
Automotive and Finance Case Study in CSCC
Car Break and Credit Request Scenarios

Luı́s Caires João Costa Seco Hugo Torres Vieira

July 2, 2007

Abstract

We describe the encoding of the Car Break scenario of the SENSORIA Automotive case
study and of the Credit Request scenario of the SENSORIA Finance case study using the Con-
versation Calculus (CSCC). These scenarios consist of an orchestration of services and service
clients which are typefully encoded here in a modular way. Namely the latter scenario consists
of a workflow involving different actors: a client willing to submit a credit request, a bank em-
ployee, and its supervisor. We show how the workflow is well described in the type assigned to
the processes implementing it. We first informally describe the CSCC calculus, and then show
how the two scenarios can be encoded using the CSCC calculus and the corresponding typing.

1 Introduction

This report documents the developments of the Conversation Calculus (CSCC) [9] when applied
to the case studies of the SENSORIA project [1]. We describe the encoding of the Car Break and
Credit Request scenarios of the SENSORIA case studies Automotive [4] and Finance [3].

These scenarios consist of an orchestration of services and service clients which are typefully
encoded here in a modular way. Namely the latter scenario consists of a workflow involving differ-
ent actors: a client willing to submit a credit request, a bank employee, and its supervisor. We show
how the workflow is well described in the type assigned to the processes implementing it. We first
informally present the CSCC calculus, and then show how the two scenarios can be encoded using
the CSCC calculus and the corresponding typing.

Section 2 informally presents CSCC, Section 3 presents encodings for the two case studies
highlighting different capabilities of the calculus, and the report follows, in Section 4, by discussing
some typing issues of CSCC, using the running examples. We end the document with some con-
cluding remarks, in Section 5, about the kinds of systems that can be typefully expressed by the
calculus.

2 CSCC

We briefly present the motivation, structure, and informal semantics of the Conversation Calculus.
The Conversation Calculus integrates a small set of abstractions for expressing and analyzing ser-
vice based systems [9]. It focuses on the aspects of distribution, process delegation, communication
and context sensitiveness, and loose coupling, believed to be essential to the service oriented com-
putational model. Distinguishing aspects of our model are the adoption of a very simple, context

1

P,Q ::= stop
| P | Q
| (new n)P
| out direction m(v1, . . . ,vn).P
| in direction m(x1, . . . ,xn).P
| !P

| n role [P]
| here(x).P
| instance n role s⇐ P
| def s⇒ P

| try P catch Q
| throw.P

role ::= J |I
direction ::= � | � | �

Figure 1: The Calculus

sensitive, message passing, local communication mechanism, and a novel mechanism for handling
exceptional behavior. Technically, we proceed by extending a fragment of the π-calculus; the re-
sulting calculus may nevertheless be seen as a possible evolution of the preliminary SCC presented
in [5]. While focusing on the notion of process delegation, first class conversation contexts, and the
loosely coupled message passing mechanism, the Conversation Calculus distinguishes itself from
other descendants of SCC [12, 6], which explore different interaction mechanisms. We informally
describe the several primitives of the Conversation Calculus. The abstract syntax of the calculus is
given in Figure 1, where we assume given a set Λ of names (m,n,s).

Context A context is a delimited container where closely related computation and communica-
tion happen. In more general terms, a context is a general abstraction that may be used to model
locations (e.g., a unit of distribution), service endpoints (e.g., a delimited scope of communication),
contexts of conversation (e.g., a correlated set of interacting partners), and other forms of local-
ized interaction. Contexts encapsulate functionality and appear to the surrounding environment as
a plain local process, thus allowing system descriptions to abstract away from particular implemen-
tation details. Any context participates in one of two possible dual roles (initiator J and responder
I).

role ::=J |I
ContextName role [Process]

For example, n J [P] represents a process P inside the initiator endpoint of the context n.

Service publication and instantiation A distinguishing feature of service oriented computing is
the emphasis on the remote delegation of interactive processes, rather than on the remote delegation

2

of individual operations. We consider service instantiation as a higher level mechanism, allowing
a service client to delegate to a remote server not just a single operation or task, but the execution
of a whole interactive activity (technically, a process). By instantiating a service, a client is able
to incorporate a new process in its workflow (a dynamic stateful interactive entity) that, although
executing remotely in the server environment, appears to the client as a local subsystem.

