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Abstract

We present a new network model accounting for homophily and triadic closure
in the evolution of social networks. In particular, in our model, each node is
characterized by a number of features and the probability of a link between
two nodes depends on common features. The bipartite network of the actors
and features evolves according to a dynamics that depends on three parame-
ters that respectively regulate the preferential attachment in the transmission
of the features to the nodes, the number of new features per node, and the
power-law behavior of the total number of observed features. We provide
theoretical results and statistical estimators for the parameters of the model.
We validate our approach by means of simulations and an empirical analysis
of a network of scientific collaborations.

keyword: social network, bipartite network, preferential attachment, homophily,
triadic closure, transitivity.

1 Introduction

Social networks are characterized by a number of general properties [5, 15, 18, 28,
30, 58]. The issue that has recently received more attention is the distribution of the
number of node’s connections, which is well approximated by a power-law in many
contexts. Preferential attachment is generally accepted as the simplest mechanism
that can reproduce such a distribution [2, 3]. This basic mechanism, however, is
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only one of the many social forces that contribute to shape the evolution of social
networks. In particular, it is not able to reproduce the formation of social groups,
or communities, and the composition of social circles.

Homophily, defined as the tendency of individuals to associate with others, simi-
lar to them in some designed respect, is one of the most important mechanism that
guides social network evolution. A large body of research in sociology and, more
recently, in economics, confirms the prevalence of homophily in socio-economic net-
works [38, 42]. Homophily, along the lines of race and ethnicity, age and sex, educa-
tion, professional background and occupation, shapes social networks such as advice,
marriage, exchange, communication, teamwork, co-membership, and friendship net-
works [7, 8, 9, 14, 16, 19, 27, 31, 33, 34, 39, 40, 44, 50, 57]. Despite the multidi-
mentional nature of homophily [11] is well recognized in the sociological literature,
in formal models of network evolution it is typically represented by partitioning
nodes into different classes. Indeed, some authors proposed to use conditional link-
probabilities, given some (latent or observable) features, in such a way that the
presence of a common attribute induces a higher probability of a connection be-
tween two nodes [1, 13, 20, 22, 23, 25, 32, 35, 47, 54]. These models, known as
block-models or cluster-models, assume that there exist some classes (also called
groups, clusters, or types) to which a node can belong, but the assumption that
each node can belong only to a single class and/or the fact that the number of
classes is finite and fixed a priori represent their main drawbacks.

Coming from a structural approach, network analysts have long debated the
sources of network integration, using the concept of triadic closure, also called tran-
sitivity or clustering [29, 48, 51]. Triadic closure is another strong candidate mecha-
nism for the creation of links in social networks. This mechanism is at the basis of
many generative network models [29, 55], and it is widely supported on the empiri-
cal ground [18, 34, 45]. The triadic closure principle says that if A is a friend (i.e.
neighbor) of B and B is a friend of C, then A and C have a high chance to become
friends. Differently from homophily, such a process does not depend on the features
of the nodes that get attached. Obviously, also homophily can naturally induce
triangles, but here, with the expression “triadic closure”, we refer to the formation
of a link between two nodes by means of a common friend.

Recently, both mechanisms of network formation have been explicitly introduced
in formal models of network evolution. However, most of the theoretical models so
far have been focusing on either homophily [16, 17, 43, 49, 52] or triadic closure
[10, 24, 26, 41, 53, 56]. Against this background, we contribute to this growing
body of literature by introducing a new model accounting for both multidimen-
sional homophily and triadic closure. More precisely, in our model, each node shows
a number of features (the surrounding contest, e.g. [18]), that can be of different
kinds (likings, inclinations, profile, spatial/geographical contexts, etc.), and differ-



ent nodes can share the same features. Differently from the above quoted works, we
allow the number of features to grow in time. On its arrival, each new node links
to some nodes already present in the system. Firstly, the new node selects some
“friends” (i.e. neighbors) according to probabilities that depend on the number of
common features (homophily). Then additional links can be established by means of
common friends, inducing the closure of some triplets (triadic closure). Our model
also has the merit to provide a dynamics for the evolution of the features. Indeed,
the bipartite nodes-features network evolves according to a model that depends on
three parameters that respectively regulate the preferential attachment in the trans-
mission of the features to the nodes, the number of new features per node, and the
power-law behavior of the total number of observed features.

The present paper can be considered as a completion of [12]. Indeed, both of
them provide a network model where link-probabilities are based on the nodes’ fea-
tures, but they also show some differences. The main issue is that here we introduce
a parameter that tunes the preferential attachment in the transmission of the fea-
tures to the nodes; while in [12] authors only consider a preferential attachment rule.
However, in that paper a random “fitness” parameter which determines the node’s
ability to transmit its own features to other nodes (see also [6]) is attached to each
node; while here we do not take into account fitness parameters for nodes.

The paper is structured as follows. In Section 2 we describe the basic assumptions
of our model and the notation used throughout the paper. In Section 3 we present
our model, that involves a dynamics for the bipartite network of nodes-features
and the mechanism underlying the formation of the unipartite (i.e. node-node)
network. In Section 4 we illustrate some theoretical results and we carefully explain
the meaning of each parameter inside our model. In Section 5 we show and discuss
some statistical tools in order to estimate the model parameters from the data. In
Section 6 we provide a number of simulations in order to point out the functioning
of the model parameters and the ability of the proposed estimation tools. Section 7
deals with an application of our model and instruments to a co-authorship network.
The understanding of homophily and triadic closure in co-authorship networks is
very important since these two phenomena can affect the diffusion process of ideas
and discoveries inside a certain research field and among different research fields
[4, 21, 46]. Finally, in Section 8 we give our conclusions and discuss some future
developments. The paper is enriched by an Appendix that contains a theorem and
its proof, and supplementary simulation results.

2 Preliminaries

We assume new nodes sequentially joining the network so that node ¢ represents the
one that comes into the network at time step .



Each node shows a finite number of features (the surrounding context, e.g. [18]),
that can be of different kinds (likings, inclinations, profile, spatial /geographical con-
texts, etc.), and different nodes can share the same features. It is worthwhile to note
that we do not specify a priori the total number of possible features. On its arrival,
each new node links to some nodes already present in the system. Firstly, the new
node selects some “friends” (i.e. neighbors) according to probabilities that depend
on the number of common features. This fact is in agreement with the principle,
known as homophily, according to which individuals tend to be friends of people
similar to themselves. Then additional links can be established by means of com-
mon friends, inducing the closure of some triplets (triadic closure). It is worthwhile
to note that also homophily can naturally induce triangles, but here, with the ex-
pression “triadic closure”, we refer to the formation of a link between two nodes
by means of a common friend. We postulate that the connections are undirected
and non-breakable and we omit self-loops (i.e. edges of type (i,7)). We denote the
adjacency matrix (symmetric by assumption) by A, so that A;; = 1 when there
exists a link between nodes 7 and j, A; ; = 0 otherwise. We set

Vi) =4y =1,...,i: A, =1}

to be the set of node j’s neighbors at time step i (after the arrival of 7).

