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The recent crisis has brought to the fore a crucial question that remains still open: what would be the optimal
architecture of financial systems? We investigate the stability of several benchmark topologies in a simple
default cascading dynamics in bank networks. We analyze the interplay of several crucial drivers, i.e.,
network topology, banks’ capital ratios, market illiquidity, and random vs targeted shocks. We find that, in
general, topology matters only – but substantially – when the market is illiquid. No single topology is always
superior to others. In particular, scale-free networks can be both more robust and more fragile than
homogeneous architectures. This finding has important policy implications. We also apply our
methodology to a comprehensive dataset of an interbank market from 1999 to 2011.

T
he impact of network topology on systemic risk is a central topic of the science of complex networks1,2, not
only because of its theoretical interest, but also because of its many empirical applications, for instance on
infrastructure networks3 and financial systems4.

In a cascading dynamics, some network nodes are assumed to fail at the beginning of the process. Their failures
increase the load (or the level of distress) of the neighboring nodes. When this load at a node exceeds its threshold
(i.e. its individual robustness) the node fails, possibly triggering a cascade. This type of propagation dynamics has
been applied to a variety of social and economic contexts5,6. Several analytical investigations have been carried out
regarding the cascade size (i.e. the number of nodes eventually failing in this process)7, including the effect of
heterogeneity in the thresholds8 and the cases of degree-correlated networks9, clustered networks10, multiplex
networks11. A large body of works has investigated numerous model variants, including: a) the propagation of
fractures in a system of fibers12; b) the case in which the load at every node is the total number of shortest paths
passing through the node13,14; c) the case in which links (rather than nodes) topple15; d) cascades of rewiring of
links leading to self-organized scale-free networks16; e) the sandpile model17, as well as its variant on several
interdependent networks18; f) the percolation process in interdependent networks3. Most of the attention in these
works has focused on the conditions under which the distribution of the cascade size follows a power-law.
Interestingly, many of these variants can be mapped into few classes8.

Epidemic spreading and contagion models can also be seen as a widely studied instance of systemic risk. In the
Susceptible-Infected-Susceptible (SIS) model, scale-free networks behave markedly differently from random
graphs since the epidemic threshold of the infection rate tends to zero for large network size19.

While in most load redistribution models, adding links in the network tends to dilute the effect of a failure on
the neighbors, in contagion models more links rather tend to propagate failures more effectively. In many
situations, including in particular the financial system, both effects are present. On the one hand, links allow
agents to diversify risk. On the other hand, agents with many links tend also to import distress from others20 and
are exposed to amplification effects such as bank runs or trend reinforcement21. Load redistribution and con-
tagion have been studied so far mostly in separate settings. In contrast, they need to be taken into account
simultaneously in order to understand the role of network topology.

Our paper aims to contribute to the question – brought to the fore by the recent crisis and still remaining open –
regarding what would be the optimal architecture of financial systems. More precisely, we want to analyze the
stability of several benchmark topologies under various scenarios. While empirical studies show that financial
networks display heterogenous degree distributions22–24, it is not clear if and how they could be made more robust.
The cascading dynamics we use for our investigation25 is simple enough to allow us to run very extensive
simulations on a variety of scenarios. At the same time, the model is derived from basic facts of banks balance
sheets and overall the approach is very similar in spirit to the state-of-the-art stress-tests carried out at central
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banks26,27. It is also in line with a few works that have studied systemic
risk using cascading dynamics28,29, based on the idea that financial
institutions are connected in a network of liabilities and claims30.

Unlike previous works, we deliver a comprehensive study of the
interplay of the main drivers of systemic cascades: (1) network topo-
logy, (2) individual nodes robustness (i.e. banks’ capital ratios), (3)
relative strength of contagion (which is related to market illiquidity)
and (4) random vs targeted initial shocks.

We find that, in general, topology does not matter when the load
redistribution component of the model is the only one at work. In
contrast, it substantially matters when the contagion component is
present, that is when the market is illiquid. Remarkably, we also find
that it is false that certain topologies are always superior to others. In
particular, scale-free networks can be both more robust and more
fragile than homogeneous architectures. This finding has profound
policy implications. It means that the optimal architecture depends
on the level of market liquidity and suggests that regulators should be
aware of the topology they are confronted with, before making deci-
sions regarding liquidity injections.

