A Hybrid Model Predictive Control Approach to Attitude Control with
Minimum-Impulse-Bit Thrusters”

Pantelis Sopasakis®, Daniele Bernardini®®, Hans Strauch®, Samir Bennani? and Alberto Bemporad®®

Abstract— This paper studies an important aspect of attitude
control for a launcher’s upper stage: the minimum impulse bit
(MIB), that is, the minimum torque that can be exerted by
the thrusters. We model this effect using principles of hybrid
systems theory and we design a hybrid model predictive control
scheme for the attitude control of a launcher during its long
coasting period, aiming at minimizing the number of thrusters’
actuations. We apply the proposed methodology to a nonlinear
model of a typical upper stage with multi-payload capability.

Index Terms— Upper Stage Control, Minimum Impulse
Thrusters, Hybrid Model Predictive Control, Aerospace.

I. INTRODUCTION

Future multi-payload launchers will have the capability to
inject a payload into a geostationary transfer orbit with a
payload release close to the apogee (GTO+). This requires
the upper stage to coast up to 4 hours until the payload
is jettisoned. During this long coasting period it is of high
importance to achieve the pointing accuracy with a minimum
amount of thruster actuations. The allowed number of total
thruster firing is small especially in the case of long flight
times, that are typical in GTO+ missions. Therefore, a
standard high-gain tuning of the controller is not acceptable.
Efficient attitude control of the upper stage of launch vehicles
is of high importance for the success of their mission and
must take into account several key aspects, such as keeping
a low total number of actuations needed to achieve a desired
level of pointing accuracy [1], [2].

Furthermore, any object in space that is exposed to solar
radiation from one side and darkness on the other side
is in for thermal damage due to the extreme temperatures
it experiences, that can range from 125°C to —50°C and
below. As a result, the upper stage needs to rotate about its
longitudinal axis at a constant rate — a maneuver known as
“barbecue mode”. The global objective of the control action
is to track the minimizing the pitch and yaw errors caused by
disturbances such as nutation and precession. Nutation and
precession describe the movement of a rotating body that
occurs if the rotating axis does not coincide with the axis of
angular momentum [1], [3].
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In the long coasting period, the upper stage is controlled
by means of on/off operating thrusters. These thrusters apply
a constant force on the spacecraft and they can be merely
switched on and off [4]. In addition, there exists a minimum
time for which the thruster can remain open, which is
imposed by the characteristics of the various (mechanical
and electrical) components involved in the actuation.

The presence of actuation constraints as well as the
need to minimize the number of thrusters actuations mo-
tivates the choice of model predictive control (MPC) as
a suitable control approach. MPC is a class of advanced
control methodologies where at each sampling instant a given
performance index is optimized, by taking into account the
closed-loop evolution of the controlled system as predicted
by a discrete-time model subject to constraints [5]. Such a
model-based approach allows one to explicitly model the
actuation constraints and to penalize the use of actuators in
the considered performance criterion.

The use of MPC for attitude control has been proposed
by Manikonda et al. [6], Vieira et al. [7] and other authors.
Hegrenas et al. propose an explicit MPC control scheme for
attitude control [8], [9]. Other attitude control approaches
have been proposed in the literature. Xiao et al. [10] study
the problem of fault-tolerant attitude control considering the
saturation of the actuators. Simpler control solutions such
as PD and LQR have also been proposed without, however,
being able to take consistently into account the constraints
that apply on the system (see [3] and references therein).

Incentivized by the switching nature of the thrusters
activation mechanism, in this paper we propose a hybrid
MPC scheme for attitude control of an upper stage with
minimum impulse thrusters. Hybrid systems provide a uni-
fied framework for describing processes that evolve accord-
ing to continuous dynamics, discrete dynamics and logic
rules. Several modeling formalisms have been developed to
describe hybrid systems, including piecewise affine (PWA)
systems and mixed logical dynamical (MLD) systems [11],
[12]. Hybrid model predictive control (which is, model
predictive control based on hybrid systems) has been mainly
applied to problems in the automotive domain, addressing,
for example, semi-active suspension control [13], traction
control [14], and active steering for vehicle stabilization and
yaw regulation [15], [16], just to mention a few.

In this paper we model the minimum impulse bit using
hybrid systems theory and propose a hybrid model predictive
control approach aiming at minimizing the number of actua-
tions by the thrusters. The minimization of these activations
results not only in lower consumption of propellant, but also
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Fig. 1: Body fixed (BF) frame aligned to the principal axis of the
spacecraft.

in the prolongation of the thrusters’ lifetime.