We denote by F' the binary bipartite network where each row F; represents the
features of node i: F;; =1 if node ¢ has feature k, F} ) = 0 otherwise. It represents
the surrounding context in which the nodes interact. We assume that each Fj is
unchangeable during time. We take [ left-ordered: this means that in the first row
the columns for which Fj; = 1 are grouped on the left and so, if the first node
has N; features, then the columns of F' with index k € {1,..., N1} represent these
features. The second node could have some features in common with the first node
(those corresponding to indices k such that £ = 1,..., Ny and F; = 1) and some,
say No, new features. The latter are grouped on the right of the set for which
Fi; =1, i.e., the columns of F' with index k € {N; + 1,..., Ny} represent the new
features brought by the second node. This grouping structure persists throughout
the matrix F' and we define L,, = Y1 | N;, i.e.

L,, = overall number of different observed features for the first n nodes.  (2.1)

Here is an example of a F' matrix with n = 3 nodes:

11100000
F=11011 000
0111 1 11

1

0
In gray we show the new features brought by each node (in the example N; = 3,
Ny =2, Ny =3 and so Ly = 3,Ly = 5,L3 = 8). Observe that, for every node i,
the i-th row contains 1 for all the columns with indices k € {L;,—1 +1,..., L;} (they
represent the new features brought by 7). Moreover, some elements of the columns
with indices k € {1,...,L;_1} are also 1 (features brought by previous nodes that
also node 7 adopted).



3 The model

Fix « > 0, 8 € [0,1], 6 € [0,1], and p € [0,1]. Moreover, let & : R — [0, 1] be
an increasing function. The dynamics is the following. Node 1 arrives and shows
N, features, where N; is Poi(«)-distributed (the symbol Poi(«) denotes the Poisson
distribution with mean «). Then, for each i > 2,

e Feature selection: Bipartite Network construction Node ¢ arrives and
shows a number of features as follows:

— Node 7 exhibits some of the “old” features brought by the previous nodes
1,...,4 — 1: more precisely, each feature k € {1,...,L;_1} is, indepen-
dently of the others, possessed by node ¢ with probability (that we call
“inclusion-probability”)

i—1
1 I
Pk = 63 + (=g 2= Dot B.1)

(4

where F};, = 1 if node j shows feature k and F}; = 0 otherwise.

— Node i also shows N; “new” features, where NN; is Poi();)-distributed with

A= (3.2)

(N; is independent of Ny, ..., N;_; and of the exhibited “old” features.)
The matrix element F;;, is set equal to 1 if node ¢ has feature £ and equal to
zero otherwise.

e (Unipartite) Network construction On its arrival, node i establishes a
set L; of “friends” (i.e. neighbors) among the nodes already present in the
network (so that we set A;; = A;; = 1 for each j € £;) as follows:

— (First phase) First, node i selects a set L of friends on the basis of

the features shown. Each node j already present in the network (i.e.

1 < j <i—1)is included in £}, independently of the others, with
probability

®(Si5), (3.3)

where S, ; = Zf’zl F; 1. Fj 1 is the number of features that 7 and j have in
common.

— (Second phase) Then some extra friends are added to £; on the basis
of common friends. For every node j € {1,...,i — 1} \ L}, each node
j € V(i — 1) N L (ie. each neighbor that ¢ and j currently share)
can induce, independently of the others; the additional link (7, 5) with
probability p.



4 Meaning of the model parameters and some re-
sults

We now illustrate the meaning of the model parameters and some mathematical
results regarding our model.

4.1 The parameters o and [

Let us start with a and 5. The main effect of 5 is to regulate the asymptotic
behavior of the random variable L, defined in (2.1). In particular, 5 > 0 is the
power-law exponent of L, as a function of n. The main effect of « is the following:
the larger «, the larger the total number of new features brought by a node. It is
worth to note that S fits the asymptotic behavior of L, (in particular, the power-law
exponent of L,) and then, separately, « fits the number of new observed features
per node. In Section 6.1 we will discuss more deeply this fact.

More precisely, we prove (see the Appendix) the following asymptotic behaviors:

a) for B =0, we have a logarithmic behavior of L, that is L, /In(n) =% «;

b) for B € (0,1], we obtain a power-law behavior, i.e. L, /n® % a/B.

4.2 The parameter ¢

The parameter § tunes the phenomenon of preferential attachment in the spreading
process of features among nodes. The value § = 0 corresponds to the “pure prefer-
ential attachment case”: the larger the weight of a feature k at time step i — 1 (given
by the numerator of the second element in (3.1), i.e., the total number of nodes that
exhibit it until time step i — 1), the greater the probability that & will be shown
by the future node i. The value 6 = 1 corresponds to the “pure i.i.d. case” with
inclusion probability equal to 1/2: a node includes each feature with probability 1/2
independently of the other nodes and the other features. When § € (0,1), we have a
mixture of the two cases above: the smaller 9, the more significant is the role played
by preferential attachment in the transmission of the features to new nodes.

4.3 The function ® and the parameter p

According to our model, when a new node enters the system, it selects some (possibly
zero, one, or more) old nodes to whom link by means of the two phases network
construction described in Section 3.

In the first phase, a new node ¢ connects itself to some old nodes according to
the probability function ®, that depends on its own features and the ones of the
others. Indeed, the features provide the surrounding context in which the nodes



interact. The function ® relates the “first-phase link-probability” of i to j (with
1 <j <i—1) to their “similarity” S;; defined as

L;
S;; = number of features that ¢ and j have in common = Z F i Fip  (4.1)
k=1

Since @ is assumed to be an increasing function, a higher number of common features
between nodes i and j induces a larger probability for them to connect (akin the
principle of homophily).

In the second phase, node 7 can connect to some of the nodes discarded in the first
phase by means of common “friends” (i.e. neighbors). The parameter p regulates
this phenomenon, known as triadic closure. Indeed, it represents the probability that
a node j' causes a link between two of its neighbors. Consequently, the “second-
phase link-probability” between a pair of nodes increases with respect to p and the
number of neighbors they share.

Combining together these two phases, we obtain that the probability that a new
node ¢ links to a node j already present in the network is given by

mi; = ®(S;) + [1 — (Si;)] [1 —(1- p)Ci’j}

— 1= 1= 0(5)) (1 - )%, 2

where C;; = card(Vj (i—1)NLE ) is the number of common neighbors of 7 and j
after the first phase. In particular, the second term of the above formula comes from
the binomial distribution with parameters C;; and p. The case p = 0 corresponds
to the case in which the connections only depend on the similarity among nodes.