As an empirical exercise, we also carry out simulations on a com-
prehensive dataset of an interbank market from 1999 to 2011, which
shows, with some caveats, what would have been the effect of defaults
and liquidity interventions in a range of scenarios regarding capital
ratios and market illiquidity.

Results
We investigate a model that was introduced25 to describe the pro-
pagation of defaults among banks connected in a network of liabilit-
ies. Previous work on such model focused on the analytical
computation of the expected cascade size in regular networks.
Here instead, we carry out extensive numerical studies by varying
all the parameters of the model, including different degree distribu-
tions and different levels of illiquidity.

The model can be summarized as follows. The nodes in the net-
work represent financial institutions (hereafter ‘‘banks’’ or ‘‘agents’’)
and links represent lending relationships (i.e. a bank lends money to
another one), with the convention that the direction of the link is
taken from the lender to the borrower. For the sake of mathematical
tractability, we define the individual financial robustness gi of each
bank as the ratio between the bank equity (i.e., its net capital) and the
amount of its assets invested in the interbank market. When bank i
faces losses due to some defaulting borrowers, its equity and thus its
robustness decreases in proportion to its relative exposure to those
borrowers. We assume that there is no asset recovery in the short run
and that a bank defaults when its robustness drops below zero. This is
a standard approach following from balance-sheet identities28,29.

Notice that in the basic case of a ‘‘liquid market’’ (i.e. when it is easy
for a bank to find buyers for the assets the bank needs to liquidate)
and homogenous link weights, the dynamics of our model can be
mapped into the classic threshold dynamics investigated by5 and
subsequently by6. One difference is that in our model the variance
of the robustness (equivalent to the threshold in5–7) depends itself on
the connectivity (see Methods).

In contrast, when markets are not liquid, then depending on how
many defaults it faces and on how large is its initial robustness, bank i
may have to face an additional decrease of robustness, as described by
Eq.1. In brief, bank i may face an additional loss due to its short term
lenders deciding not to renew their loans (i.e. there is a so-called
‘‘credit run’’ on bank i), forcing bank i to sell some assets below their
market price (a so-called ‘‘fire-selling’’). This effect, which increases
with the illiquidity of the market for assets, is captured by the para-
meter b and emerges in the model from the assumptions on the
behavior of the short term lenders of the bank25 - see more detail
in Methods and in Supplementary Material (SM). From the point of
view of dynamical processes on networks, the credit run constitutes
an amplification mechanism of losses which introduces a contagion

component in the model. The parameters of the model include the
network structure, which remains fixed during the dynamics and the
level b of the market illiquidity. The dynamics depends also on the
initial conditions, i.e. the distribution of initial robustness gi(0)
across the nodes and the nodes that initially fail (i.e. the shocks).
One of the problems in investigating cascading dynamics in net-
works lies in the many different ways of allocating the initial robust-
ness and the shocks. Therefore, we consider the following choices.

. We vary the type of shock (random or targeted)

. We vary the type of correlation between robustness and degree
(no correlation; the higher the degree node the higher the robust-
ness and vice versa).

. We vary the degree distribution (among scale-free, random graph
or regular), in one case imposing a correlation between in-degree
and out-degree. In another case, we impose only the out-degree
and leave the in-degree random and uncorrelated with the out-
degree. In the last case we take the opposite situation (i.e., we
impose the in-degree and leave the out-degree random and
uncorrelated with the in-degree).

. We vary the market illiquidity (the parameter b 5 0 or b . 0)

A combination of the above choices is indicated in the following as
a ‘‘scenario’’. In each scenario then, we study the cascade size as a
function of the average out-degree k in the network and the average
value m of initial individual robustness. The initial robustness gi(0) is
allocated across banks according to a Gaussian probability distri-
bution with mean m and variance s (the latter being a function of
k). Negative values of gi(0) imply that the corresponding banks are in
default at the beginning. We refer to these as endogenous shocks. In
addition, a fraction y0 of banks is additionally set to default. These are
referred to as exogenous shocks.

