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Abstract

The fragmentation of production across countries has become an important feature of the
globalization in recent decades and is often conceptualized by the term “global value
chains” (GVCs). When empirically investigating the GVCs, previous studies are mainly in-
terested in knowing how global the GVCs are rather than how the GVCs look like. From a
complex networks perspective, we use the World Input-Output Database (WIOD) to study
the evolution of the global production system. We find that the industry-level GVCs are in-
deed not chain-like but are better characterized by the tree topology. Hence, we compute
the global value trees (GVTs) for all the industries available in the WIOD. Moreover, we
compute an industry importance measure based on the GVTs and compare it with other net-
work centrality measures. Finally, we discuss some future applications of the GVTs.

Introduction

The history of globalization has been marked by two great unbundlings, the first being the spa-
tial separation of production and consumption (i.e., international trade in final products), and
more recently, the second being the spatial fragmentation within production (i.e., international
trade in tasks and supply chains) [1, 2]. The second great unbundling is often conceptualized
by the term, global value chains, or GVCs (Other similar concepts used in the literature include
global supply chains [3], supply-chain trade [2], international fragmentation [4], outsourcing
[5], offshoring [6], and vertical specialization [7].), since it captures the fact that the value-
added of a final product can be distributed globally. In other words, a product (and its compo-
nents) may have crossed multiple country borders before it arrives in a final consumer’s hands.
For instance, before it hits the US market, an Apple’s iPod needs to be assembled in China,
which in turn sources microchips and software from Japan, South Korea, and the US itself [8].

Quite a few theoretical models have been developed to understand the GVCs’ structure,
mechanism, welfare impacts, and policy implications [3, 6, 9]. Thanks to the recently con-
structed global multi-regional input-output (MRIO) tables, empirical studies can be conducted
at the industry level and hence identify a more general pattern of the GVCs than do the case
studies on the specific products such as iPod. In particular, the global value-added content of
exports for a given industry or country can be measured [2, 4, 5, 7, 10-12].
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Although previous studies can tell us how global the GVCs are, very little is known about
how the GVCs look like (A fairly comprehensive survey of the GVCs literature is conducted by
Amador and Cabral [13]. There are a number of studies exploring some structural properties
of the GVCs such as the length of a GVC and the industry upstreamness with respect to final
consumption [14, 15]. However, they only provide some rough estimates of the structural
properties rather than any topological details of the GVCs.). To fill the gap in the literature, our
paper is the first attempt to investigate the topological properties of the industry-level GVCs.
From a complex networks perspective, we map the World Input-Output Database (WIOD)
into the global value networks (GVNs), where the nodes are the individual industries in differ-
ent countries and the edges are the value-added contribution relationships.

Based on the GVN, this paper makes some significant contributions to the literature of the
GVCs. First, unlike the previous literature which provides only some rough estimates of the
structural properties of the GVCs, we are able to produce a detailed topological view of the in-
dustry-level GVCs. We compute the global value trees (GVTs) for all the industries available in
the WIOD by a breadth-first search algorithm with the edge direction and a threshold of edge
weight. We explore some basic properties of the GVTs. In particular, we estimate the allometric
scaling exponents and verify that the GVTs are topologically between a star and a chain. Sec-
ond, we develop an industry importance measure based on the GVTs and compare it with
other network centrality measures of the industries. We find that the tree-based measure per-
forms the best in terms of the correlation with the industry total value-added. Therefore, the
GVTs still retain the essential information of the GVNs and can be viewed as a reasonable sim-
plification of the latter. Third, with the rich topological information, the GVTs enable a broad
range of empirical studies of the global fragmentation of production such as to examine the
evolution of the GVTs for a certain industry and to compare the GVTs of the same industry in
different countries.

The rest of the paper is structured as follows. Section 2 maps the WIOD database into the
GVNs and develops an algorithm to compute the GV Ts. Section 3 explores some basic proper-
ties of the GVTs. In particular, we quantify the allometric scaling pattern of the GVTs and pro-
pose an industry importance measure based on the GVTs and compare it with other network
centrality measures. Finally, Section 4 discusses some future applications of the GVTs and con-
cludes the paper.