Regarding the function ®, we can take the generalization of the logistic function,
i.e. the sigmoid function

1

@(8) = —1 + 6K(19—5)

with K >0, ¥ € R. (4.3)
The sigmoid function smoothly increases (from 0 to 1) around a threshold ¢, while
K controls its smoothness: the bigger K, the steeper the sigmoid. In particular,
K =1 and v = 0 give the logistic function and, for K — +o00, ® approaches to a
step function equal to 1 or 0, if the variable s is respectively greater or smaller than
¥ (in our model, ¥ > 0 means that the links are established deterministically based
on whether the two involved nodes have, or not, a similarity bigger than ).

We postpone the discussion about the estimation of the model parameters to the
next section.

5 Estimation of the model parameters

In this section we illustrate how to estimate the model parameters from the data.



Suppose we can observe the values of Fi,..., F,, i.e. n rows of the matrix F,
where n is the number of observed nodes. From the asymptotic behavior of L,,, we
get that In(L,,)/In(n) is a strongly consistent estimator for 3, hence we can use the
slope B\ of the regression line in the log-log plot (of L, as a function of n) as an
estimate for 3. R

After computing 5, we can estimate « as:

~ WhenB:() (5.1)
ny\ When0<§§1, '

where 7 is the slope of the regression line in the plot (ln(n), Ln) or in the plot
(nﬁ, Ln) according to whether B =0 or B € (0,1].

We can estimate 6 by means of a maximum likelihood procedure. For this
purpose, we now give a general expression of the probability of observing F; =
fi,-.., F, = f, given the parameters «, 3, and 9.

The first row Fj is simply identified by L; = N; and so

P(Fy = f1) = P(Ny = ny = card{k : fi, =1})

a™

= Poi(a){ni} = e —

Then the second row is identified by the values Fyj, with k =1,...,L; = Ny, and
by Ns, so that

P(Fy = fo|F) =
P(ng:fgkfork:zl,...,Ll, NQZTLQ:CCLTCZ{/{?>L15f2,k:1}|F1):

HP2 k)2 (1 — Py(k)) =2+ x Poi(N\e){ns},

where Py (k) is defined in (3.1) and A, is defined in (3.2). The general formula is

P(E:fi|F17"'7F’i—1>:
P(Fz’k = f@k for k = 1, .. -;Li—la

N’i =nN; = C&Td{k > Li*l . fi,k = 1}’F1, .. .,E,l) =
Li1

[T 2.(k)7+ (1 = Pik))'~F x Poi(A\;){n;},

k=1

where P;(k) is defined in (3.1) and A; is defined in (3.2). Thus, for n nodes, we can
write a formula for the probability of observing Fy = fi,..., F, = fa:

P(F1=f1,-~,Fn:fn):

D[ P(F = fiIR, ... . Fiy). (5.2)

8



Therefore, we look for § that maximizes the likelihood function, i.e. the quantity
P(Fy = fi,...,F, = f,) as a function of § (given the observed vectors f;). Since
some factors do not depend on ¢, we can simplify the function to be maximized as

n Li—1

[T I 2= Ry, (53)

i=2 k=1
or, equivalently, passing to the logarithm, as

n Li—1

SN Sawln (B(R) + (1= fi)In (1= P(k)). (5.4)

1=2 k=1

Now, suppose that we are also allowed to observe the adjacency matrix A =
(A;j)i<ij<n (meaning the final adjacency matrix after the arrival of all the n ob-
served nodes and the formation of all their links) and to know which are the links
that each of the n observed nodes formed only by means of the previously described
first phase (i.e. only due to homophily). Denote by A" = (4] ;)1<i,j<n the adjacency
matrix collecting them. Then, if we decide to model the function ® as in (4.3), we
can choose K, 9, and p, in order to fit some properties of the observed matrices A’

and A.

For instance, if ¢ is the number of observed (undirected) links in matrix A’ (i.e.
only due to the first phase of network construction) and

observed number of linked (in A’) pairs of nodes with s* features in common

/=

Y

observed number of pairs of nodes with s* features in common

where s* is a fixed value that we choose, then we can determine K > 0 and ¢ € R
by solving (numerically) the following system of two equations:

O(s*) = (1 + eKw_S*))_l =fr
n  i—1
— ®(S;,) =
z‘j-2<7;<;<j<i 1 ;; ’ (5.5)

Zn:Z( K(¥9—s*)+K(s* *Zk 1 sz,k)>_1:£.

=2 j=1

E

By means of the the first equation, we fit the probability that a pair of nodes with
s* features in common establishes a link (during the first phase of network construc-
tion); while, by the second equation, we set the expected number of links in A’ equal
to the observed ¢. From the first equation, we get the quantity K (¢ — s*), we then
replace it in the second one in order to obtain K and from this we get ). Note that

9



this is not a proper estimation procedure, but rather a selection mechanism for K
and ¢ in order to fit some observed properties of the network.

After that, we can estimate p by means of a maximum likelihood procedure.

Specifically, we can find p that maximizes the following probability as a function of
p (given the observed matrices F, A’ A):

n 1—1
P(Aij=ay, V1<i<n 1<j<i-1)=][[]]= @ —ms) ",
i=1 j=1

where 7; ; is given by (4.2) with C; ; = card(V;(i—1)NL}) = card({j' =1,...,i—1:
Aj,j’ = 17 A;,j’ = 1})

6

Some important remarks follow.

e If in the considered situation the formation of links only occurs according to

the first phase (i.e. according to homophily), then we can set p = 0 as in
this case the presence of triangles is only caused by common features and
the matrix A coincides with A’. Then we have no problem to implement the
previous procedures for detecting all the model parameters.

When we have both phases of network construction (i.e. p > 0), the detection
of K,1, and p may generate some problems since the available data are typi-
cally F' and A, while, in order to implement the above procedure, we also need
to observe A’. Hence, when we cannot observe A’, we may try to reconstruct
it from A in some consistent way, if it is possible for the considered application
[36]. However, every empirical criterion used to distinguish between the two
different types of links (the ones due to the first phase and the ones induced
by the second phase), obviously has some degree of arbitrariness and it can be
hard to understand the bias implied by it. An example of this problem can be
found in [13] regarding a citation network. In the case no suitable criterion is
found, we may try to select K, ¢, and p in such a way that some properties of
the adjacency matrix generated by the model are close to the observed one.
The simulation of the model with the observed matrix F and p = 0 is still
useful as a benchmark.

