huge sets of trading rules, finding that,
typically, the best rule inside a sample does not generate a profit in
the following years. This has been interpreted as an evidence for an
evolution of markets towards a more efficient state. Finally, we cite
Osler42 who took into account the connection between supports and
resistances and price clustering, that is, the tendency agents have to
place orders at round prices.

As far as we know, the econophysics community did not address
the supports and resistance issue in a direct way. However, some
studies can be reinterpreted in this perspective. For example, Preis
et al.43 extensively studied trend switches at different time scales,
finding evidences for an universal, scale free behavior of transaction
volume and intertrade times and in Ref. 44 evidence is provided that
financial high frequency patterns tend to repeat themselves. See
also45 for an extensive review. In a series of papers (see for example46),
Sornette and coauthors have proposed a log-periodic power law as an
empirical fit in order to predict financial crashes. This approach has
been widely discussed; however we do not believe this is the place
where this debate should be addressed, also because we will take into
account much shorter time scales.

In this paper we investigate if this specific chartist strategy produces
a measurable effect on the statistical properties of price time series
that is if there exist special values on which prices tend to bounce. As
we are going to see, the first task that we must address consists in the
formalization of this strategy in a suitable mathematical framework.

Once a quantitative criterion to select potential supports and resis-
tances is developed, we investigate if these selected values introduce
memory effects in price evolution.

We observe that: i) the probability of re-bouncing on these selected
values is higher than what expected and ii) the more the number of
bounces on these values increases, the higher is the probability of
bouncing again on them. In terms of agents’ sentiment we can say
that the more agents observe bounces the more they expect that the
price will again bounce on that value and their beliefs introduce a
positive feedback which in turn reinforces the support or the resistance.

The classical and the technical approaches. The classical approach
in the study of the market dynamics is to build a stochastic model for
the price dynamics with the so called martingale property E(xt11jxt,
xt21, …, x0) 5 xt ;t47–50. The use of a martingale for the description of
the price dynamics naturally arises from the efficient market
hypothesis and from the empirical evidence of the absence of
simple autocorrelation between price increments (i.e. returns). The
consequence of this kind of model for the price is that it is impossible
to extract any information on the future price movements from an
analysis of the past variations.

On the contrary, technical analysis is the study of the market
behavior underpinned on the inspection of the price graphs, with
the aim to speculate on the future value of prices. According to the
technical approach, the analysis of the past prices can lead to the
forecast of the future value of prices. This approach is based upon
three basic assumptions51:

. the market discounts everything: the price reflects all the possible
causes of the price movements (investors’ psychology, political
contingencies and so on) so the price graph is the only tool to be
considered in order to make a prevision.

. price moves in trends: the price moves as a part of a trend, which
can have three directions: up, down, sideways. According to the
technical approach, a trend is more likely to continue than to stop.
The ultimate goal of the technical analysis is to spot a trend in its
early stage and to exploit it by investing in its direction.

. history repeats itself: Thousands of price graphs of the past have
been analyzed and some figures (or patterns) of the price graphs
have been linked to an upward or downward trend51. The tech-
nical analysis argues that a price trend reflects the market psy-
chology. The hypothesis of the technical analysis is that if these
patterns anticipated a specific trend in the past they would do the
same in the future. As the psychology of the investors do not
change over time, an investor would always react in the same
way when he undergoes the same conditions.

One reason for the technical analysis to work could be the exist-
ence of a feedback effect called self-fulfilling prophecy. Financial mar-
kets have a unique feature: the study of the market affects the market
itself because the results of studies on it will be probably used in the
decision processes by the investors (other disciplines, such as physics,
do not have to face this issue). The spread of the technical analysis
entails that a large number of investors have become familiar with the
use of the so called figures. A figure is a specific pattern of the price
associated to a future bullish or bearish trend. Therefore, it is believed
that a large amount of money have been moved in reply to bullish or
bearish figures causing price changes. In a market, if a large number
of investors has the same expectations on the future value of the price
and they react in the same way to this expectation they will operate in
such a way to fulfill their own expectations. As a consequence, the
theories that predicted those expectation will gain investors’ trust
triggering a positive feedback loop. In this paper we tried to measure
quantitatively the trust on one of the figures of technical analysis.