Methods

The complex networks approach has been widely used in economics and finance in recent
years [16-24]. Designed to keep track of the inter-industrial relationships, the input-output
system is an ideal test bed for network science. In particular, the global MRIO system can be
viewed as an interdependent complex network [25], where the nodes are the individual indus-
tries in different countries and the edges are the input-output relationships between industries
[24].

This paper takes one step further and uses the WIOD database to construct the global value
networks (GVNs), where the nodes are the individual industries in different countries and the
edges are the value-added contribution relationships (The call for a network analysis of the
GVCs has existed for years [26-29].). Moreover, based on the GVNss, the global value trees
(GVTs) can be computed in a straightforward manner.

Data Description

We use the World Input-Output Database (WIOD) [30] to compute the GVNs and the GVTs.
At the time of writing, the WIOD input-output tables cover 35 industries for each of the 40
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Table 1. A hypothetical two-economy-two-industry MRIO table. The 4 x 4 inter-industry transactions matrix records outputs selling in its rows and inputs
buying in its columns. The additional columns are the final demand and the additional row is the value added. Finally, the last column and the last row record

the total industry outputs.

Buyer Industry

Economy 1 Economy 2 Final Demand
Seller Industry Industry 1 Industry 2 Industry 1 Industry 2 Economy 1 Economy 2 Total Output
Economy 1 Industry 1 25 10 20 10 45 10 120
Industry 2 10 5 10 20 50 5 100
Economy 2 Industry 1 30 15 600 500 5 8650 9800
Industry 2 35 30 1000 1000 25 7910 10000
Value Added 20 40 8170 8470
Total Output 120 100 9800 10000

doi:10.1371/journal.pone.0126699.t001

economies (27 EU countries and 13 major economies in other regions) plus the rest of the
world (RoW) and the years from 1995 to 2011 (The 40 economies are representative of the
world economy in a sense that they produce around 84.1% of the world GDP in 2011. SI and
S2 Tables have the lists of countries and industries covered in the WIOD.). For each year, there
is a harmonized global level input-output table recording the input-output relationships be-
tween any pair of industries in any pair of economies. The numbers in the WIOD are in cur-
rent basic (producers’) prices and are expressed in millions of US dollars (The basic prices are
also called the producers’ prices, which represent the amount receivable by the producers. An
alternative is the purchases’ prices, which represent the amount paid by the purchases and
often include trade and transport margins. The former is preferred by the WIOD because it
better reflects the cost structures underlying the industries [30].). Table 1 shows an example of
a global MRIO table with two economies and two industries. The 4 x 4 inter-industry table is
called the transactions matrix and is often denoted by Z. The rows of Z record the distributions
of the industry outputs throughout the two economies while the columns of Z record the com-
position of inputs required by each industry. Notice that in this example all the industries buy
inputs from themselves, which is often observed in real data. Besides intermediate industry use,
the remaining outputs are absorbed by the additional columns of final demand, which includes
household consumption, government expenditure, and so forth (In Table 1 we only show the
aggregated final demand for the two economies.). Similarly, production necessitates not only
inter-industry transactions but also labor, management, depreciation of capital, and taxes,
which are summarized as the additional row of value-added. The final demand matrix is often
denoted by F and the value-added vector is often denoted by v. Finally, the last row and the last
column record the total industry outputs and its vector is denoted by x.

Construct the Global Value Networks

If we use i to denote a summation vector of conformable size, i.e., a vector of all 1’s with the
length conformable to the multiplying matrix, and let Fi = f, we then have Zi+f = x. Further-
more, if dividing each column of Z by its corresponding total output in x, we get the so-called
technical coefficients matrix A (The ratios are called technical coefficients because they repre-
sent the technologies employed by the industries to transform inputs into outputs.). Replacing
Zi with Ax, we rewrite the above equation as Ax+f = x. It can be rearranged as (I-A)x = f.
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Then we can solve x as follows:
x=(I-A)"'f (1)

where matrix (I-A) ™" is often denoted by L and is called the Leontief inverse [31, 32].