Notation. Let N, R, R™, R™*"™ be the sets of natural
numbers, real numbers, real n-vectors and real m-by-n
matrices. The set of integer numbers between ky and ko > k;
is denoted by Ny, ). Let P be a logical proposition. We
denote by [P] its truth value, ie., [P] = 1 if P is true and
[P] = 0 otherwise.

II. UPPER STAGE MODEL AND ACTUATION CONSTRAINTS
A. Upper Stage Dynamics

In this paper we study the attitude dynamics using a
body-fixed (BF) frame which is a right-handed, orthonormal
reference frame fixed to the spacecraft so that the z-axis
is aligned to its principal axis and the rotation about it is
denoted by ® and is called the roll angle. The rotational
displacement about the y-axis defines the pitch angle © and
the rotation about the z-axis is the yaw angle ¥. The BF
body frame is illustrated in Figure 1.

Let us define the state vector

XO 2 [ 6,() Tolt) welt) wy(t) wet) ], (O

where ©,(t) and W, (t) are the pitch and yaw error angles
that describe the rotational displacement of the spin axis with
respect to the desired spin axis in the xz-plane and in the
xy-plane, respectively. By w,(t), wy(t), w.(t) we denote the
angular rates about the x, y and z axes, respectively. Let
T5(t), Ty(t), 7(t) be the torques applied by the thrusters
along these axes. Then, the following continuous-time non-
linear model can be derived:
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assuming that the inertia tensor can be approximated by the
diagonal matrix J—' = diag (J.,', J,,}, J2,') and setting
wn(t) £ (1 = Jyu/Jyy)ws(t). The reader is referred to [3]
for details regarding the derivation of (2).

The coupling terms w,(¢) in (2) lead to nonlinearity.
However, assuming that w,(t) equilibrates fast at its set-

point w’, the system (2) can be approximated with a linear

time-invariant system which, in fact, can be decoupled into a
spin model and a nutation/precession model. The spin model
describes the spin of the spacecraft independently of the
pitch and yaw angles and rates, while the nutation/precession
model requires no roll or roll rate information. Under the
assumption w,,(t) = w?’, the roll rate dynamics is

W (t) = Tt (), A3)

and the model for nutation/precession control is
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where w! £ (1 — Jyu/Jyy)wh. Therefore, spin and nu-
tation/precession control can be taken up by independent
control modules. In particular, being (3) a single-input single-
output system, the spin can be controlled by a simple LQR
regulator. We will show in Section IV that the roll rate
set-point is reached fast compared to the pitch and yaw
dynamics. Therefore, in the following we focus on the
nutation and precession control, for which a hybrid MPC
scheme will be devised.

We introduce the state vector z(t) = [©,(t), ¥, (1),
wy(t),w(t)]" and the input vector u(t) = [r,(t), 7.(t)]’. The
linear time-invariant system (4) is discretized using sampling
time Ty = 0.5s and assuming that the digital-to-analog
coupling is realized by means of a zero-order hold element,
ie, u(t) =u(k) for t € [kTs, (k+1)Ts) for all kK € N. This
gives rise to the following discrete-time linear time invariant
system

2(k+1) = Az (k) + Bu(k), (5)

which will be used as the plant model in the formulation of
the MPC problem in Section III.

B. Minimum Impulse Thrusters

The torques 7, and 7, exerted by the thrusters on the y
and z axes, respectively, are subject to a Minimum Impulse
Bit (MIB), meaning that, once the thrusters are turned on,
they cannot be turned off immediately. The minimum time
interval for which the thrusters must stay on implies a
minimum exerted torque on the corresponding axis. This
can be modelled by non-convex constraints of the form
u(k) € U, with

U= [_umaX7 umin} U {0} U [umina umax] (6)

where umin € R? denotes the minimum impulse bit and
Umax € R2 denotes the maximum torque that can be
provided in a sampling interval on each axis. In order to



translate this constraint to a computationally tractable form,
we consider the convex constraints

—Umax S u(k) S Umaxy (7)
introduce the binary vector o(k) =
[(511(/€), 512(k), 521(k)7 (522(]6)]/, and establish the
correspondence

0i1(k) = [u;(k) < —umin,), fori e {1,2},  (8a)
512(]{) = [U7(k) Z Umin,i]a for ¢ S {1,2} (Sb)