Supports and resistances. Let us now describe a particular figure:
supports and resistances. The definition of support and resistance of
the technical analysis is rather qualitative: a support is a price level,
local minimum of the price, where the price will bounce on other
times afterward while a resistance is a price level, local maximum of
the price, where the price will bounce on other times afterward. We
expect that when a substantial number of investors detect a support or
a resistance the probability that the price bounces on the support or
resistance level is larger than the probability the price crosses the
support or resistance level. Whether the investors regard a local
minimum or maximum as a support or a resistance or not can be
related to: i) the number of previous bounces on a given price level, ii)
the time scale. The investors could a priori look at heterogeneous time
scales. This introduces two parameters which we allow to vary during
the analysis in order to understand if and how they affect our results.

Results
Empirical evidence of memory effects. The analyses presented in
this paper are carried out on the high frequency (tick-by-tick i.e. we
have a record of the price for every operation), time series of the price
of 9 stocks of the London Stock Exchange in 2002 (251 trading days).
The analyzed stocks are: AstraZeNeca (AZN), British Petroleum
(BP), GlaxoSmithKline (GSK), Heritage Financial Group (HBOS),
Royal Bank of Scotland Group (RBS), Rio Tinto (RIO), Royal Dutch
Shell (SHEL), Unilever (ULVR), Vodafone Group (VOD).

The price of these stocks is measured in ticks. A tick is the min-
imum change of the price. The time is measured in seconds. We
choose to adopt the physical time because we believe that investors
perceive this one. We checked that the results are different as we
analyze the data with the time in ticks or in seconds. A measure of the
time in ticks would make difficult to compare and aggregate the
results for different stocks. In fact, while the physical time of trading
does not change from stock to stock the number of operations per
day can be very different.

We measure the conditional probability of a bounce p(bjbprev)
given bprev previous bounces. This is the probability that the price
bounces on a local maximum or minimum given bprev previous
bounces. Practically, we record if the price, when is within the stripe
of a support or resistance, bounces or crosses it for every day of
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trading and for every stock. We assume that all the supports or
resistances detected in different days of the considered year are stat-
istically equal. As a result we obtain the bounce frequency

f b bprev

��� �
~

nbprev

N
for the total year (where N is the total number of

events for a specific number of previous bounces). Now we can
estimate p(bjbprev) with the method of the Bayesian inference52,53:
we infer p(bjbprev) from the number of bounces nbprev and from the
total number of trials N assuming that nbprev is a realization of a
Bernoulli process because when the price is contained into the stripe
of a previous local minimum or maximum it can only bounce on it or
cross it (see Supporting Information for further details on the mod-
eling of bounce events).

Using this framework we can evaluate the expected value and the
variance of p(bjbprev) using the Bayes theorem (see Supporting
Information for mathematical details of the derivation)

E p b bprev

��� �� �
~

nbprev z1

Nz2
ð1Þ

Var p b bprev

��� �� �
~

nbprev z1
� �

N{nbprev z1
� �

Nz3ð Þ Nz2ð Þ2
ð2Þ

In fig. 1 and fig. 2 the conditional probabilities are shown for
different time scales. The data of the stocks have been compared to
the time series of the shuffled returns of the price. In this way we can
compare the stock data with a time series with the same statistical
properties but without any memory effect. As shown in the graphs,
the probabilities of bounce of the shuffled time series are nearly 152
while the probabilities of bounce of the stock data are well above
152. For the shuffled series the probability is in almost all cases
larger than 152, this small bias towards a value larger than 152 is
due to the finiteness of the stripe. A similar bias would be observed
also for a series generated by a Random-Walk. However, we observe
that this is intrinsic asymmetry is at least one order of magnitude
smaller than the effect measured in the non-shuffled case. In addi-
tion to this, it is noticeable that the probability of bounce rises up
as bprev increases. Conversely, the probability of bounce of the

Figure 1 | Graphs of the conditional probability of bounce on a resistance/support given the occurrence of bprev previous bounces. Time scales: T 5 45

(panel (a) and (c)) and 60 seconds (panel (b) and (d)). The data are obtained aggregating the result of the 9 stocks considered. The data of the stocks are

shown as red circles while the data of the time series of the shuffled returns of the price are shown as black circles. The graphs in the left refer to the

resistances while the ones on the right refer to the supports.
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shuffled time series is nearly constant. The increase of p(bjbprev)
of the stocks with bprev can be interpreted as the growth of the
investors’ trust on the support or the resistance as the number of
bounces grows. The more the number of previous bounces on a
certain price level the stronger the trust that the support or the
resistance cannot be broken soon. As we outlined above, a feedback
effect holds and an increase of the investors’ trust on a support or a
resistance entails a decrease of the probability of crossing that level
of price.