If dividing each element of v by its corresponding total output in x, we get the value-added
share vector and denote it by u. Moreover, if we use 1 to denote a diagonal matrix with u on its
diagonal, then the value-added contribution matrix can be computed as follows:

G =aL 2)

where G is the value-added contribution matrix and its element 0 < G;; < 1 is industry i’s share
of the value-added contribution in industry j’s final demand, f;.

Finally, the GVNs can be constructed by using G as the adjacency matrix. Notice that the
GVNs are both directed and weighted (We don’t consider the self-loops so that we replace the
diagonal of G with zeros. Meanwhile, we don’t consider the rest of the world (RoW) and focus
our attention on the 40 countries available in the WIOD.).

Compute the Global Value Trees

Based on the GVNs, the GVTs can be obtained by a modified breadth-first search (BFS) algo-
rithm. Rather than implementing a BES on the whole network based on a random root, each
time we initiate a BFS from a different industry and eventually we build the GVTs for all the in-
dustries available in the WIOD. To ensure that the GVTs are topologically different from each
other and that each GVT contains only the most essential value-added contribution relation-
ships for the root industry, our BFS algorithm is governed by both the edge direction and a
threshold of edge weight. The description of our algorithm is as follows. For each industry
available in the WIOD, we first choose the industry as the root of the GVT and initiate the BFS.
At each step, the new nodes are added based on their value-added contributions to the existing
nodes. As a result, each GVT captures the value-added flows from the leaf industries to the
root industry. Second, since the GVN’s are almost completely connected (This is a general fea-
ture of the input-output networks due to the aggregated industry classification [24].), we search
the GVTs based on a threshold of the edge weight, which we denote by ¢, in order to keep only
the most essential value-added contribution relationships for the root industry.

To determine a benchmark value of @, we take into account two empirical relationships be-
tween a and the GVTs obtained. First, as the value of « increases, the number of available (non-
empty) GVTs will decrease since it becomes more difficult for a value-added contribution to
pass the threshold. Second, we examine the relationship between the value of @ and the size (as
measured by the total number of nodes in a GVT) variation across the obtained GVTs. A larger
variation of tree size is more desirable because the topological differences between the GVTs
can be better revealed if the GVTs obtained are more diverse in terms of tree size. Therefore,
the optimal value of @ can be obtained when the tree size variation is maximized and when the
number of available GVTs is reasonably large. The two empirical relationships are plotted in
Fig 1. Panel (a) shows the relationship between the tree size variation and the value of o and
the relationship is not monotonic but has a clear optimum. Panel (b) shows the relationship be-
tween the number of available GVTs and the value of @ and they are indeed inversely related.
The maximum variation of tree size is obtained when o = 0.019. The number of available
GVTs according to this value of « is still very large (around 1300) given that the total number
of industries in the WIOD is 1400. Hence, the benchmark value of a is determined to be 0.019.
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Fig 1. The impact of a on the GVTs obtained. Panel (a) shows the relationship between the tree size variation and the value of a while panel (b) shows the
relationship between the number of available GVTs and the value of a. The 95% confidence intervals are based on the time variation during 1995-2011. The
maximum variation of tree size is obtained when a = 0.019. The number of available GVTs according to this value of a is still very large (around 1300) given
that the total number of industries in the WIOD is 1400.