Simulations

In this section, we present a number of simulations performed following the dynamics
for the features’ selection and links’ creation described in Section 3. We simulated
the outcome for feature matrices and for unipartite networks of 1000 nodes, on a
sample of 100 repetition steps (realizations).

10



Regarding the feature-selection dynamics, we analyzed the resulting feature ma-
trices (constructed as explained in Section 2) for different values of the model para-
meters «, 3, and ¢, responsible respectively of the number of new features per node,
the asymptotic behavior of L,,, and the phenomenon of preferential attachment in
the transmission of the features to new nodes. After that, we simulated the network
construction taking ® as in (4.3) and analyzed its properties for different values of
9, K, and p, while ¥ is determined according to a certain number ¢ of (undirected)
links due to the first phase of the unipartite network construction.

6.1 Simulations of the feature matrix and estimation of «, j3,
and ¢

As said before, parameter « is responsible for the number of new features per node:
the larger «, the higher the number of new features per node. Concerning this, it is
very important to stress that also the parameter § affects the number of features per
node, but the idea is that we select first 3, in order to fit the asymptotic power-law
behavior of L, defined in (2.1), and then « in order to fit the number of new features
per node.

In the first set of simulations we kept 8 = 0.5 and 6 = 0.1 fixed and we built the
feature matrix for different values of o = 3, 8, 13. In Figure 1 we can see the shapes
of the feature matrices (where colored points denote non-zero values, i.e. 1) for the
three different values of a. It is immediate to see that the main difference among
these matrices concerns the number of features: the total number of features is 185
for a = 3, 533 for a = 8, and 819 for a = 13. Correspondingly, the mean number
of new features per node (averaged over 100 realizations) is about 0.19 for oo = 3,
0.49 for a = 8, and 0.8 for @ = 13. The mean number of (total) adopted features
per node (averaged over 100 realizations) is about 19.99 for a = 3, 52.66 for a = 8,
and 79.65 for a = 13.

In Figure 2 we show the estimates for the different values of o (with 8 = 0.5 and
0 = 0.1 kept fixed).

Parameter 5 controls the asymptotic behavior of L,, defined by (2.1). For this
reason we plotted L, as a function of n in a log-log scale, results are reported in
Figure 3. In Figure 3 (a)-(b), we show the estimates for two different values of
(8 =0.75and f = 1), with « = 3 and § = 0.1. In Figure 3 (c)-(d), we show the
estimate of (3, for 5 = 0.5 and § = 0.75, but for a different value of a (o = 10) in
order to underline that a does not affect the power-law behavior of L, (obviously,
the value of the estimate can be more or less accurate for different values of «).

Finally, parameter § regulates the phenomenon of preferential attachment: § = 0
corresponds to the pure preferential attachment case; while 6 = 1 to the pure i.i.d

11



0=3,p=055=0.1

Features

0=8,p=05,5=0.1

Features

o=13,3=05,8=0.1

Users

3 ED W2 & sle
Features

Figure 1: An example of features matrices for n = 1000, 5 = 0.5, § = 0.1, and
different values of « : 3 (left), 8 (middle), 13 (right). Colored points denote 1 and

white points denote 0.

a=3,p=0.5,5=0.1, estimate for o. = 3.12

o=8,p=0.5,8=0.1, estimate for o = 8.35

a=13,$=0.5,8=0.1, estimate for o. = 13.47

800

)

06]

Features
8

200

Figure 2: Estimates of o (when 8 = 0.5 and § = 0.1) obtained as the slope of the
regression line in the plot of L,, as a function of n”. Different values of a : 3 (left),
8 (middle), 13 (right) are reported.
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o =3, B =0.75, estimate for 3 = 0.77 a =3, B =1, estimate for § = 1.001

8
6
& o
f— —
2 2
3 o 4
L L
2
0 1 Z 3 4 5 [ T 0 1 Z 3 4 5 [] T
(a) (b)
@ =10, p = 0.75, estimate for = 0.76 =GP Bs; SEUmBEEE= 055
7,
B 2]
2 . ©
o )
o w
L
a4
3]
2
0 T P 3 .S 5 (] 7 0 T Z 3 4 5 [ T
() (d)

Figure 3: Estimates of 3 obtained as the slope of the regression line in the log-log
plot of L, as a function of n. Different values of o and 3 are reported: o« = 3, § =
0.75 (a), « =3, 5 =1 (b), «a =10, = 0.75 (¢), and o = 10, 5 = 0.5 (d).
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case with inclusion probability equal to 1/2. The parameter § is estimated through
the maximization of the likelihood function in Equation (5.4). Results for the esti-
mated parameters are reported in Table 1.

0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0 | 0.0002 0.1002 0.2002 0.296 0.401 0.495 0.603 0.703 0.8 0.9 1.007

Table 1: Estimates of § computed as the maximum point § of the likelihood
function in formula (5.4) with o = 10 and 5 = 0.5.

In order to assess the accuracy of our estimation procedures, we checked the
Mean Squared Error (MSE) for all the three parameters. More precisely, taking a
sample of R = 100 realizations, we computed the quantities

R R R
_ 1 oy 2 . 1 = 2 o 1 -~ 2
MSE, =+ > (@ —a)?, MSEs= = > (B, — 8%, MSRs= = S0 -0

r=1 r=1 r=1

~

where «, (3, § are the values used to generate all the 100 realizations and @, B\r, Oy
are the estimated values associated with the realization . The MSE thus assesses
the quality of an estimator in terms of its variability: the smaller MSE, the more
accurate the estimator. For a = 10, § = 0.5, 6 = 0.1, we obtained the following
values:

MSE, =118, MSE;=0.0004, MSEs;=9x107".

In particular, the estimators for 5 and ¢ show a very high accuracy.

In Figure 4, we show the shapes of the feature matrices (where colored points
denote non-zero values, i.e. 1) for different values of § = 0.1, 0.5, 0.95 (two different
values of @ = 3, 8 and a fixed value of § = 0.5). Although the number of new
features for each node is comparable for different values of ¢ and a fixed value of
« (indeed, the parameter o does not affect the number of new features per node,
but only the transmission of the old features to the subsequent nodes), the number
of old features selected by the nodes depends on d: the more § is near to zero, the
more the probability of showing an old feature depends on how many other nodes
selected it (preferential attachment). This fact is pointed out by the “full” vertical
lines, that are concentrated on the left-hand side (since the preferential attachment
phenomenon, the first features are more successfully transmitted). For greater val-
ues of §, the matrices become denser and they present a more uniform distribution
of the features among the nodes. The mean number of (total) adopted features per
node for a = 3 and 9 equal to 0.1, 0.5, and 0.95 (averaged over 100 realizations) is
about 19.99, 44.24, and 71.49 respectively; while for a = 8 and same values of ¢ it
is approximately equal to 52.66, 128.17, and 167.63 respectively.
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0=3,p$=0586=0.1 a=3,B=0558=05 a=8,=05,8=0.95

Features Features Features

®=8,p=05,8=01 0=8,p=05,6=05 o=8,p=055=0095

Features Features Features

Figure 4: Examples of features matrices for n = 1000, § = 0.5, different values
of  : 3 (up), 8 (below) and different values of ¢ : 0.1 (left), 0.5 (middle), 0.95 (right).
Colored points denote 1 and white points denote 0.