The results for the cascade size are illustrated in the form of phase
diagrams (see for instance Figure 1a) where each curve in the dia-
gram represents, for a given network topology, the frontier between
large and very small cascades in the space of average out-degree k and
average initial robustness m (see Methods). As one may expect, for a
given value of k, by increasing m we can always move away from the
region of large cascades. Thus, the higher the frontier is the more
‘‘fragile’’ the network is as a whole in the given scenario. This implies
that higher levels of initial robustness (or initial core capital) are
needed in order to prevent the triggering of large cascades. The figure
then allows to see whether a network topology becomes more or less
fragile by increasing the density of links and to compare it with the
behaviour obtained through the use of different topologies.

Similarly, in each scenario, we also study the cascade size as a
function of the market illiquidity b and the average value m of initial
individual robustness. In this case, the average out-degree k is fixed.
The results are also shown in a phase diagram (see for instance
Fig. 3a). The figure allows to see how different network topology
are affected by illiquidity and what level of average core capital
(robustness) would be needed to move into the safe region.
Additionally to the curves, we associate a color with each topology.
For all figures, colored regions represent large cascades outcomes
and white regions represent small or no cascades outcomes.

Random exogenous defaults and random individual robustness.
We start from the most general case, where individual financial
robustness is uncorrelated with the degree and the banks initially
defaulting are randomly chosen. When the market is liquid, i.e. b
5 0, (Fig. 1a) the three network topologies present very similar
frontiers in the phase diagram. The frontier decreases with k
implying less fragility at the system level. Indeed, at a fixed large k
it takes a smaller level of average individual initial robustness m to
move into the safe region of no cascades, i.e. below the frontier. These
results (obtained with simulations of the cascading process on 1000
realizations of networks consisting of 1000 nodes) confirm previous
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findings based on simulations on larger networks7. They confirm also
the results based on the analytical expression of the expected cascade
size that were obtained as fixed point of the recursive expression for
the number of defaulting nodes7,25. Nevertheless, here we explicitly
compare the phase diagram for scale free networks and random
graphs and we emphasize that they are very similar even for
networks of medium size (i.e. N 5 1000). Therefore, the topology
seems not to play a role as long as the basic case of the model is
considered. Notice also that a difference between the phase diagram
of scale free networks and random graphs was reported instead in6,
where the calculation of the cascade size is analytical and based on the
generating function formalism.

In contrast, when the market is illiquid, i.e. b . 0 (Fig. 2a) the
frontier of large cascades depends non monotonically on k. This is
because when k is large, defaults trigger more runs of short-term
lenders and thus more fire-sales and cost for the banks (see
Methods). The result for regular and random topologies is also in
line with previous analytical findings25. Notice that for the scale-free
topology, the frontier of large cascades is systematically higher than
for the other cases, making scale-free networks more fragile. Fig. 3a
shows the phase diagram in the space b, m. As it appears, scale-free
networks are more sensitive to the increase of illiquidity. While the
frontier for regular and random topologies saturate for values around
b 5 0.2, the frontier for scale-free continues to increase, implying a
higher fragility when illiquidity b is high.

Random exogenous defaults and correlation between degree and
individual robustness. The following experiments focus on settings
where the individual financial robustness is correlated to the degree.
Two types of scenario are at stake: The positive one where the agents
with higher degree are endowed with higher financial individual
robustness - The negative one where the agents with higher degree
are endowed with lower financial individual robustness. As results
for liquid asset market do not differ from the general case (Fig. 1a),
they are reported in the SM.

However, when the asset market becomes illiquid, different out-
comes occur. Fig. 2b shows the results for the positive scenario. Even
though all classes provide similar shapes when k increases, the regular
topology becomes the most fragile as its area of large cascades is higher
than the other types of networks. Remarkably, the scale-free topology
has the lowest frontier and, hence, is the least fragile of the three
topologies. This is opposite to the general case in Fig. 2a. As the results
from random networks fall between the two previous classes, it appears

that, under the current positive scenario, the more heterogenous the
structure is, the less fragile the system becomes. In the negative scen-
ario, this statement is reversed and more heterogeneity leads to more
fragility of the system as Fig. 2c shows. In fact, the ranking in terms of
fragility profile is in line with the general case in Fig. 2a, even though
the gap between the three frontiers is higher for low values of k and
diminishes as k increases.