doi:10.1371/journal.pone.0126699.g001

As an example of the GVTs based on a = 0.019, Fig 2 shows the GVT rooted at Germany’s
transport equipment industry (DEU_15) in 2011. Different colors of the nodes indicate differ-
ent countries. The red edges indicate cross-country relationships while the gray edges indicate
domestic relationships. The edge width is proportional to the edge weight, i.e., the share of the
value-added contribution. In this example, the first two steps of our BFS algorithm have added
some other domestic industries in Germany. At the third step, UK’s financial intermediation
industry (GBR_28) is added as a significant value-added contributor to Germany’s financial in-
termediation industry (DEU_28). Finally, governed by the edge direction and the threshold of
edge weight (o = 0.019), the search is completed at the fifth step with UK’s construction indus-
try (GBR_18).
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Fig 2. The GVT rooted at Germany’s transport equipment industry (DEU_15) in 2011. The edge weight
threshold is set to 0.019. Different colors of the nodes indicate different countries. The red edges indicate
cross-country relationships while the gray edges indicate domestic relationships. The edge width is
proportional to the edge weight, i.e., the share of the value-added contribution. The codes of countries and
industries can be found in S1 and S2 Tables.

doi:10.1371/journal.pone.0126699.g002
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(@) (b) ©

Fig 3. Examples of the allometric scaling relationship. The numbers inside the node circles are X;'s
whereas those next to the circles are Y;'s. The node with the thick circle is the root. From left to right, they are
achain (a), a star (b), and a tree (c), respectively.

doi:10.1371/journal.pone.0126699.g003

Results

Once we have computed the GVTs, some basic properties of the tree topology can be explored.
Subsection 3.1 quantifies the allometric scaling pattern of the GVTs. We estimate the allome-
tric scaling exponents and verify that the GVTs are topologically between a star and a chain.
Subsection 3.2 proposes a tree-based industry importance measure and compares it with other
network centrality measures. We find that the tree-based measure performs the best in terms
of the correlation with the industry total value-added. Therefore, the GVTs still retain the es-
sential information of the GVNs and can be viewed as a reasonable simplification of the latter.

Allometric Scaling Pattern

The allometric scaling pattern refers to the power law relationship between size and other phys-
ical or behavioral variables. Previous studies have documented the ubiquitous existence of the
allometric scaling pattern in systems as diverse as river networks, cellular metabolism, popula-
tion dynamics, and food web [33, 34].

For a directed tree topology, if we denote the total number of nodes in the sub-tree rooted at
node i by X; and the sum of all X/’s in the sub-tree rooted at node i by Y}, then an allometric
scaling relationship is observed between Y; and X; and can be described by a power law, i.e.,

Y, ~ X!, where 17 is called the allometric scaling exponent.

Fig 3 shows the examples of a chain, a star, and a tree, respectively. The numbers inside the
node circles are X;’s whereas those next to the circles are Y;’s. The allometric scaling exponent 7
of a tree is lower-bounded by that of a star (7 = 1) and upper-bounded by that of a chain ( =
2). As aresult, n can be interpreted as a measure of hierarchicality, as star is the “flattest” topol-
ogy and chain is the most hierarchical topology given the same number of nodes.

To examine the hierarchicality of the GVTs, we estimate 77’s based on the root-node Y;-X;
pairs across all the GVTs for each year. Fig 4 has the estimation result of 7. Panel (a) shows the
log-log plot of the root-node Y;-X; pairs in 2011, where the horizontal axis is the X; of the root
node, i.e., the total number of nodes in a given GVT (the tree size), and the vertical axis is the
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Fig 4. Estimation of the allometric scaling exponent n. Panel (a) shows the log-log plot of the root-node Y-X; pairs in 2011, where the horizontal axis is the
X; of the root node, i.e., the total number of nodes in a given GVT (the tree size), and the vertical axis is the Y; of the root node, which we call the accumulative
tree size. The gray crosses are the observed data points. The thick blue dashed line is fitted with the observed data and with the slope of n. The fitting lines for
star and chain based on the same set of X;’s are the green dashed line and the red dashed line respectively. Panel (b) plots the estimated n’s over time.

doi:10.1371/journal.pone.0126699.g004

Y; of the root node, which we call the accumulative tree size. The gray crosses are the observed
data points. The thick blue dashed line is fitted with the observed data and with the slope of 1.
The fitting lines for star and chain based on the same set of X;’s are the green dashed line and
the red dashed line respectively. It is straightforward to see that in 2011 the GVTs are topologi-
cally between a star than to a chain. Panel (b) plots the estimated 7’s over time. The values of 1
are between 1.36 and 1.5 for all the years (Shi et al. [35] also estimate the allometric scaling ex-
ponent to understand the hierarchicality of the global production system. However, they con-
sider the directed tree as a flow network. Furthermore, their paper differs from ours in both
data source and research strategy. They use the United Nations COMTRADE database to con-
struct the product-specific trade networks while we use the WIOD database to construct the
GVN s with both country and industry dimensions.).