In order to “measure” the “uniformity” of the distribution of the features among
nodes, we simply divided the total set of the features into two subsets: {1,...,|L,/2]}
and {|L,/2]+1,...,L,}. For each feature, we computed the mean number of nodes
that adopted it (i.e. the total number of nodes that adopted the considered feature
divided by the total number of nodes that could have adopted it). Then we com-
puted the mean value of these numbers over the two subsets and took the difference
between these two values. For different values of o and §, Table 2 contains the corre-
sponding values (averaged over 100 realizations) of these differences. It is clear that
the smaller the reported value, the more uniform is the distribution of the features
in the matrix. We can notice that for § = 0.1 and § = 0.5 the obtained values are
comparable (about 0.10 and 0.11); while for § = 0.95 we got a very small value.

6=01 6=05 6=095
a=3 0.1005 0.1119 0.0099
a=38 0.1010 0.1129 0.0097

Table 2: Measure of the “uniformity” of the feature matrix defined as the
difference (averaged over 100 realizations) between the mean number of nodes per
feature for the first and the second half of the features’ set. Considered parameters:
a=3,8 =0.5and § =0.1, 0.5, 0.95.
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6.2 Simulations of the unipartite network and procedure in
order to recover K and v

We performed the simulations of the unipartite network as follows. Once a feature
matrix F' is generated, links are created according to the two phases of the link
construction described in Section 3, taking ® as in (4.3). We simulated the network
for n = 1000 nodes on a sample of 100 repetition steps (realizations).

In the first set of experiments, we fixed a number ¢ and, for different values of
K > 0 (one of the parameters of the function ®), we determined the value of
solving (numerically) the equation

1

n 1—1 .
3 <1+€K(19 Skiy FikF k)) s (6.1)
i=2 j=1

in order to have the expected number of (undirected) links due to the first phase of
the unipartite network construction equal to the given number ¢. Hence, we studied
the network structure as a function of the parameters K and p (related to the link
formation). In particular, we recall that p increases the triadic closure phenomenon.
We also considered different values of §, that regulates the preferential attachment
in the transmission of the features and so influences the shape of the feature matrix
F. In the Appendix we report the results.

With the second set of experiments, we studied the accuracy of procedure (5.5) in
order to recover K and 9. Hence, we fixed « = 10, = 0.5, = 0.1, K =1, ¥ = 10,
and p = 0 (so that A’ = A) and we generated a sample of R = 100 realizations of the
network. We then applied the procedure (5.5) to each realization r (with s* = 10)
in order to get the corresponding values K and 19 The procedure results accurate.
Indeed, we found:

R
~ 1 ~
K, = 1.000462, MSEg = — E (K, — K)* = 0.00415,
1 R r=1
1 R
~ B N -
¥, = 9.998843, MSEy = - § (¥, —0)* = 0.00010.

1 r=1

==
M=

r

==
M=

‘s

7 Application to a co-authorship network

In order to analyze (by means of our model and related statistical tools) the inter-
action between features and social relations in a real world dataset, we downloaded
bibliographic information of papers and preprints found in the IEEE Xplore database
[59]. In this dataset a social relation is taken as the co-authorship of a paper between
two or more authors and the contexts of the papers are given by 2-grams (pairs of
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sequential words in the title or abstract). We selected the papers using search terms
related to the specific research area of autonomous cars (also called connected cars).
The understanding of homophily and triadic closure in co-authorship networks is
very important since these two phenomena can affect the diffusion process of ideas
and discoveries inside a certain research field and among different research fields
[4, 21, 46].

7.1 Description of the dataset

We downloaded (on Aug. 7, 2014) all papers in the IEEE preprint and paper archive
using 17 specific search terms: ‘Lane Departure Warning’, ‘Lane Keeping Assist’,
‘Blindspot Detection’, ‘Rear Collision Warning’, ‘Front Distance Warning’, ‘Au-
tonomous Emergency Braking’, ‘Pedestrian Detection’, ‘Traffic Jam Assist’, ‘Adap-
tive Cruise Control’, ‘Automatic Lane Change’, ‘Traffic Sign Recognition’; ‘Semi-
Autonomous Parking’, ‘Remote Parking’, ‘Driver Distraction Monitor’, ‘V2V or V2I
or V2X’, ‘Co-Operative Driving’, ‘Telematics & Vehicles’, and ‘Night vision’. The
IEEE archive returned all the papers in their database that contain these terms in
the title or abstract, and we downloaded the bibliographic records for all returned
papers including the authors, title, abstract, and the date on which the paper was
added to the database. This download yielded 6 129 distinct papers with a complete
bibliographic record and at least two authors. While these search terms can not be
expected to yield all papers related to automated car research, we expect to have
found a relatively broad panel of related papers.

7.2 Analysis of the feature matrix

The feature matrix was built by extracting all 2-grams (pairs of words) appearing in
either the title or abstract of a paper. The text was converted to lowercase, removing
all punctuation (with the exception of the ‘/” and ‘.” characters) and multi-spaces,
and split into individual sentences. The 2-grams occurring in any sentence in the
title or abstract were labeled as features of the paper. In order to remove spurious
2-grams (e.g. ‘this paper’ often occurs in the abstract, but it is not relevant to
connected cars), we exclude any 2-grams containing any of the words: ‘the’; ‘a’,
‘of’, ‘and’, ‘to’, ‘is’, “for’; ‘in’, ‘an’, ‘with’, ‘by’, ‘from’, ‘on’, ‘or’, ‘that’, ‘at’, ‘be’,
‘which’, ‘are’, ‘as’, ‘one’, ‘may’, ‘it’, ‘and/or’, ‘if’, ‘via’, ‘can’, ‘when’, ‘we’, ‘his’,
‘her’, ‘their’, ‘this’, ‘our’, ‘into’, ‘has’, ‘have’, ‘only’, ‘also’, ‘do’, ‘does’, ‘presents’,
‘paper’, ‘doesn’t’, and ‘not’. This approach gave 155897 distinct 2-grams (features)
for a total of 6129 papers (nodes). We ordered the papers chronologically based on
their entry date into the IEEE database (which we expect to be a good proxy for
their publication date). The 2-grams were ordered in terms of their first appearance
in a paper (as described in Sec. 2). For the 2-grams that appear for the first time
in the same paper, we chose to order them in terms of how commonly they occur: a
more common 2-gram precedes a less common 2-gram. However this last ordering

)
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Figure 5: (a) Feature-matrix associated to the dataset. Dimensions: 6129 nodes
(papers) x 155897 features (2-grams). Colored points denote 1 and white points
denote 0. (b) Feature matrix for 1000 nodes, obtained by simulation of the model
witha = a =32.28, § = B =0.98,and § = 5 = 0.0057. Colored points denote 1 and
white points denote 0. The total number of features is 28 664, which is consistent
with the observed matrix.

is irrelevant for our analysis.