Fig. 3 displays the results of both positive and negative scenarios
for increasing levels of the illiquidity b. In Fig. 3b, the scale-free class
shows to be less sensitive and, thus, less fragile than the two others
once b . 0.1. Nevertheless, when b is higher then 0.3, the frontier for
the regular and random graphs does not increase anymore while the
scale-free continues to increase with b albeit at a slower rate. In
Fig. 3c, the three topologies share the same frontier until a point
around b 5 0.2, beyond which the frontier for regular and random
graphs subsequently stop increasing while the sensitivity of the fron-
tier for the scale-free graph continues to grow.

Targeted exogenous defaults and positive correlation between
degree individual robustness. In the previous scenarios, agents
enduring exogenous shocks were selected randomly. Fig. 1b, Fig. 2d
and Fig. 3d retrieve results of simulations where the exogenous
shocks affect the agents with the largest degree as described in the
Methods. Those figures imply a scenario of positive correlation
between degree and financial individual robustness. Results from
random and negative correlations are reported in the SM. Hence,
here, the shocks are targeted towards the highly connected agents.
The three figures exhibit a sharp difference between scale-free
networks and the more homogenous ones. In fact, the frontiers of
large cascades for the former structure are systematically higher than
the latter. For any state of market liquidity, the fragility of scale-free
networks is exacerbated when hubs are targeted (confirming a
classical observation of complex networks behaviors). This result
holds even in the case of completely liquid assets, which was blind
to the underlying topology under random shocks, and remains valid
for any type of correlation between distributions of individual
financial robustness and degree (see SM).

Empirical case: the e-MID. Finally, we apply our approach to the
empirical data of a specific interbank market. Notice that this is
not a validation of the model, which would require to have
detailed information over time on the financial state of the
banks in order to follow chains of default or distress events

Figure 1 | Frontier of large cascades evolution in an asset liquid market, b 5 0. (a) Random exogenous defaults and random individual robustness s 5

0.3, y0 5 0.03. (b) Targeted exogenous defaults and positive correlation between degree individual robustness s 5 0.3, y0 5 0.04.
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across the network. Our dataset consists of a collection of monthly
snapshots of the network of the so-called e-MID interbank money
market (see Methods). Links represent lending flows among banks
aggregated at the time scale of a month. The data span the period
between January 1999 and December 2011. We analyze the
evolution of frontiers of large cascades for the months of
January of each year between 1999 and 2011 in the space of
average robustness m and market illiquidity b, as it was
previously done in Fig. 3 in the case of synthetic networks.

In order to better interpret our findings, a network analysis of the
structural changes occurring in the e-MID market over the years is
provided in the SM. In essence, it appears that since 1999, essentially
due to a wave of merging and acquisitions in the banking sector, the
interbank market has gradually shrunk in terms of size (i.e., number
of active banks) and density (i.e., number of active edges). It is also
important to notice that the total volume (the aggregate level of
money lent) was generally growing (more then doubled between
2000 and 2007) until the global financial crisis where it has been
markedly reduced: the total volume in January 2009 is almost a sixth
of the total volume in 2007. These networks have been found to
display heterogenous degree distribution and core periphery24,31.

As shown in Fig. 4, the frontiers corresponding to the period
between 1999 and 2008 can be separated from those in the period
between 2009 and 2011. The former curves exhibit a smooth and
linear dependence on illiquidity b. The latter curves are located at
lower values of individual robustness m and tend to be less sensitive
to illiquidity. The years of 2007 and 2008 correspond to the highest
frontier (i.e., to the highest potential fragility) although the trend in
the preceding years is not monotonic. Notice that the year of 2009
corresponds to the lowest frontier, which would imply that large
cascades are more difficult to be triggered.