We have performed a x2 test to verify if the hypothesis of growth of
p(bjbprev) is statistically meaningful. The independence test

(p(bjbprev) 5 c) is performed both on the stock data and on the data
of the shuffled time series and we compute

x2~

P4
bprev~1 p b bprev

��� �
{c

� �2

P4
bprev~1 s2

bprev

: ð3Þ

Then we compute the p-value associated to a x2 distribution with 3
degrees of freedom. We choose a significance level �a~0:05. If
p� valuev�a the independence hypothesis is rejected while if
p� value§�a it is accepted. The results are shown in table 1. The
results show that there is a clear increase of the investors’ memory on

Figure 2 | Graphs of the conditional probability of bounce on a resistance/support given the occurrence of bprev previous bounces. Time scales: T 5 90

(panel (a) and (c)) and 180 seconds (panel (b) and (d)). The data are obtained aggregating the result of the 9 stocks considered. The data of the stocks are

shown as red circles while the data of the time series of the shuffled returns of the price are shown as black circles. The graphs in the left refer to the

resistances while the ones on the right refer to the supports.

Table 1 | The table shows the p-values for the stock data and for the time series of the shuffled returns for different time scale and for the
supports and resistances. Up to the 60–90 seconds timescale we find that the increase of p(b | bprev) with respect to bprev is statistically
significant

1 sec. 15 sec. 30 sec. 45 sec. 60 sec. 90 sec. 180 sec.

Stocks resistances ,0.001 ,0.001 ,0.001 ,0.001 0.002 0.13 0.38
supports ,0.001 ,0.001 ,0.001 ,0.001 0.001 0.17 0.99
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the supports/resistances as the number of previous bounces increases
for the time scales of 45, 60 and 90 seconds. Conversely, this memory
do not increase from the statistical significancy point of view at the
time scale of 180 seconds.

As a further proof of the statistical significance of the memory
effect observed, we perform a Kolmogorov-Smirnov test (see Ref.
54) in order to assess whether the bounce frequencies estimated from
the reshuffled series are compatible with the posterior distribution
found for bounce frequency. We indeed find that reshuffled events
are statistically different from empirical values (details on the imple-
mentation of the Kolmogorov-Smirnov test are discussed in
Supporting Information).

We consider the slope of the weighted linear fit of p(bjbprev)
(shown in figures 1 and 2) at different time scales in order to study
how the memory effect changes with the time scale considered. The
slopes are shown in fig. 3, resistances in the left graph, supports in the
right graph. The best fit lines of p(bjbprev) are always upward sloping
and decrease as the time scale increases. There are differences

between resistances and supports as far as higher timescales are
concerned. In particular, the slopes relative to the resistances decay
slower that the slopes relative to the supports. While the former are
statistically different from 0 on all time scale investigated the latter
tends to 0 for scales above 150 s.

In summary this analysis shows that the memory effect decreases
as the time scale increases. We find that it disappears at the time scale
larger than 180 s–180 s is the maximum scale we investigate – for
resistances and 150 s for supports.

Distribution of local minima/maxima. We study the distribution of
supports and resistances in order to assess whether the price is more
likely to bounce on some particular levels rather than on others. It is
possible in principle that round values of the price (e.g. 100 £) are
favored levels for psychological reasons. We produced a histogram of
the local maxima/minima for every stock and time scale. The
histogram of the local minima relative to VOD at the time scale of
60 seconds is shown in fig. 4 as an example. We find no evidence of

Figure 3 | Graphs of the slope of the best fit line of p(b | bprev) at different time scales ranging from 1 to 180 s in the case of resistances (panel (a)) and
supports (panel (b)). The slopes of the original data are compared with the slopes of the shuffled data.

Figure 4 | Histogram of the resistance price levels (panel (a)) and supports (panel (b)) of VOD for the 251 trading days of 2002 for the time scale
60 s. Both resistance and support levels are compared with the histogram of price levels for this time scale. We do not observe significant excess around

round numbers or anomalies with respect to the histogram of the price levels. We find similar results, i.e. absence of anomalies in the histogram for

supports and resistances, for all stocks and all time scales investigated.

www.nature.com/scientificreports
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highly preferred prices in any of the histograms produced. As a
further proof, we also compare in that figure the histogram of
support and resistance levels with the price level histogram and we
do not observe any anomaly.