Having extracted the set of the 2-grams contained in each paper, we constructed
the feature-matrix F', with Fj, = 1 if paper ¢ contains the 2-gram k and Fj; = 0
otherwise. The resulting matrix F' is shown in Fig. 5(a), with non-zero values of
F indicated by colored points. We also simulated the feature-matrix for a smaller
network of 1000 nodes taking the parameters equal to the corresponding estimated
values (see Fig. 5(b)). The number of features obtained in the simulation is 28 664,
which is consistent with the observed matrix.

The growth of the cumulative count L, of the distinct 2-grams (the number
of distinct 2-grams seen until the n'* paper included, as described in Section 2)
is shown in Fig. 6(b) in a log-log scale and it shows a clear power-law behavior,
with estimated parameter E = 0.98 (that corresponds to the estimated value of the
model parameter [3). Regarding the model parameter «, we get the estimated value
a = 32.28 and in Fig. 6(a) we show the corresponding fit plotting the cumulative

count L, of the 2-grams as a function of n”. Finally, the estimated value for the
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Figure 6: Estimated values of the model parameters o and /.

parameter ¢ is 5 = 0.0057. As we can see, this last value is very small and so we can
conclude that the preferential attachment rule in the transmission of the features
plays an important role.

7.3 Analysis of the unipartite network

Our dataset includes 6 129 papers for a total of 13581 distinct author names. The
considered unipartite network is constructed taking the papers as nodes and draw-
ing a link between two nodes if they share at least one author. We harmonized the
author names across different papers by ensuring that the authors’ last names are
always found in the same position and removed any stray punctuation in the names.
No further disambiguation was performed, meaning that authors who may use their
full names in some papers but only their initials in other papers will be treated as
distinct. For example, the names “J. J. Anaya” and “Jose Javier Anaya’ are treated
as distinct authors in our dataset, while it is possible that these distinct names re-
fer to the same person. A full disambiguation of author names is computationally
difficult [37], and beyond the scope of this paper. This approach gave a unipartite
network with 19065 links that involve 4 712 nodes in the network. This means that
there are 1417 isolated nodes, where the paper has two or more authors that are
not listed on any other paper in the dataset. However, we decided to consider also
these nodes in our analysis since we included them in the features matrix as nodes
that can potentially link to other nodes.

The distribution of the 2-grams (the features) in common between two papers
(the nodes) given the presence or the absence of at least one shared author (i.e.
given the presence or the absence of a link between them) is plotted in Figure 7(a).
The (blue) circles-curve is the distribution of the number of 2-grams shared by two
papers given they have at least one co-author. More precisely, for each value on the
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x-axis, we have on the y-axis the fraction

num. of pairs of papers with x 2-grams in common and at least 1 shared author

num. of pairs of papers with at least 1 shared author 1)
7.1
The (black) squares-curve is the distribution of the number of 2-grams shared by
two papers given they have no authors in common, i.e. we have the same formula
as (7.1) but with pairs of papers without shared authors. As we can see, there is a
much higher probability of common 2-grams if there are shared authors. This fact
suggests the presence of homophily.

The fraction of pairs of papers with x 2-grams (the features) in common that
have at least one shared author (the linked pairs of nodes) is plotted in Figure 7(b).
More precisely, for each value on the x-axis, we have on the y-axis the fraction

num. of pairs of papers with x 2-grams in common and at least 1 shared author

num. of pairs of papers with x 2-grams in common
(7.2)
As we can see, the plotted fraction increases with the number of features in common.
This fact again suggests the presence of homophily.

The clustering coefficient (see formula (A.1)) is also fairly high, C' = 78%, indi-
cating the presence of a significant triadic closure phenomenon.

The network is composed of 586 connected components with at least one edge
and 1417 isolated nodes (a total of 2003 components). The largest connected com-
ponent has 2776 nodes and 16 108 links, so about the 45% of the nodes can reach
each other in the largest connected component and it includes about the 84% of
the links. The diameter (i.e. the maximum distance between nodes) of the largest
connected component is 23. The other 585 connected components (disconnected
from the largest component but still having at least one edge) globally contain 1936
nodes, and over 90% of the components (containing over 75% of the nodes outside
of the largest connected component) contain 7 or fewer nodes. Hence the percentage
of reachable pairs (denoted by RP in the remainder of the paper) of nodes in the
network is about 20.51%.

As discussed in Section 5, since we have only the final adjacency matrix, we can
not estimate the parameter p, i.e. the parameter governing triadic closure. Hence,
we decided to first use the model with p = 0 in order to have a benchmark and then
try to guess a good value for p.

Taking p = 0, we set A’ = A (i.e. links are only formed by means of the first
phase) and we applied the procedure (5.5) to the observed feature-matrix F' with
s* =10 (the corresponding value for f* is 0.725) and ¢ = 19065 in order to detect
K and 9: we found K = 0.8228 and ¥ = 8.8201. We then generate a sample of
100 realizations of the network by simulating the model starting from the observed
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matrix F' and with p =0, K = K = 0.8228, and ¥ = ¥ = 8.8201. We also com-
puted the percentage of reachable pairs (RP = 99%) and the clustering coefficient
(C = 0.69%), but we found values that are very different from the observed ones.
This can be obviously explained by the fact that we set p = 0 (benchmark case),
while a value of p strictly greater than 0 is guessable.

Setting p = 0.7 and generating a sample of 100 realizations of the network by
simulating the model starting from the observed matrix F' !, we succeeded to cap-
ture a value for RP very near to the observed one, i.e. RP = 19.61% (this value
is an average over the 100 realizations). Moreover, we obtained that the biggest
connected component contains on average 2689.16 nodes. Finally, Figure 7(c) and
(d) contain, respectively, the distribution of the features in common between two
nodes given the presence (blue circles) or the absence (black triangles) of a link
between them and the fraction of pairs of nodes with z features in common that are
linked. These distributions properly fit the observed ones. However, as concerns the
clustering coefficients, we found C' = 39%, which is smaller than the observed one.
We then simulated the model with p = 0.8 2 and so we obtained a bigger value for
the clustering coefficient (C' = 46%), but RP = 11%.