The period between January 2008 and January 2009 corresponds
to the post-Lehman Brothers era, marked by (i) an important rise of
interbank rates for all major currencies and (ii) a takeover of central
banks to provide liquidity and guarantees to banks. As banks became
more reluctant to engage in credit exposures with other banks and
started trading with the central bank (that is not present in our
dataset), default cascades across the interbank market became
obviously much less likely to be triggered. This explains the sudden
drop of the 2009 frontier with respect to the previous years and its
smaller sensitivity to illiquidity (i.e. smaller slope). After 2009, banks
slowly started to engage again in the interbank market making it

Figure 2 | Frontier of large cascades evolution in an asset illiquid market, b 5 0.4. For convenience, we use cs 5 c1023. (a) Random exogenous defaults

and random individual robustness s 5 0.3, y0 5 0.03, cs 5 0.1. (b) Random exogenous defaults and positive correlation between degree and individual

robustness s 5 0.3, y0 5 0.04, cs 5 0.13. (c) Random exogenous defaults and negative correlation between degree and individual robustness s 5 0.3, y0 5

0.04, cs 5 0.13. (d) Targeted exogenous defaults and positive correlation between degree individual robustness s 5 0.3, y0 5 0.04, cs 5 0.13.
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more sensitive to illiquidity as it is shown by the 2010 and 2011
curves in Figure 4.

These results illustrate how a model like ours can be exploited to
explore the systemic impact of a shock on an interbanking network
for various levels of capital ratios and illiquidity. This can help central
bankers in designing ex-ante capital structure requirements and
liquidity provisioning schemes ex-post. Despite the lack of data avail-
able for parameters like the average financial individual robustness,
we are nevertheless able to identify some features that can be para-
mount in the analysis of action to be taken by regulators.

In particular, the case of 2009 provides insights on the impact of
big provision policy guaranteed by the European Central Bank (ECB)
at that time. Starting from the Fall of 2008, this action along with the
important rise of interbank rates made banks less active in the inter-
bank market. This, in turn, decreased the sensitivity of the market to
illiquidity: in the presence of a smaller system in terms of both size
and density, the amplification phenomenon depicted by our model
loses its impact. In simpler terms, banks lend less to each other, thus
reducing the impact of a credit run on any bank. Finally, we can
imagine that this apparent benefit is not without drawbacks since
the ECB is not recorded in our data: part of the previously captured
risk has been transferred from the e-MID to the ECB. In light of the

results from the synthetic simulations, introducing the ECB would
indeed increase the heterogeneity of the underlying network. The
case would become extreme: the ECB would appear as the node of
last resort to avoid a system collapse.

Discussion
In this paper, we have presented an analysis of the impact that net-
work topology can have on systemic risk. In the context of the recent
financial crisis, this work contributes to the ongoing debate spurring
around the architecture of financial markets and their fragility. In
addition, our results take into consideration the role of capital
requirements on individual institutions. In this respect, we have
carried out a systematic study of the interplay among several drivers
of systemic default cascades: (1) network topology (in terms of dif-
ferent degree distributions), (2) capital ratios across banks, (3)
intensity of contagion (which in our model is related to the level of
market illiquidity) and (4) the type of shock, i.e. random vs targeted.

With respect to the benchmark classes of regular and random
graphs, scale-free networks are characterized by a higher level of
heterogeneity in the number of financial linkages (e.g., in the ability
to lend to and borrow from other agents). This translates into a
stronger market concentration which makes some players becoming

Figure 3 | Frontier of large cascades evolution with fixed average degree, �k~20. For convenience, we use cs 5 c1023. (a) Random exogenous defaults

and random individual robustness, s 5 0.3, y0 5 0.03, cs 5 0.1. (b) Random exogenous defaults and positive correlation between degree and individual

robustness, s 5 0.3, y0 5 0.04, cs 5 0.13. (c) Random exogenous defaults and negative correlation between degree and individual robustness, s 5 0.3, y0 5

0.04, cs 5 0.13. (d) Targeted exogenous defaults and positive correlation between degree individual robustness, s 5 0.3, y0 5 0.04, cs 5 0.13.
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the hubs for others. On the one hand, this architecture could be
thought of as being more efficient (e.g., because hubs play a broker
role) and more robust against shocks (e.g., because hubs are able to
diversify shocks). On the other hand, from classical works on epi-
demic spreading, scale-free networks are also known to be proner to
contagion processes. In the banking context, the existence of big
universal banks serving only as pass-through for many others might
render the system more fragile if these institutions are not individu-
ally robust enough.