Notice that whenever ;1 = 1 or d;2 = 1, the control action
u is outside the interval (—umin, Umin), SO in light of (7)
it can be applied to the system. We define the following
propositional logic constraints on the auxiliary continuous
variables z(k) € R?:

where “V” stands for the logical disjunction (OR) operator.
Additionally, we introduce the auxiliary continuous variables
Zact (k) € R2 to trace whether at every time instant a thruster
activation takes place:

Zact,i(k) = [511(]6) Vv 522(]{)}, Z S {1,2} (10)
By (7), (8) and (9) we have z(k) € U. Hence, the system
dynamics subject to the thrusters constraints can be described
by the linear discrete-time model where the continuous
variable u has been replaced by the hydrid variable z where
the relationship between these is given by (9).

z(k+1) = Ax(k) + Bz(k)
Yk + 1) = (k) + [1 1] zace (),

(11a)
(11b)

where the additional state variable v(k) € R, namely the
activation count, stands for the number of thrusters activa-
tions and, if necessary, can be bounded by the number of
maximum activations allowed 7y, according to:

(k) < Ymax- (12)
This constraint is likely to become active only if the pre-
diction horizon is long enough to foresee the exhaustion of
available actuations or (k) is close t0 Ymax-

III. MPC FORMULATION

MPC is an optimization-based control strategy: at each
sampling instant a performance index is optimized using
a discrete-time dynamical model of the system subject to
constraints, yielding a sequence of control moves over a
future time window. Then, the first element of this sequence
is the control action applied to the system, while the other
elements are discarded.

Let mn 2 {u(k), z(k), zact(k), 0(k)}5," be the set of
optimization variables, x( the current state, and v, the total

number of thrusters activations up to time k. We propose the
following hybrid MPC problem:

min V(7n,Zo,%0) (13a)

TN

s.t. ‘T(O) = To, 7(0) =0, (13b)
Constraints (7)—(12), for k € Nyg n,1, (13¢)
(S(Nu + k/’) =0, for k € N[O,NfNuflb (13d)

where N > 1 defines the prediction horizon, i.e., the size
of the future time window for which the system evolution
is predicted, and N,, < N defines the control horizon, i.e.,
the number of time steps for which the control moves can
be optimized. A control horizon which is small compared
to the prediction horizon is typically employed to reduce
the complexity of the resulting optimization problem. In the
proposed formulation (13), the input is assumed to satisfy all
constraints given by equations (7)—(12) for all k € N, n.)»
and no activation is allowed after the control horizon as

in (13d).
Due to the upper-stage rotational dynamics, which is
very slow compared to the sampling time 75 = 0.5s, a

relatively long prediction horizon is required to allow MPC
to predict far enough in the future. On the other hand, a short
control horizon is needed to limit the number of optimization
variables, so as to keep the complexity of (13) reasonably
low.

The term V in (13a) is the performance index, defined as

N-1
V(an, 20,70) £ Viv(z(N), v (N)) + Y £(z(k), 2(k)),
k=0

(14)
where ¢ is the stage cost, £(z,2) £ ||Qzl, + ||Rz|, and
Vi is the terminal cost, Vv (z(N),v(N)) £ [|Qnx(N)|l, +
p(v(N)—), and Q, R, Qn, and p are weight matrices used
to obtain the desired trade-off between tracking performance
and thrusters usage, and the notation | - ||, is either the oco-
norm (|| - ||, p = 00) or the squared Euclidean norm (|| - ||,
p = 2). The choice p = oo leads to the formulation of a
mixed integer linear programming problem (MILP), while
p = 2 leads to a mixed integer quadratic programming prob-
lem (MIQP); here, we use p = oo to lower the computational
complexity of (13). The term p(y(N) — ) in Vy is used
to penalize the total number of thrusters activation along
the prediction horizon to eventually lead to a low-activation
attitute control of the spacecraft.

Recently Frick et al. [17] proposed the use of a standard
branch-and-bound algorithm combined with a fast embedded
interior point solver and certain heuristics that considerably
speed-up the solution of such hybrid MPC optimization
problems and yield near-optimal solutions. This allows for
an efficient on-chip implementation of the proposed hybrid
model predictive controller.