We thus guess that the best choice for the model parameter p is a value around
0.7. However, this empirical analysis shows that, although our model is perfectly
able to reproduce the evolution of the feature-matrix, to explain homophily and to
capture the value of some network indicators, we need to take into account possible
variants of the model in order to explain very high values of clustering coefficient.
We postpone to Section 8 the discussion on possible improvements of our model.

8 Conclusions and discussion on some variants of
the model

In this paper, we presented a new network model, especially suitable to describe
social interactions. In our model, each node is characterized by a number of fea-
tures (i.e. the surrounding context) and the probability of a link between two nodes
depends on the number of features and friends (i.e. neighbors) they share, so that it
includes two of the most observed phenomena in social systems: homophily (meant
as the tendency of individuals to be friends of people similar to themselves) and
triadic closure (meant as the formation of a link between a pair of nodes by means

Tn this case we took into account that A’ is different from A, and so the parameters K and ¢
used for the simulations were recovered by applying the procedure (5.5) to the observed feature-
matrix F with a smaller ¢ (that corresponds to the expected number of links formed during the first
phase). We set ¢ = 4000 in order to have an averaged total number of links around the observed
one. We did not change the values for s* and f*. We found K =1.019574 and 9 = 9.047858.

2In this case, we used £ = 3500 in order to have an averaged total number of links around the
observed one (and the same values for s* and f*) and we recovered K = 1.039748 and ¥ = 9.066332.
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Figure 7: (a) The distribution of the 2-grams (features) in common between two
papers (nodes) given the presence (blue circles) or the absence (black squares) of at
least one co-author. (b) The fraction of pairs of papers with x 2-grams in common
that have at least one co-author. (c) The same distribution in (a) but obtained by
simulation starting from the observed matrix F' and setting p = 0.7 and ¢ = 4000
(and averaged on 100 realizations). (d) The same fraction in (b) but obtained by
simulation starting from the observed matrix F' and setting p = 0.7 and ¢ = 4000
(and averaged on 100 realizations).
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of common friends). The bipartite network of the features evolves according to a
dynamics that depends on three parameters respectively regulating the preferential
attachment in the transmission of the features to the nodes, the number of new fea-
tures per node, and the power-law behavior of the total number of observed features.
We provide theoretical results and statistical tools for the estimation of the model
parameters involved in the feature-selection dynamics. From the observation of the
feature-matrix, we completely determine the parameters that regulate its evolution.
For the case in which the function ®, which relates the link probability between
two nodes to their similarity in terms of common features, is modeled by a sigmoid
function, we provide a procedure for recovering the related parameters. Moreover,
we describe a way to estimate the parameter p that rules triadic closure. However,
for the last point, we need to observe which are the links formed by homophily (first
phase) and those formed by triadic closure (second phase). Nevertheless, as shown
in Section 7, when this information is not available, we can still exploit the proposed
procedure by varying p and the expected number ¢ of links due to homophily, and
try to guess a good combination of the parameters.

The originality and the merit of our model lie in the double temporal dynamics
(one for the bipartite network of features and one for the unipartite network of
nodes), in the attention given to both homophily and triadic closure mechanisms,
and in the related statistical estimators. However, our model could result inadequate
to explain the whole clustering value in the case of some real networks with a very
high clustering coefficient. In the future, we aim at improving it by considering the
following variations:

e Normalizing the number of common features: A possible variation can be ob-
tained by replacing the factor F; ,F}j in formula (4.1) with

i1
Zj’:l Fiik

so that the contribution of a common feature k is smaller when the number of
nodes with k£ as a feature is larger.

V(i) st 1<j<i—1,

o Weighted bipartite matrices: We can modify the model by replacing in the
inclusion-probability and in the link-probability the binary random number
F . by a random weight W, ;. of the form W, = Flksz/(Zizl F;1Yix), where
Y x are i.i.d. strictly positive random variables. (By convention, we set 0/0 =
0.) Hence, we have

L;
Wik €[0,1] and Y W =1

k=1

so that W, represents the weight percentage given to feature k by node <.
Therefore, the preferential attachment in the inclusion-probability becomes
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a “weighted preferential attachment”, in the sense that it depends on the
total weight given to feature k£ by the previous nodes, and the link-probability
depends on the weights associated to the common features.

e Social influence of links on features: In some real cases, a node could change
some features under the influence of its “friends/neighbors”. Hence, we can
introduce a sequence (F®); of bipartite matrices such that each F'®) provides
the features before the arrival of node 741, so that in the inclusion-probabilities
and in the link-probabilities for node i + 1, the matrix F is replaced by F®.

e Different dynamics for triadic closure: We can modify the second phase of our
model by means of different policies for the selection of additional “friends”
of a node ¢ among the friends of i’s friends. Indeed, in this paper we consider
a binomial model according to which each common friend of a pair (i,7) of
not-linked nodes gives, independently of the others, a probability p of inducing
a link between 7 and j. A possible alternative is that, with probability p, an
additional link for a certain node is formed by the selection (uniformly at
random) of a node among the friends of its friends.

o Fxit of some features and breakable links: We can modify the evolution of the
features matrix by accounting for the fact that at each time step j (after the
arrival of the node j) some features can become “obsolete” and so for such a
feature k& we will have F;, = 0 for all © > 5 4+ 1. For some real situations, we
need to consider also the case in which the links among nodes can break.
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A Appendix

A.1 Proof of the asymptotic behavior of L,
Theorem A.1. Consider our model, the following statements hold true:
a) L,/In(n) % o for B =0;
b) L,/n® 22 a/B for B € (0,1].

Proof. Set A\; = a and recall that the random variables /V; are independent and each
N; has distribution Poi()\;).

The assertion b) is trivial for § = 1 since, in this case, L,, is the sum of n
independent random variables with distribution P(«) and so, by the classical strong
law of large numbers, L, /n =% a.