Long memory of the price and antipersistency. The analysis of the
conditional probability p(bjbprev) proves the existence of a long
memory in the price time series.

However, it is a well-known results that stock prices exhibit devia-
tions from a purely diffusion especially at short time scales. We
indeed find that the mean of the Hurst exponent ÆHæ is always less
than the value of 0.5 and therefore there is an anticorrelation effect of
the price increments for the 9 stocks analyzed. The Hurst exponent is
estimated via the detrended fluctuation method55,56. It is useful to
recall what the Hurst exponent provides about the autocorrelation of
the time series:

. if H , 0.5 one has negative correlation and antipersistent beha-
vior

. if H 5 0.5 one has no correlation

. if H . 0.5 one has positive correlation and persistent behavior

Therefore the anticorrelation of the price increments might lead to
an increase of the bounces and therefore it could mimic a memory of
the price on a support or resistance. We perform an analysis of the
bounces on a antipersistent fractional random walk to verify if the
memory effect depends on the antipersistent nature of the price in
the time scale of the day. We choose a fractional random walk with
the Hurst exponent H 5 ÆHstockæ 5 0.44 given by the average over the
H exponents of the different stocks. The result is shown in fig. 5. The
conditional probabilities p(bjbprev) are very close to 0.5 and it is clear
that p(bjbprev) is almost constant as expected. These two results prove
that the memory effect of the price does not depend on its antiper-
sistent features, or at least the antipersistency is not able to explain
the pattern observed in figs. 1 and 2.

Features of the bounces. In this section we want to describe two
statistical features of the bounces as a sort of Stylized Facts of these
two figures of technical trading techniques: the time t occurring
between two consecutive bounces and the maximum distance d of

the price from the support or the resistance between two consecutive
bounces.

The time of recurrence t is defined as the time between an exit of
the price from the stripe centered on the support or resistance and
the return of the price in the same stripe, as shown in fig. 6 panel a.
We study the distribution of t for different time scales (45, 60, 90 and
180 seconds). We point out that, being t measured in terms of the
considered time scale, we can compare the four histograms. We find
that a power law fit describes well the histograms of t and, as an
example, in fig. 6 panel b we report the histogram for the time scale 60
seconds.

We instead call d the maximum distance reached by the price
before the next bounce. We show in fig. 6 panel a, how the maximum
distance d is defined. We study the distribution of d for different time
scales (45, 60, 90 and 180 seconds). In this case a power law fit does
not describe accurately the histogram of d and instead the behavior
appears to be compatible at all scales with an exponentially truncated
power law as shown in Fig. 6 panel c.

Discussion
In this paper we perform a statistical analysis of the price dynamics of
several stocks traded at the London Stock Exchange in order to verify
if there exists an empirical and detectable evidence for technical
trading. In fact it is known that there exist investors which use tech-
nical analysis as trading strategy (also known as chartists). The
actions of this type of agents may introduce a feedback effect, the
so called self-fulfilling prophecy, which can lead to detectable signals
and in some cases to exploitation opportunities, in details, these
feedbacks can introduce some memory effects on the price evolution.
The main goal of this paper is to determine if such memory in price
dynamics exists or not and consequently if it it possible to quantify
the feedback on the price dynamics deriving from some types of
technical trading strategies. In particular we focus our attention on
a particular figure of the technical analysis called supports and resis-
tances. In order to estimate the impact on the price dynamics of such
a strategy we measure the conditional probability of the bounces
p(bjbprev) given bprev previous bounces on a set of suitably selected

Figure 5 | Graph of the conditional probability of bounce on a resistance/support given the occurrence of bprev previous bounces for a fractional
random walk (we used the average daily Hurst exponent equal to 0.44). The red circles refers to supports, the black ones to resistances. The persistency

deriving from a Hurst exponent smaller than 0.5 is not able to explain the probability of bounce observed in Figs. 1 and 2.
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price values to quantify the memory introduced by the supports and
resistances.

We find that the probability of bouncing on support and resistance
values is higher than 152 or, anyway, is higher than an equivalent
random walk or of the shuffled series. In particular we find that as the
number of bounces on these values increases, the probability of
bouncing on them becomes higher. This means that the probability
of bouncing on a support or a resistance is an increasing function of
the number of previous bounces, differently from a random walk or
from the shuffled time series in which this probability is independent
on the number of previous bounces. This features is a very interesting
quantitative evidence for a self-reinforcement of agents’ beliefs, in
this case, of the strength of the resistance/support.