Our work shows, for the first time in a systematic fashion, that the
network topology alone does not determine the stability of the sys-
tem. The optimal architecture depends first of all on the level of
market liquidity. We have found that, in liquid markets and under
random shocks, the topology does not matter in contrast with what
one could think ex ante. This result is in line with lessons learned
from previous crises (e.g., the Swedish case32). In contrast, in the case
of illiquid markets, where agents can suffer from additional losses
due to forced fire-sales, topology does play a role. In particular, scale-
free networks show stability profiles markedly different from those of
the two other network classes, in line with many previous results
from the complex networks literature.

However – and importantly – it is far from true that certain topol-
ogies are always superior to others. We have shown that scale-free
networks can be both more robust and more fragile than more
homogeneous architectures, depending on two additional determi-
nants, namely: (1) the allocation of core capital across the balance
sheets of the institutions (i.e., initial endowments) and (2) the cor-
relation between the number of lenders and borrowers (i.e., correla-
tion between in and out degree). The second determinant can be
thought of as a proxy for the liquidity capacity of the system as it
represents the flow balance between the capacity to lend and the
capacity to refinance.

On the one hand, scale-free topology is more robust when the
most active agents (i.e., highest degree level) have the highest indi-
vidual robustness and shocks are not targeted. This is consistent with
the logic of having a better explicit buffer when the institution is more
active in its lending and borrowing activity. On the other hand, scale-
free topology is more fragile when the most active agents turn out to
be the most vulnerable ones and, also, when shocks become targeted.
However, it is worth noticing that even in the general case (i.e., no

correlations and random shocks), scale-free networks are more fra-
gile than regular and random graphs. This is due to the fact that the
presence of hubs increases the chances of contagion between various
parts of the network. It is also due to the fact that, when markets are
illiquid, having a very larger number of borrowers exposes – ceteris
paribus – the hubs to a larger number of defaults that in our model is
the trigger of possible creditors’s runs.

To conclude, in our model the optimal topology depends on the
balance between the dilution effect of load redistribution and the
amplification effect of contagion. Both effects are present in the
cascade dynamics in many contexts, ranging from power grids to
biological contagion, especially when the human factor plays a role.
Therefore, these findings could be relevant for the design of robust
complex networks in several domains.

Methods
Distress channels. We consider two channels of distress propagation in the model.
The first channel consists of the losses due to the defaults of borrowers of a given
bank. The second channel works as follows. If, after suffering from losses due to
the default of some borrowers, the short-term creditors of the bank decide to run
on their loans, the bank has to sell part of its assets in order to honor the loans. In
an illiquid market, i.e. when selling those assets in a short time is not easy, the
bank is forced to sell below the market price (‘‘fire-selling’’) incurring in
additional losses. The second propagation channel is thus an amplification
mechanism for the first channel.

Agents. The agents in the model (also referred to as ‘‘banks’’) represent financial
institutions and they are kept at a minimal level of sophistication. They are described by
their balance-sheet, the list of their counterparties (i.e. borrowers and lenders) and an
update rule of their financial robustness. An individual financial robustness indicator is
devised according to the ratio of an agent’s net worth over its assets invested in the

current market: gi~
Ai{Li

ALN
i

, where Ai and Li are the total assets and liabilities of agent i

and ALN
i is its total lending to other agents. This measure is used as a proxy to describe

the financial status of agent i. The default of an agent occurs once her own equity
becomes negative, an effect which is translated into the condition gi(t) , 0.

The initial value of robustness gi(0) is assigned to each agent according to a
Gaussian probability distribution with mean m and variance s2

r~s2=k where m and s

are exogenous parameters for the experiments. The relationship between sr and the
average number of connection of the system k reflects the assumption that a larger
number of credit counterparties leads to a smaller variance in the return of the credit
portfolio of each agent and, thus, in the individual robustness. As a gaussian distri-
bution of robustness can produce negative values, agents starting with gi(0) , 0 are
considered to be endogenously set in default. In addition, exogenous shocks are
introduced by putting some agents with gi(0) . 0 into default according to an external
parameter y0.