Any context may publish one or more service definitions. Service definitions are located in con-
texts – seen as sites. Published services may be instantiated upon clients request, resulting in the
creation of a new context of conversation composed by two endpoints (initiator and responder). We
must differentiate service instantiation, that creates new process delegates in the service provider
and client sites, from service invocation that is modeled by some communication mechanism, more
concretely, message passing. The interaction of these primitives with contexts and communica-
tion abstractions is inspired on, but differs from, the basic “session” mechanism of other session
based service calculi, and allows contexts to be used with great flexibility (for example, to model
multi-party interactions, abstract correlation, and session delegation). Service definition and service
instantiation are thus written

def ServiceName⇒ ServiceBody
instance ServiceProvider role ServiceName⇐ClientProtocol

Context awareness A process executing in a given context should be able to dynamically access
the identity of such context, in order to correlate its behavior with other partners, and act accord-
ingly. We thus introduce the primitive

here(x).Process

Communication Interaction between subsystems (e.g., contexts, endpoints, sites) is realized by
message passing. However communication is only allowed between “adjacent” contexts. The pos-
sible communication paths are: between two dual endpoints (other, written �), between a context
and its enclosing context (up, written �), and internally to a context (here, written �).

direction ::=� | � | �
in direction Message(x, ...,x).Process
out direction Message(v, ...,v).Process

Exception handling Exceptional behavior, in particular fault signaling, fault detection, and re-
source disposal, are aspects orthogonal to the existing communication mechanisms, for which spe-
cific abstractions are provided.

try GuardedProcess catch HandlerProcess
throw SignalingProcess

3 Examples

We here illustrate CSCC by means of two examples inspired by the SENSORIA Automotive and
Finance case studies [4, 3].

We first present the Car Break scenario of the SENSORIA Automotive case study, where a set
of distributed services collaborate to assist a driver of a malfunctioning car. It involves a signal sent

3

ServicePlanner I [
defCarBreak⇒
in � LocalDiagnosis(data).in � GPSLoc(myLoc).

(instance RepairShop I BookRepair⇐
out � BookRepairOperation().
in � BookingAccepted(shopLoc,bookingRe f).

(out � RepairShopBookingOK(shopLoc,bookingRe f)
|
out � LocalDiagnosis(data))

|
in � RepairShopBookingOK(shopLoc,bookingRe f).

(instanceCarRental I Booking⇐
out � RequestCar(shopLoc).
in � CarAvailable(carId).
out � CarRentalOK(carId)
|
instance TowTruck I Order⇐
out � CallTruck(myLoc,shopLoc).
in � TruckAvailable().
out � TowTruckOK()
|
in � TowTruckOk().in � CarRentalOK(carId).out � ServicePlanCompleted()))

]

Figure 2: Car Break Scenario (Implementation I)

by the car’s onboard computer asking for assistance, the booking of a tow-truck, the booking of a
repair shop, and the booking of a car rental.

We also illustrate in this section the encoding of the general workflow application of the Credit
Request scenario of the SENSORIA Finance case study. This example involves the orchestrated
interaction of three participants. A client of a bank, an employee that reviews the credit request
application and his supervisor that must agree with his judgment before the credit is given. The
challenge of encoding this scenario in the Finance case study is to represent the workflow as a
centralized and well known (and typefull) entity while maintaining the loosely-coupled structure of
the whole system.

3.1 Automotive Case Study

Briefly, the Car Break scenario of the SENSORIA Automotive case study describes the role of a
car’s service planner on an onboard computer that, activated by a car failure, initiates a process
to discover and automatically book a repair shop, call a tow truck to take the car from its current
location to the assigned repair shop, and rent a car to be delivered to the driver either at the shop.

In order to informally introduce the calculus we first present a possible specification of the Car
Break scenario in Figure 2 that assumes that all goes well and no compensations are needed. We

4

define a context ServicePlanner defining service CarBreak.

ServicePlanner I [defCarBreak⇒ ·· ·]

This service is instantiated by the running diagnosis process in the car. Two dual occurrences of
a new context are then created to represent the two endpoints of the service instance. The service
starts running by receiving from the initiator end-point, held by the running diagnosis process, some
sensor data and the location of the car.

· · ·in � LocalDiagnosis(data).in � GPSLoc(myLoc). · · ·

It then instantiates a booking service in the repair shop context and interacts by sending message
BookRepairOperation

instance RepairShop I BookRepair⇐ out � BookRepairOperation(). · · ·

Upon receiving the response (message BookingAccepted) follows by posting the message RepairShopBookingOk
in the enclosing context. Notice that the instantiation of the repair shop service creates an endpoint
(a context) within the server endpoint of service CarBreak.

instance RepairShop I BookRepair⇐ ···
out � RepairShopBookingOK(shopLoc,bookingRe f). · · ·

|
in � RepairShopBookingOK(shopLoc,bookingRe f). · · ·

The CarBreak service then proceeds to concurrently instantiate both the booking service of the
rental car and the call service of the tow truck. The location of the repair shop is passed both to
the tow truck service and to the car rental service. The service ends when both confirmations are
received.