Now, let us prove assertions a) and b) for 5 € [0,1). Define

AB)=a it =0 and () :% if B€(0,1),
an(B) =logn if B=0 and a,(3)=n" if € (0,1).
We need to prove that L, /a,(3) == A(3). First, we observe that

2?21 Ai _ QZ?:l !
w®) - Ca@ )

Next, let us define

_ _ M- BN _ N
To =0 and T”_; a;(8) _zz:; ai(B)

Then (7),) is a martingale with
NE(Ni-N)] SN

E[T?] =
1= =0Er  ~ 2 ay
and so sup, E[T?] = >/ # < +o00. Thus, (7,) converges a.s. and the Kro-

necker’s lemma implies

1 g ) (N’L_)\’L) a.s.
il Oy o

that is . i
Zi:l N; Zizl i ﬂ 0.

an(B) an(8)
Therefore, we can conclude that

= lim Zz’:l N; s Zi:l Ai

lim lim

L,
n an(ﬁ) o an(ﬁ) Cn an(ﬁ)

=AB) as.
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Remark A.2. The above Theorem implies that In(L,)/In(n) is a strongly consis-
tent estimator of 3. Indeed, if 3 = 0 then L,, < a/In(n) asn — +o00; hence In(L,,) ~
In(a) +1In(In(n)), therefore In(L,)/In(n) < In(a)/In(n) +In(In(n))/In(n) 3 0 = 5.

Furthermore, if § > 0, then we have L, < (a/f)n® as n — 400 so In(L,) ‘<
hl(Oé/ﬁ) + 6111(71), hence ln(Ln)/ln(n) W 1D(a/5)/ln(n) + ﬁ ‘E)' ﬁ

A.2 Simulations of the unipartite network: some analysis
on its structure

We generated feature matrices with n = 1000 nodes taking fixed values for o and
B, ie. a = 10 and 8 = 0.5, and different values for ¢ (6 € [0.1, 0.5]). Start-
ing from these feature matrices, we considered the structure of the unipartite net-
work for three different values of K (K = 1, 4, 10) and three different values of p
(p=0,0.1, 0.5).

We considered the following quantities:
e the clustering coefficient defined as:

3 X Number of triangles

- (A.1)

~ Number of connected triplets of nodes
Number of closed triplets

~ Number of connected triplets of nodes’ (4.2)
where a connected triplet is a set of three nodes that are connected by two
or three undirected links (open and closed triplet, respectively) and a triangle
consists of three nodes such that each of them is a friend (i.e. a neighbor)
of the other two; more formally a triangle consists of three different closed
connected triplets, one centered on each of the nodes. See Table 3.

e the fraction of pairs of nodes at distance at most 20, i.e. the fraction of pairs
of nodes that are reachable from each other within at most 20 steps (see Table

4):

Number of couples of nodes at distance at most 20

RPyy =

(A.3)

Number of couples of nodes

We recorded also the observed maximum value hA* of the distance between the
nodes.

e the degree distribution, in the sense of the Complementary Cumulative Dis-
tribution Function (CCDF) of the number of friends of each node (see Figure
8).

The clustering coefficient C' (and so the percentage of triangles) strongly in-
creases with p (as expected). For p = 0 the percentage of closed triplets increases
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with ¢, but remains smaller or equal than 13% of total triplets for all considered
values of § and K. For values of p greater than zero, the percentage of closed triplets
increases with ¢ in a range of 13% — 30% for p = 0.1 and in a range of 39% — 62% for
p = 0.5. The effect of K and 9 seems to be marginal on the clustering coefficient.

6 = 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

p=20 0.04 0.05 0.07 0.08 0.08 0.10 0.13 0.13 0.10

K=1 p = 0.1 0.13 0.17 020 023 023 024 026 027 0.30
p = 0.5 039 045 045 049 049 047 049 053 0.62

p=20 0.06 0.06 0.08 0.09 008 0.11 0.13 0.13 0.11

K=4 p = 0.1 0.15 0.18 0.21 024 023 025 0.26 028 0.30
p = 0.5 0.42 047 046 049 049 048 0.50 0.53 0.62

p=20 0.06 0.06 0.08 0.09 008 011 0.13 0.14 0.11

K=10 | p=0.1 0.15 0.18 0.21 024 023 025 0.26 028 0.30
p = 0.5 0.42 047 046 049 049 048 049 053 0.62

Table 3: Clustering coefficient (averaged over 100 realizations) for o = 10, =
0.5, £ = 4000, and different values of §, K, and p.

Looking at the values obtained for the fraction of pairs of nodes at distance at
most 20, for the two different values 6 = 0.1 and § = 0.5, we can notice a clear differ-
ence in the behavior (independently of K and p): indeed, the fraction of reachable
pairs for § = 0.1 (when K and p are fixed) is highly greater than the corresponding
fraction for 6 = 0.5. Moreover, the fraction of reachable pairs decreases when K
increases (and the other parameters are fixed) and slightly changes when only p
varies. The complementary fraction corresponds to the pairs of nodes at distance
greater than 20 or not reachable from each other.

The observed maximum distance h* (among pairs of nodes at distance at most
20) varies in range of 2 — 5 and decreases when ¢ (p and K, respectively) increases
and the other parameters are fixed.

K=1 K=4 K =10
5= 0.1 05 0.1 0.5 0.1 0.5
p=0 0.439 (5) 0.128 (4) | 0.350 (4) 0.118 (4) | 0.349 (4) 0.117 (4)
p=0.1 0.438 (4) 0.128 (3) | 0.352 (3) 0.118 (3) | 0.350 (3) 0.117 (3)
p=05 0437 (3) 0.128 (2) | 0.351 (2) 0.118 (2) | 0.349 (2) 0.117 (2)

Table 4: Fraction of pairs of nodes at distance at most 20 (averaged over
100 realizations) for a = 10, = 0.5, £ = 4000, and different values of §, K, and
p. For each set of parameters, the corresponding observed maximum distance h* is
reported in brackets.

Finally, the effect of p on the total number of links is clear: when p = 0 the
number of links is approximately equal to the chosen ¢ (i.e. ¢ = 4000), since in this
case we have only the first phase of the unipartite network construction: links are
related only to the features. The larger p the more triplets are closed and so the
more links we have. Table 5 reports the total number of links for all combinations
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Figure 8: CCDF of the number of friends (averaged over 100 realizations) for o = 10,
B = 0.5, £ =4000, and different values of K (corresponding to different boxes) and
different values of § and p (corresponding to different symbols and colors).

of the parameters. Regarding the degree distribution, Figure 8 shows the CCDF of
the number of friends of a node. Parameter p also influences the shape of the degree
distribution, together with 6 and K.

K=1 K=4 K =10
0 = 0.1 0.5 0.1 0.5 0.1 0.5
p=20 4003.47 3998.15 4002.17 3999.59 3997.13 3999.52
p =01 17853.46 19862.54 | 19107.53 19523.42 | 19112.46 19484.86
p = 0.5 93093.05 43538.68 | 81343.97 41382.62 | 81039.49 41156.34

Table 5: Total number of links in the unipartite network (averaged over 100
realizations) for o = 10, 5 = 0.5, £ = 4000, and 0, K, and p varying. Note that for
p = 0 the number is around the chosen ¢ = 4000.
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