Under the assumption that each agent manages an equally weighted portfolio (i.e.,
the relative exposure to each borrower is equal and amounts to 1/ki, where ki is agent
i’s number of borrowers), Equation 1 describes the law of motion of agents’ financial
robustness:

gi tð Þ~
gi 0ð Þ{ kfi tð Þ

ki
{b, if gi 0ð Þvc

kfi tð Þ
N

gi 0ð Þ{
kfi tð Þ

ki
, otherwise:

8>><
>>:

ð1Þ

In the equation above, N is the total number of agents in the system, while kfi(t) is the
number of agent i’s borrowing counterparties that have defaulted so far according to:

kfi tð Þ~
X
j[Vi

xj tð Þ, ð2Þ

where xj(t) is a binary value that indicates whether agent j has defaulted at time t or at
any time before t and Vi is the set of agent i’s borrowers. The parameter b measures the
cost of the credit run and c is a scale factor for the threshold above which the credit run
occurs. The two latter parameters are homogenous across agents. The equation above
can be derived from balance sheet identities as in25 (see SM for more details).

Financial networks. The market structure is meant as the underlying network of the
financial system where nodes are agents and links are lender-borrower relationships.
Formally, our network is defined as directed and weighted. The direction of a link
goes from the lender to the borrower and the weight of a link corresponds to the
amount in stake from the lender’s perspective.

We consider three different classes of network based on the degree distribution:

1. regular where directed edges between nodes are assigned randomly under the
constraint that all nodes have the same degree k.

Figure 4 | Frontier of large cascades evolution of the e-MID market in the
period between January 1999 and January 2011 under random exogenous
defaults and random individual robustness distirbution. Impact of

illiquidity on the structure of January of each year, s 5 0.3, y0 5 0.04, cs 5

0.13. For convenience, we use cs 5 c1023.
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2. random where the degree distribution follows a Possion distribution:

P kð Þ~ n{1
k

� �
pk 1{pð Þn{1{k

3. scale-free where the degree distribution follows a power-law distribution: P(k) ,
k2a.

Since networks are directed, two different distributions should be distinguished.
The out-degree distribution characterizes the lending behavior, while the in-degree
distribution describes the borrowing behavior. As a consequence, three different cases
are to be investigated: (1) the impact of different out-degree distributions, (2) the
impact of different in-degree distributions and (3) the impact of differently correlated
in and out degree distributions. Here we will focus on the last case while the two other
cases are analyzed in the SM.

In order to generate the aforementioned networks, for each class of topology, we
produce two equal degree sequences with respect to the type of degree distribution.
We then use the Configuration Model for directed networks33 to generate a multi-
graph in which we finally remove all self-loops and multiple edges. Keeping the
average degree very small with respect to the total size (i.e. 0 , k , 40 for networks of
1000 nodes) allows for the resulting degree distributions to be acceptable with respect
to the class of topology they refer to (see SM).

Robustness-degree correlation. In order to also inspect the effect of the potential
correlation between the degree of an agent and its financial robustness, we impose
degree constraints for the individual financial robustness allocation. Two opposite
scenarios are implemented, namely, the positive correlation scenario and the negative
correlation scenario. In the former case, we sort the values of degree and robustness
and we assign them in such a way that the most financially robust agents get the
highest number of counterparties with respect to the overall distribution while the
least robusts agents have the least amounts of counterparties. The latter case considers
the opposite allocation of financial robustness.

Targeted defaults versus random exogenous defaults. Introducing different
structural roles also allows us to inspect how the system reacts to targeted shocks
under the different distributions. Random exogenous defaults refer to fact that as a
result of the allocation of initial robustness according to a gaussian distribution, a
fraction of agents has negative robustness and thus is in default from the
beginning of the simulation. In addition, we also consider a targeted attack
scenario in which we are interested in the effect of targeting the hubs, i.e. the
agents with the largest number of counterparties. This type of test is in line with
standard approaches in complex networks when assessing the resilience of a
network. Thus, a fraction y0 of agents with gi(0) . 0 is chosen to be put into
default at the beginning of the simulation, by selecting the top y0n agents, ordered
by decreasing values of their degree.

Simulations. All synthetic simulations start with a population of 1.000 agents, each
endowed with an individual financial robustness attribute. This attribute value is
obtained from a Gaussian distribution, with mean m and variance s, and is either
assigned randomly or with respect to the agent’s degree, depending on the scenario
implemented. An exogenous shock is then applied to the system by setting agents into
default with respect to the scenario implemented. The amount of agents to be shocked
is set up by the relative parameter y0. Each default can, in turn, provoke the default of
others and the simulation stops when no more default events are observed. At the end,
the size of the cascade, i.e., the total amount of defaulted agents, is recorded. The
motivation for the values of parameters relates to the study implemented in previous
analytical work25 along with some fine tuning in order to improve the salience and the
clarity of the results being displayed. For convenience, we devise the variable cs 5

c1023 and use it as parameter of reference when retrieving the value of parameters for
the simulations.