We present a different specification of the same scenario in Figure 3, with the aim of illustrat-
ing a more loosely coupled design, and the important role of the local message passing interaction
mechanism in achieving such a design. A service based computation usually consists in (1) a collec-
tion of remote partner service instances, to which functionality is to be delegated, (2) some locally
implemented processes, and (3) one or more control (or orchestration) processes. The flexibility
and openness of a service based design, or at least an aimed feature, results from the loose coupling
between these various ingredients. For instance, an orchestration describing a “business process”,
should be specified in a quite independent way of the particular subsidiary service instances used,
paving the way for dynamic binding and dynamic discovery of partner service providers. In the or-
chestration language WSBPEL [10], loose coupling to external services is enforced, to some extent,
by the separate declaration of “partner links” and “partner roles” in processes. In the modeling lan-
guage SRML [11], the binding between service providers and clients is mediated by “wires”, which
describe plugging constraints between otherwise hard to match interfaces. The CSCC idiom we
next describe represents such specification styles in an abstract way.

To implement this loosely-coupled design variant, we separate the remote interfaces from the or-
chestration code. Notice the separate introduction of three service instances (BookRepair, Booking,
and Order), while the control flow is assured by the orchestration code. All interactions between
the orchestration and the local endpoints of the service instances are loosely coupled, and realized

5

ServicePlanner I [
defCarBreak⇒
instance RepairShop I BookRepair⇐
in � BookRepairShop(data).
out � BookRepairOperation().
in � BookingAccepted(shopLoc,bookingRe f).

(out � RepairShopBookingOK(shopLoc,bookingRe f)
|
out � LocalDiagnosis(data))

|
instanceCarRental I Booking⇐
in � BookCarRental(loc).
out � RequestCar(loc).
in � CarAvailable(carId).
out � CarRentalOK(carId)
|
instance TowTruck I Order⇐
in � CallTowTruck(depLoc,destLoc).
out � CallTruck(depLoc,destLoc).
in � TruckAvailable().
out � TowTruckOK()
|
in � LocalDiagnosis(data).in � GPSLoc(myLoc).

(out � BookRepairShop(data)
|
in � RepairShopBookingOK(shopLoc,bookingRe f).

(out � BookCarRental(shopLoc)
|
out � GetTowTruck(myLoc,shopLoc)
|
in � TowTruckOk().in � CarRentalOK(carId).out � ServicePlanCompleted())

]

Figure 3: Car Break Scenario (Implementation II – Loosely Coupled Design)

6

through messages exchanged in the context of each particular CarBreak service instance. The body
of this service definition follows the general pattern

instance Partner1 I Service1⇐Wire1 |
· · ·
instance Partnern I Servicen⇐Wiren |
OrchestrationProcess

where OrchestrationProcess is a process communicating with the several instances via messages,
and the Wirei descriptions adapt the remote endpoint functionalities (or protocols) to the particular
roles performed by the instances in this local process.

3.2 Finance Case Study

The Credit Request of the SENSORIA Finance case study is a simple case of a service based system
with a well defined workflow involving three client participants. This differs from the previous
example in the sense that, beyond an orchestration of services, there is also the need to orchestrate
clients invoking services. The ”state” of the workflow must be maintained by the system to allow
clients to interact in a correct way.

The evolution of a credit request application is described in [2] as follows:

Step 1: Customer starts credit request application in the credit portal and uploads his data.

The customer invokes the credit portal of his bank in the browser. After the login process
(...). Additionally he must insert further data like security values. At finalization (...) these
information will be checked regarding to consistency and to validation. For validating (...) a
web service will be invoked. If the verification was positive the data will be uploaded to the
bank, in negative case the customer has to update his information.

Step 2: Bank employee reviews credit request application of the customer

The bank employee invokes the credit portal in the browser. After the login process he navigates
to the task list which also includes such credit requests. (...) he proceeds to evaluate the
securities. (...) The rating is computed in the same way. Now the bank employee can provide
an offer to the customer or he can reject the credit request application.

Step 3a: Bank credit supervisor reviews the offer

(...) The bank employee supervisor invokes the credit portal in the browser. (...) After the
selection of the specific confirmation request he is able to accept or reject that offer. If the
supervisor rejects it, the customer will get a message and the process will be finished here. If
he accepts it, an offer will be sent out to the customer. (...)