A Tree-Based Importance Measure

The GVTs are the subgraphs of the GVNs. Unlike the GVNs, the GV Ts reveal the local impor-
tance of the industries. Previous studies have shown that the subgraph centrality measure can
be used to complement the global centrality measures [36]. Hence, we compute a simple indus-
try importance measure based on the GVTs and compare it with other network

centrality measures.

First, we denote a tree with the root r by T(r). Furthermore, we denote the total number of
nodes in the sub-tree rooted at industry i by X;(r) and the total number of nodes in the tree T
(r) by N(r). If industry i is present in k trees all over the world and we denote the set of roots of
the k trees by S;, then the importance of industry i is defined as follows:

X.(r) FD
TI = Z i(r) FD(r)
&7 N(r) WGDP

(3)

where TT; is the tree-based importance measure of industry i, FD(r) is the final demand in the
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Fig 5. The domestic and foreign GVTs where Japan’s transport equipment industry (JPN_15) has the highest importance score in 2011. Panel (a)
shows the domestic GVT where Japan’s transport equipment industry (JPN_15) has the highest importance score while panel (b) shows the foreign GVT
where Japan’s transport equipment industry (JPN_15) has the highest importance score. The edge weight threshold is set to 0.019. Different colors of the
nodes indicate different countries. The red edges indicate cross-country relationships while the gray edges indicate domestic relationships. The edge width is
proportional to the edge weight, i.e., the share of the value-added contribution. High-resolution plots for both panels can be found in S1 and S2 Figs. The
codes of countries and industries can be found in S1 and S2 Tables.

doi:10.1371/journal.pone.0126699.9005

root industry r (i.e., total production of the root industry r minus its intermediate supply to
other industries according to the WIOD input-output table) and WGDP is the world GDP (i.e.,
summing up the final demand of all the industries around the world according to the WIOD
input-output table). Notice that when calculating T1;, we don’t consider the role played by in-
dustry i in its own GVT (i.e., r # i), although the input-output network has strong self-loops
[24].

The economic interpretation of the importance measure is that, more important industries

are more closely attached to the root and are able to “pull” a larger portion of the GVTs (mea-
X;(r) FD(r) )
N(r) WGDP’*

sured by <4~) and are associated with more important roots (measured by

PLOS ONE | DOI:10.1371/journal.pone.0126699 May 15,2015 9/17
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Table 2. The Pearson correlation coefficient matrix between the tree-based importance measure and other network centrality measures (in loga-
rithm) for the selected years. The size of the sample is in the parentheses next to the corresponding years. Tl is the tree-based importance measure, CC is
the closeness centrality, PR is the PageRank centrality, BC is the betweenness centrality, and VT is the industry total value-added. ** means that the coeffi-
cientis significant at 1% level. ** means that the coefficient is significant at 1% level.

log(TI)
log 1
(TN
log 0.574%**
(cC)
log 0.350**
(PR)
log 0.278**
(BC)
log 0.763**
1)

1995 (# Obs. 396)

log(CC)

0.373**
0.171**

0.718**

log(PR)

0.355**

0.658**

doi:10.1371/journal.pone.0126699.t002

log(BC)

0.315%*

2003 (# Obs. 356) 2011 (# Obs. 332)
log log(Tl) ~ log(CC) log(PR) log(BC) Ilog log(Tl)  log(CC) log(PR) log(BC) log
vn v w7
- log 1 - - - - log 1 - - - -
(T1) (1)
log 0.543** 1 - - - log 0.480** 1 - - -
(CC) (CC)
log  0.414**  0.392** A = = log  0.354** 0.320** A = =
(PR) (PR)
log  0.229** 0.058 0.283** 1 = log  0.261** 0.075 0.209** 1 =
(BC) (BC)
1 log  0.747** 0.733** 0.664** 0.229** 1 log  0.758** 0.651** 0.609** 0.262** 1
v vn