As a side result we also develop a criterion to select the price values
that can be potential supports or resistances on which the probability
of the bounces p(bjbprev) is measured.

We point out that this finding may be, in principle, an exploitation
opportunity because, once the support or the resistance is detected,

the next time the price will be in the nearby of the value a re-bounce
will be more likely than the crossing of the resistance/support. In
future works we plan to verify if the predictability of the direction of
the price movements around a support/resistance can lead to real
exploitation once transaction costs, frictions (i.e. the delay between
order submissions and executions) and liquidity effects are taken into
account.

Methods
Supports and Resistances: quantitative definition. One has to face two issues to
build a quantitative definition of support and resistance: the time scale and the width
of the bounces.

. We define a bounce of the price on a support/resistance level as the event of a
future price entering in a stripe centered on the support/resistance and exiting
from the stripe without crossing it. Furthermore, we want to develop a quant-
itative definition compatible with the way the investors use to spot the support/
resistances in the price graphs. In fact the assumed memory effect of the price
stems from the visual inspection of the graphs that comes before an investment
decision. To clarify this point let us consider the three price graphs in fig. 7. The

Figure 6 | Statistical features of bounces. Panel (a): Sketch of the price showing how we defined t, the time between two bounces and d, the

maximum distance between the price and the support or resistance level between two bounces. Panel (b) Histogram for t at the time scales of 60 seconds.

We obtain the histograms aggregating the data from all the 9 stocks analyzed. We do not make any difference between supports and resistances in this

analysis. The histogram of t is well-fitted by a power law at all time scales. The exponent results to be dependent on the time scale considered.

In this specific case (60 seconds) we find N , t20.56. Panel (c) Histogram of d at the time scale of 60 seconds. As in the previous panel, we obtain the

histograms by aggregating the data from all the 9 stocks. We do not make any difference between supports and resistances in this analysis. The price

difference d is measured in price ticks. Differently from the previous case we find that the decay is compatible with an exponentially truncated power law at

all time scales. In this specific case (60 seconds) we find N , d20.61 exp(20.03 d).
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graph in the top panel shows the price tick-by-tick of British Petroleum in the 18th
trading day of 2002. If we look to the price at the time scale of the blue circle we
can state that there are two bounces on a resistance, neglecting the price fluctua-
tions at minor time scales. Conversely, if we look to the price at the time scale of
the red circle we can state that there are three bounces on a resistance, neglecting
the price fluctuation at greater time scales. The bare eye distinguishes between
bounces at different time scales, which have to be analyzed separately. To select
the time scale to be used for the analysis of the bounces, we considered the time
series PT(ti) obtained picking out a price every T ticks from the time series. The
obtained time series is a subset of the original one: if the latter has L terms then the
former has [L/T] terms (the square brackets [ ] indicate the floor function defined
as x½ �~max m[Z mƒxjf g). In this way we can remove the information
on the price fluctuations for time scales smaller than T. The two
graphs in fig. 7 (bottom panel) show the price time series obtained
from the tick-by-tick recordings respectively every 50 and 10 ticks.
We can see that the blue graph on the left shows only the bounces
at the greater time scale (the time scale of the blue circle) as the
price fluctuations at the minor time scale (the one of the red
circle) are absent. Conversely these price fluctuations at the minor
time scale are evident in the red graph on the right.

. The width D of the stripe centered on the support or resistance at the time scale T
is defined as

D Tð Þ~ L
T

� �
{1

	 
{1 XLT½ �{1

k~1

PT tkz1ð Þ{PT tkð Þj j ð4Þ

that is the average of the absolute value of the price increments at time scale T.
Therefore D depends on both the trading day and the time scale and it generally
rises as T does. In fact it approximately holds that D(T) , Ta where a is the
diffusion exponent of the price in the day considered. The width of the stripe
represents the tolerance of the investors on a given support or resistance: if the
price drops below this threshold the investors regard the support or resistance as
broken.

To sum up, we try to separate the analysis of the bounces of price on supports and
resistances for different time scales. Provided this quantitative definition of support

and resistance in term of bounces we perform an analysis of the bounces in order to
determine if there is a memory effect on the price dynamics on the previous bounces
and if this effect is statistically meaningful.
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