Step 3b: Customer may change his data after the rejection of the credit request

If the employee has decided against an offer to the customer. Now the customer can log into
the credit portal and is able to update his request information. (...)

To avoid cluttering this report with many accessory code, we start by considering a simplified setting
of the case study, where we only admit one credit request at a time and thus, one client, one bank
employee, and one supervisor. We then illustrate a case where many requests may be processed
concurrently by using the correlation mechanism present in CSCC (local communication within a
shared conversation context). For the sake of simplicity and without loss of generality we do not

7

Bank I [def DataValidation⇒ ··· | def RateCalculator⇒ ··· | def RiskAssessment⇒ ···]
FinanceCreditPortal I [

def CreditRequest⇒ in� Login(userId).in� Request(data).
out � ValidateUserData(userId,data).

in � DataIsInvalid().out� InvalidDataNoti f ication()
⊕
in � DataIsValid().out � RequestForEvaluation(userId,data).

in � RequestApproved(userId,data,rate).out� RequestApproved()
⊕
in � RequestDenied(userId).out� RequestRe jected()

def ReviewApplication⇒ in� Login(clerkId).in � RequestForEvaluation(userId,data).
out � CalculateRate(data)
|
out � AssessRisk(userId,data)
|
in � Risk().out � RequestDenied(userId)
⊕
in � NoRisk().in � Rate(rate).out� ShowRequest(userId,data,rate).

in� Pass().out � RequestForApproval(userId,data,rate)
⊕
in� Deny().out � RequestDenied(userId)

def AuthorizeCredit⇒ in� Login(managerId).in � RequestForApproval(userId,data,rate).
out� ShowRequestForApproval(userId,data,rate).

in� Accept().out � RequestApproved(userId,data,rate)
⊕
in� Re ject().out � RequestDenied(userId))

instance Bank I RiskAssessment⇐ in � AssessRisk(userId,data).out� Request(userId,data).
in� Sa f e().out � NoRisk()
⊕
in� UnSa f e().out � Risk()

instance Bank I RateCalculator⇐ in � CalculateRate(data).out� CalculateRate(data).
in� Rate(rate).out � Rate(rate)

instance Bank I DataValidation⇐ in � ValidateUserData(userId,data).
out� DataValidationRequest(userId,data).

in� DataIsValid().out � DataIsValid()
⊕
in� DataIsInvalid().out � DataIsInvalid()

]

Figure 4: The Credit Request Scenario (Implementation I)

8

treat the updating of data by the client after a rejection and we assume that the user’s session is
active during the whole workflow.

The general architecture of the example depicted in Figure 4 comprises web-services in two dif-
ferent portals represented here by contexts Bank and FinanceCreditPortal. Context Bank contains
auxiliary services, external to the credit request scenario, used to perform tasks such as validation
of user data, computation of interest rates or assessment of risk regarding a credit request. Context
FinanceCreditPortal contains services and processes that implement the credit request workflow.
We follow the pattern described in the previous section to achieve a loosely-coupled structure.

FinanceCreditPortal I [
def CreditRequest⇒ ···
def ReviewApplication⇒ ···
def AuthorizeCredit⇒ ···
instance Bank I RiskAssessment⇐ ·· ·
instance Bank I RateCalculator⇐ ···
instance Bank I DataValidation⇐ ···

]

Besides containing three service instances bound to the services in the Bank portal with the cor-
responding wiring processes, context FinanceCreditPortal also defines the following services:
CreditRequest which is invoked by a client when applying for a credit; ReviewApplication which is
invoked by an employee of the bank in-charge of reviewing credit applications; and AuthorizeCredit
which is invoked by an employee with higher responsibility in the bank to authorize (or reject) the
proposal made in response to the already reviewed applications, thus ending the workflow for a
credit request.