Moreover, since each T(r) where industry i is present has a score of importance, i.e.,

%Z;%, we can identify the GVTs where industry i has the highest importance score. For in-

stance, Fig 5 shows the GVTs where Japan’s transport equipment industry (JPN_15) has the
highest importance score for domestic and foreign roots respectively in 2011.

To examine the tree-based importance measure in a more systematic way, we compare it
with other network centrality measures. Table 2 reports the Pearson correlation coefficients
among them (in logarithm) for the selected years. For a given year, all the coefficients are based
on a common sample among the different measures. It turns out that all the coefficients are
positive and almost all of them are significant at 1% level (The only exceptions are between log
(BC) and log(CC) in 2003 and 2011.). Moreover, S3 Table has the top-20 industries identified
by different measures for the selected years while S4 Table reports the country rankings by
summing up the measures of the industries in the same country.

We find that T1 performs the best in terms of the correlation with VT. Nevertheless, this is
not to say that we should abandon other measures and solely use T1 to understand the impor-
tance of a given industry. After all, we only consider the intermediate value-added flows when
calculating CC, BC, and PR, whereas we also take into account the final demand in the root in-
dustry, i.e., FD(r), when calculating T1, which gives more power to TI in explaining VT. How-
ever, the strong correlation between log(TI) and log(VT) at least shows that the GVTs retain
the essential information of the GVNs and can be viewed as a reasonable simplification of the
latter. That is, TT can be considered as a measure of industry’s position advantage. An industry

holds an advantageous position by either attaching to big industries (i.e., big ‘f/z(;;,) or by affect-
X

Né:)) ). As a result, the better-positioned industries are more

ing big portion of the GVTs (i.e., big
competitive in the world production system and hence are able to extract more value-added
across the GVTs. Moreover, since the component % of TI measures how closely the given in-
dustry is attached to the roots (i.e., bigger );JXT(:)) implies smaller distance to the roots), it can be

considered as a measure of downstreamness. That is, the higher TT is the more downstream the
industry is in the GVTs. Therefore, the strong correlation between log(TI) and log(VT)
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supports Stan Shih’s theory of “smiling curve”, which states that most value-added potentials
are concentrated at the beginning (upstream) and the ending (downstream) parts of the
supply chains.

Discussion

Once we have the GVTs computed for all the industries available in the WIOD, many interest-
ing questions can be proposed and answered. For instance, does a tree with a fixed root grow
over time? This question can be answered by fixing the root industry and examining the GVTs
over time. As an example, Fig 6 shows the evolution of the GVTs rooted at South Korea’s elec-
trical equipment industry (KOR_14) over time. There are obviously many interesting structur-
al changes in this example. The most interesting one we find is the dynamics of China’s cluster
(with light green color) in the GVTs. In 1995, China’s cluster is relatively far from the root in-
dustry and it is connected through China’s textiles industry (CHN_4). In 2003, China’s cluster
moves much closer to the root industry and it is connected through China’s metals industry
(CHN_12), which is only two steps (degrees) away from the root. Finally, in 2011, China’s clus-
ter is attached directly to the root industry and it is connected through China’s electrical equip-
ment industry (CHN_14). Another way to examine the evolution of China’s cluster is to
calculate the TT scores for each China’s industry in the GVTs. Fig 7 shows the TT scores of three
China’s industries (textiles, metals, and electrical equipment) over time in the GVTs in Fig 6. It
is straightforward to see that the importance of China’s textiles industry (CHN_4) has been de-
creasing while the importance of China’s electrical equipment industry (CHN_14) has been in-
creasing according to their TT scores. Therefore, our TI measure well captures the dynamics of
the relative importance of nodes in the GVTs. In this example, the importance of China’s clus-
ter with respect to South Korea’s electrical equipment industry (KOR_14) has been increasing
over time. More importantly, some industrial upgrading must have happened in China so that
the critical connector switches from China’s textiles industry (CHN_4) to its electrical equip-
ment industry (CHN_14).