One simulation generates a network and runs the cascading process on it. Given
a type of topology, we run 1.000 simulations for each pair of values of (b, m) and
(k, m). The mean m of the individual robustness distribution ranges between 0
and 1 with incremental steps of 0.01; the credit run cost b ranges between 0 and
0.5 with incremental steps of 0.01; k, the average out-degree of the nodes ranges
between 5 and 40 with incremental steps of 1. Hence, to obtain each of the
reported figures for the synthetic networks, we run between 10 3 106 and 15 3

106 simulations. In the empirical case, we run more then 66 3 106 simulations.
For each pair of values of (b, m) and (k, m), we record the average cascade size. In
order to provide deviation estimations, typical standard errors from the results are
reported in the SM. Additionally, we also report, in the SM, results when varying
the size of the system.

We then determine the average transition curve, that is, the curve representing the
frontier in the parameter space between the region where large cascades occur and the
region where small cascades occur. In order to do so, we define a set of thresholds H.
Let us take the case where the x-axis is the average degree k. For a given threshold hi g
H, we compute m�hik

for each k value, as follows:

m�hik
~ min m sj m,kð Þƒhið Þ ð3Þ

where s(m, k) retrieves the value of the cascade size for the couple (m, k) relative to the
size of the system. As an example: if h1 5 0.9, then m�h1 k for a given k will represent
the minimum mean robustness required for the system to avoid cascades that will

wipe out more the 90% of the banks. We then compute the average minimum mean,
m�k defined as:

m�k~

P
hi

m�hik

nH
, ð4Þ

where nH is the number of thresholds. The average transition curve is the set of m�k
given a range of k and a set of thresholds H. The same process applies when the x-axis
is the credit run cost b by replacing k with b in Eq. 3 and Eq. 4. For the synthetic
results, we used H 5 {0.5, 0.6, 0.7, 0.8, 0.9}. For the empirical data, for few pairs (b, m)
it can happen that there is no cascades size higher then 0.8 or 0.9, due to the fact the
network gets disconnected for certain years (e.g., 2009, see SM). Therefore, in this
case we used the set H 5 {0.5, 0.6, 0.7}.

Technically it is questionable to call a network of 1000 nodes a scale-free graph.
However, real world interbank networks in most countries consist of no more than a
few hundred nodes. The theoretical question that we address in the paper is whether it
would be a good idea to have an interbank market arranged like a scale-free graph in
the sense of having a power-law or at least a fat-tailed degree distribution. In this
perspective, we choose to generate networks with a mechanism that, while in the limit
of large N would produce a true scale-free graph, for a size of 1000 or less is affected by
size effects on the degree distribution. One should also bear in mind that for each
choice of the parameter values we consider 1000 realizations of the network, thus
accounting for variations across realizations that might result from the finite size.
Finally, the size of 1000 nodes was the largest size for which it is feasible to conduct a
systematic study of the phase diagram of the cascade size. We were using a computer
cluster of 1084 CPU nodes running between 2.1 and 2.4 Ghz and arranged in 4 racks
with memory ranging between 4 and 64 GB Ram. Each simulation (figure) would
take between 20 and 30 minutes to run. Considering that we explore dozens of
scenarios and that there is queuing system to use such a cluster, every experimental
session requires several days.

Empirical dataset of the e-MID interbank market. For the simulations on empirical
data, we use a collection of daily snapshots of the Italian interbank money market
originally provided by the Italian electronic Market for Inter-bank Deposits from
January 1999 to December 2011. The data is maintained by e-MID S.p.A, Società
Interbancaria per l’Automazione, Milan, Italy and we refer to it as e-MID in the text.
After aggregating the lending relations on a monthly basis, we extract the structures of
interaction between banks. Hence, we use a collection of empirical networks
describing the chronological evolution of the successive topologies that the Italian
interbank money market went through from the beginning of 1999 up to the end of
2011.
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