The purpose of control problem (13) is to drive the pitch
and yaw error angles in an orbit close to zero, while satisying
the MIB constraints (7)—(10), avoiding thrusters activation
as much as possible, and respecting the constraint (12) on
the total number of actuations. As mentioned above, the



desired compromise between these contrasting objectives is
determined by the choice of the weight parameters Q, R, Q n
and p. Unless otherwise stated, in the following we set R = 0
since we make use of the weight coefficient p to penalize the
total number of activations. In general, having nonzero R can
be useful to reduce the consumption of propellant needed to
actuate the thrusters, if relevant. With R = 0, inputs are still
indirectly penalized through the actuation count variable +.

The MPC control action is computed in a receding
horizon fashion: The optimization problem (13) is
solved at every sampling time instant and returns
an optimizer, that is a sequence wi(z,7) =
{(w (ks 2,7), 2 (ks @, 7), 250 (R ,7), 6% (ks 2,) 1y
Then, the first value of z*, namely z*(0), is used as the
control action and it is applied to the system. The control
action is hence given by the feedback law

= 2*(0;z,7).

The MPC controller commands admissible torques to the
thrusters which will be activated for a certain time between
tmin and T, where t,,;, is the minimum time for which the
thruster can remain open (and corresponds to a uyi, torque)
and T, is the sampling time. The proposed methodology
grants a clear advantage over other approaches to attitude
control that only provide on/off commands to the thrusters,
such as the one in [18]. In fact, with the proposed approach
the sampling time 75 can be much larger than the minimum
impulse time t.,;,, and as consequence the MPC controller
can have a greater foresight of the system evolution at a
much lower computational cost.

K(x,v) (15)

IV. UPPER STAGE ATTITUDE CONTROL DURING LONG
COASTING PERIODS

Here we demonstrate how the proposed control approach
performs based on the nonlinear kinematic model (2), which
was built based on real data.

The state variables of the upper stage are measured by
a high-precision Inertial Measurement Unit (IMU) which
measures the translational acceleration and the angular rates
of the spacecraft using three accelerometers and three laser
gyroscopes.

A. Control under nominal conditions

In this section the performance of the proposed hybrid
MPC are tested in nominal conditions, that is, in the ab-
sence of external disturbances and neglecting the effects
of fuel sloshing. In the considered simulation settings the
moments of inertia are J,, = 77.2-10° kg m?, J,, =
J.. = 93.8-10* kg m?, the maximum torque bounds are
Umax = [5000, 5000]7 Nm, the minimum torque bounds
due to MIB are Ui, = [200, 200]7 Nm, the roll rate set-

point is w; = 57g; rad, and the initial angular rates are
we(0) = =155 rad/s, wy(0) = w.(0) = 0.1755 rad/s. The

weight matrices were set to @ = Qn = diag(1,1,0,0),
R =0 and p=0.1. A good balance between computational
complexity and performance of the controller was achieved
for N =120 and N,, = 15.

TABLE I. Simulation results over an interval Ty, = 300s in
nominal conditions.

Thruster activations
. . - Jr
x-axis [ y-axis [ z-axis [ total
PD controller 9 7 34 50 | 0.4741
LQ controller 9 21 36 66 | 0.3858
Hybrid MPC 9 4 5 18 | 0.0811
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Fig. 2: Trajectories of the pitch and yaw error angles O, U, for
the proposed hybrid MPC controller and comparison with the PD
and an LQR controller of [3].

The hybrid MPC is compared with two controllers based
on PD and LQR, respectively, as designed in [3] whose
control actions are saturated by the following mapping:

sat(v) = 0; if ‘UI %umm i (16)
mmln{v /|V]s Umaz }, otherwise

The main difference between those controllers and MPC is
that they do not take explicitly into account the MIB effect
or other constraints on thrusters actuation. The results of
a simulation over an interval of Ti;,, = 300s are summa-
rized in Table I, where the number of thrusters activations
produced by different controllers is shown, together with a
performance index based on the pitch and yaw tracking error:

Tsim

Jy = Z (62 B2 (k )) a17)

For the sake of completeness, in Table I we also report
the number of activations on the z-axis, that is achieved by
a simple linear gain controller for either MPC, PD, and LQR
controllers. Trajectories of pitch and yaw error angles 0.,
U, are shown in Figure 2, while thrusters’ commands for
the three controllers are shown in Figure 3.