We can also examine the different structures of the GVTs for the same industry and the
same year but for different countries. Fig 8 compares the transport equipment industry be-
tween Indonesia (IDN_15) and Japan (JPN_15) in 1995. The immediate conclusion from this
comparison is that the transport equipment industry has a more international GVT in Indone-
sia than in Japan. More interestingly, Japan’s industries actually play important roles in Indo-
nesia’s GVT, i.e., Japan’s cluster is attached directly to the root in Indonesia and it is connected
through Japan’s transport equipment industry (This observation coincides with the increased
foreign direct investment from Japan to Indonesia’s car industry in 1995.). In this simple com-
parison, Japan’s transport equipment industry (JPN_15) is clearly more competitive than Indo-
nesia’s transport equipment industry (IDN_15), according to the above TI measure.

In summary, previous studies of the GVCs are mainly interested in knowing how global the
GVCs are rather than how the GVCs look like. To fill the gap in the literature, our paper is the
first attempt to investigate the topological properties of the industry-level GVCs. From a com-
plex networks perspective, we map the World Input-Output Database (WIOD) into the global
value networks (GVNs), where the nodes are the individual industries in different countries
and the edges are the value-added contribution relationships.

Based on the GVN:ss, the global value trees (GVTSs) can be obtained by a breadth-first search
algorithm with the edge direction and a threshold of edge weight. We compute the GVTs for
all the industries available in the WIOD and explore some basic properties of the GVTs. In par-
ticular, we estimate the allometric scaling exponents and verify that the GVTs are topologically
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(a) 1995 (c) 2011

Fig 6. The evolution of the GVTs rooted at South Korea’s electrical equipment industry (KOR_14). Panels (a), (b), and (c) show the GVTs for 1995,
2003, and 2011 respectively. The edge weight threshold is set to 0.019. Different colors of the nodes indicate different countries. The red edges indicate
cross-country relationships while the gray edges indicate domestic relationships. The edge width is proportional to the edge weight, i.e., the share of the
value-added contribution. China’s cluster is with light green color. High-resolution plots for all the panels can be found in S3, S4 and S5 Figs. The codes of
countries and industries can be found in S1 and S2 Tables.

doi:10.1371/journal.pone.0126699.9g006
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Fig 7. The Tl scores of China’s indutries in the GVTs rooted at South Korea’s electrical equipment industry (KOR_14). The T/ scores of three China’s
industries in the GVTs rooted at South Korea’s electrical equipment industry are compared over the years. China’s textiles industry (CHN_2; blue bars) has
the highest T/ score among the three in 1995 and disappears in the GVTs in 2003 and 2011. China’s metals industry (CHN_12; red bars) has the highest T/
score among the three in 2003 but decreases again in 2011. China’s electrical equipment industry (CHN_14; green bars) has increased its T/ score over time
and has the highest T/ score among the three in 2011.

doi:10.1371/journal.pone.0126699.g007

between a star and a chain. We also develop an industry importance measure based on the
GVTs and compare it with other network centrality measures of the industries. We find that
the tree-based measure performs the best in terms of the correlation with the industry total
value-added. Therefore, the GVTs still retain the essential information of the GVNs and can be
viewed as a reasonable simplification of the latter. Finally, we discuss some future applications
of the GVTs such as to examine the evolution of the GVTs for a certain industry and to com-
pare the GVTs of the same industry in different countries.

Supporting Information

S1 Fig. The GVT rooted at Japan’s sales of motor vehicles industry in 2011. The edge weight
threshold is set to 0.019. Different colors of the nodes indicate different countries. The red
edges indicate cross-country relationships while the gray edges indicate domestic relationships.
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Fig 8. The comparison of the transport equipment industry between Indonesia (IDN_15) and Japan (JPN_15) in 1995. In panel (a) and panel (b), the
GVTs are rooted at the tranport equipment industry in Indonesia (IDN_15) and Japan (JPN_15) respectively in 1995. The edge weight threshold is set to
0.019. Different colors of the nodes indicate different countries. The red edges indicate cross-country relationships while the gray edges indicate domestic
relationships. The edge width is proportional to the edge weight, i.e., the share of the value-added contribution. High-resolution plots for both panels can be
found in S6 and S7 Figs. The codes of countries and industries can be found in S1 and S2 Tables.

doi:10.1371/journal.pone.0126699.g008
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The edge width is proportional to the edge weight, i.e., the share of the value-added contribu-
tion. The codes of countries and industries can be found in S1 and S2 Tables.
(PDF)

S2 Fig. The GVT rooted at Russia’s transport equipment industry in 2011. The edge weight
threshold is set to 0.019. Different colors of the nodes indicate different countries. The red
edges indicate cross-country relationships while the gray edges indicate domestic relationships.
The edge width is proportional to the edge weight, i.e., the share of the value-added contribu-
tion. The codes of countries and industries can be found in S1 and S2 Tables.

(PDF)

$3 Fig. The GVT rooted at South Korea’s transport equipment industry in 1995. The edge
weight threshold is set to 0.019. Different colors of the nodes indicate different countries. The
red edges indicate cross-country relationships while the gray edges indicate domestic relation-
ships. The edge width is proportional to the edge weight, i.e., the share of the value-added con-
tribution. The codes of countries and industries can be found in S1 and S2 Tables.

(PDF)

S4 Fig. The GVT rooted at South Korea’s transport equipment industry in 2003. The edge
weight threshold is set to 0.019. Different colors of the nodes indicate different countries. The
red edges indicate cross-country relationships while the gray edges indicate domestic relation-
ships. The edge width is proportional to the edge weight, i.e., the share of the value-added con-
tribution. The codes of countries and industries can be found in S1 and S2 Tables.

(PDF)

S5 Fig. The GVT rooted at South Korea’s transport equipment industry in 2011. The edge
weight threshold is set to 0.019. Different colors of the nodes indicate different countries. The
red edges indicate cross-country relationships while the gray edges indicate domestic relation-
ships. The edge width is proportional to the edge weight, i.e., the share of the value-added con-
tribution. The codes of countries and industries can be found in S1 and S2 Tables.

(PDF)

S6 Fig. The GVT rooted at Japan’s transport equipment industry in 1995. The edge weight
threshold is set to 0.019. Different colors of the nodes indicate different countries. The red
edges indicate cross-country relationships while the gray edges indicate domestic relationships.
The edge width is proportional to the edge weight, i.e., the share of the value-added contribu-
tion. The codes of countries and industries can be found in S1 and S2 Tables.

(PDF)

S7 Fig. The GVT rooted at Indonesia’s transport equipment industry in 1995. The edge
weight threshold is set to 0.019. Different colors of the nodes indicate different countries. The
red edges indicate cross-country relationships while the gray edges indicate domestic relation-
ships. The edge width is proportional to the edge weight, i.e., the share of the value-added con-
tribution. The codes of countries and industries can be found in S1 and S2 Tables.

(PDF)

S1 Table. List of WIOD economies.
(PDF)

S2 Table. List of WIOD industries.
(PDF)
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S3 Table. The top-20 industries identified by the tree-based importance measure and other
network centrality measures for the selected years. T1 is the tree-based importance measure,
CC s the closeness centrality, BC is the betweenness centrality, PR is the PageRank centrality,
VT is the industry total value-added. The codes of countries and industries can be found in S1
and S2 Tables.

(PDF)

$4 Table. The country rankings based on the tree-based importance measure and other net-
work centrality measures for the selected years. T1 is the tree-based importance measure, CC
is the closeness centrality, BC is the betweenness centrality, PR is the PageRank centrality, VT
is the industry total value-added. The codes of countries can be found in S1 Table.

(PDF)
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