We observe that the proposed hybrid MPC controller
greatly outperforms the other two controllers (PD and LQR),
both in terms of number of thrusters activations and of angles
error. This is mainly due to the capability of MPC to model
the actuators’ nonlinearity (6) and to explicitly penalize the
activations of the thrusters in the cost function. At the same
time, as shown in Figure 4, the roll rate equilibrates fast at the
desired set-point which justifies our assumption to consider
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Fig. 3: Torques applied on the y-axis (up) and the z-axis (down)
by the LQR, the PD and the hybrid MPC controller.
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Fig. 4: The roll rate converges fast to the desired set-point of
5 deg/s.
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Fig. 5: Trajectories of the pitch and yaw error angles O, ¥, for
the proposed hybrid MPC controller and comparison with the PD
and an LQR controller of [3] in presence of a constant torque
disturbance.
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Fig. 6: Trajectories of the pitch and yaw error angles 6., W, for
the proposed hybrid MPC controller and comparison with the PD
and an LQR controller of [3] in the presence of a sinusoidal torque
disturbance.

it constant and equal to its equilibrium value for the design
of the MPC controller.

B. Control in presence of unmodelled disturbances

Here we test the proposed hybrid MPC for robustness in
presence of unmodelled torque disturbances. In particular,
we examine two scenarios: constant torque disturbances on
the y- and z-axis of magnitude 6Nm and a sinusoidal torque
disturbance between 0.5 and 6Nm at 0.2Hz. Such torque
disturbances correspond to worst-case scenarios in regard to
actuation imprecisions.

TABLE II: Comparative analysis of the attitude controllers in the
presence of a constant torque of 6Nm on the y-axis and another
6Nm on the z-axis.

Thruster activations 7

x-axis [ y-axis [ z-axis [ total "
PD controller 9 11 30 50 | 0.4454
LQ controller 9 26 40 75 | 0.3878
Hybrid MPC 9 16 5 30 | 0.0880




TABLE III: Comparative analysis of the attitude controllers in
presence of sinusoidal torque disturbances along the y and z axes.

Thruster activations J

z-axis | y-axis | z-axis | total r
PD controller 9 10 31 50 | 0.4024
LQ controller 9 24 37 70 | 0.3899
Hybrid MPC 9 9 8 26 | 0.0869

As presented in Tables II and III, the presence of a
disturbance entails an increase in the number of actuations
needed to control the attitude of the upper stage. Still, the
proposed hybrid MPC controller outperforms the PD and
LQR controllers significantly.

C. Computational Complexity

The use of a control horizon that is lower than the
prediction horizon in our hybrid MPC formulation enables
us to control the complexity of the mixed-iteger optimization
problem we need to solve. Using Gurobi as the MILP solver,
the hybrid MPC optimization problem was solved in 0.21 s
per sampling step on average, with a standard deviation of
0.26 s, on a 2.2GHz Intel Core i7.

V. CONCLUSIONS AND FUTURE WORK

In this paper we modelled the minimum impulse bit of the
thrusters in a hybrid systems framework and devised a hybrid
MPC controller that aims at correcting the yaw and pitch
errors while minimizing the number of thruster actuation.

We demonstrated that the closed-loop trajectories of the
controlled system are closer to the control objective than
the ones generated by conventional control approaches such
as PD or LQR. Additionally, we showed that the proposed
MPC scheme leads to a significant reduction of the number
of thruster activations compared to those obtained using PD
and LQR controllers.

This paper offers a proof-of-concept in regard to the
use of hybrid MPC for the attitude control of upper stage
launchers taking into account the MIB effect. For an em-
bedded implementation of the proposed control approach,
one needs to develop an efficient algorithm for the online
solution of (13). Even if the implementation of a hybrid
MPC controller as a flight algorithm is rejected (for reasons
of limited computing resources or verification problems),
our work gives an indication of the optimal solution against
which other approaches can be benchmarked.

Although stability properties of the controlled system are
not theoretically proven in the paper, exhaustive simulations
have shown that the state of the controlled system is steered
to a small neighbourhood of the origin with significantly
fewer actuations compared to PD and LQR controllers typi-
cally employed for attitude control.

Future work will focus on the design of a hybrid MPC
controller that takes into account the effect of the sloshing
of fuel in the tanks of the spacecraft, resulting in additional
torque disturbances and possibly off-diagonal inertias [19],
and exploits reduced-order models in order to limit the com-
plexity of the resulting controller [20]. In addition, efficient

MPC formulations that trade optimality of the control action
for lower CPU requirements will be investigated, in order to
address embedded implementation.
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