The first step of the credit request workflow starts with the client accessing the web-banking
portal and instantiating service CreditRequest. Once instantiated, the protocol is triggered by a
message from the client’s endpoint (Login) carrying the user identification and proceeds by re-
ceiving a message (Request) with the request data. The protocol described in section 3.2 contin-
ues by using service DataValidation, defined in context Bank. This step is triggered by a mes-
sage exchange between the CreditRequest instance and the endpoint of service DataValidation in
context FinanceCreditPortal. The exchange uses local communication in the enclosing context
FinanceCreditPortal.

def CreditRequest⇒ ···out � ValidateUserData(userId,data). · · ·
|
instance Bank I DataValidation⇐ in � ValidateUserData(userId,data). · · ·

The instance of service DataValidation then exchanges information with the bank’s endpoint (using
the � direction) and replies either with DataIsValid or DataIsInvalid, again using local communi-
cation in context FinanceCreditPortal. Depending on the input, the service instance CreditRequest
proceeds by notifying the user of a preliminary rejection due to invalid data (message InvalidDataNoti f ication),
or registers the request for evaluation by a bank employee by means of a message RequestForEvaluation
posted in the FinanceCreditPortal context. The second step of the workflow is triggered by the
bank employee when starting a session in the FinanceCreditPortal portal and instantiating service
ReviewApplication. The message regarding the pending request is received and the role of the bank

9

employee proceeds.

def CreditRequest⇒ ···out � RequestForEvaluation(userId,data). · · ·
|
def ReviewApplication⇒ in � Login(clerkId).

in � RequestForEvaluation(userId,data). · · ·

The next step in this role is to concurrently invoke the remote computations for risk assessment
and rate calculation (services RiskAssessment and RateCalculator in Bank portal already bound
with the FinanceCreditPortal portal). If no risk is detected, (message NoRisk), the request data
and rate are shown to the employee (in the browser, on the other endpoint of service instance
ReviewApplication). Upon reply from the employee, messages Pass or Deny, the request evolves
to the next step for the final approval or is rejected. This is once more achieved by posting a message
in context FinanceCreditPortal (message RequestForApproval or RequestDenied).

The third step of the protocol follows when the credit supervisor logs into the system and the
request waiting for approval is shown to him in the browser. Upon a reply sent from his endpoint,
the credit is either approved (message RequestApproved) or denied (message RequestDenied). The
workflow is then completed by the CreditRequest instance which is waiting for one of these mes-
sages to continue. In closing, the outcome of the process is sent to the client’s endpoint and thus
shown in the browser where the user is logged in.

This example illustrates well the expressiveness of the calculus regarding orchestration of pro-
cesses and web-services. In this paricular case, all components are orchestrated by a service in-
stance, notice that the workflow associated with a credit request is entirely controlled by an instance
of service CreditRequest by means of messages exchanged locally to context FinanceCreditPortal.
In section 4 we show that the typing of such a process is revealing of the expected workflow. This
example also shows how remote service instances act as local processes in a loosely coupled way.
If, for instance, we replace the remote computation performed by service RiskAssessment in Bank
portal by a local process inside FinanceCreditPortal portal, the remaining implementation of the
credit request workflow would remain untouched. The orchestrating process shown in Figure 4 is
intentionally decoupled from the two-step authorization procedure consisting of the evaluation and
approval states, the CreditRequest protocol is independent of that particular intermediate step.

Using this programming idiom we cannot distinguish concurrent credit requests. We next im-
plement a “conversation“ based service using contexts as correlation mechanism. This avoids mix-
ing messages in context FinanceCreditPortal which could be related to different requests.

3.3 Correlation Based Communication

We rewrite the credit request example in Figure 5 taking advantage of a correlation mechanism
established using the context awareness primitive.

In service CreditRequest, the context denoted by variable thisConversation is the endpoint cre-
ated when the service is instantiated. That name is passed in the request for validation of user
data. This means that the answer to the validation request, sent by the instance bound to service
DataValidation in context Bank, can be posted directly into thisConversation context. Notice that
the direction of the input of messages DataIsValid and DataIsInvalid in CreditRequest implemen-

10

FinanceCreditPortal I [
def CreditRequest⇒ in� Login(userId).in� Request(data).

here(thisConversation).
out � ValidateUserData(thisConversation,userId,data).

in � DataIsInvalid().out� InvalidDataNoti f ication()
⊕
in � DataIsValid().out � RequestForEvaluation(thisConversation,userId,data).

in � RequestApproved(userId,data,rate).out� RequestApproved()
⊕
in � RequestDenied(userId).out� RequestRe jected()

def ReviewApplication⇒ in� Login(clerkId).
in � RequestForEvaluation(clientConversation,userId,data).
here(thisConversation).
out � CalculateRate(thisConversation,data)
|
out � AssessRisk(thisConversation,userId,data)
|
in � Risk().clientConversation I [out � RequestDenied(userId)]
⊕
in � NoRisk().in � Rate(rate).out� ShowRequest(userId,data,rate).

in� Pass().out � RequestForApproval(clientConversation,userId,data,rate)
⊕
in� Deny().clientConversation I [out � RequestDenied(userId)]

def AuthorizeCredit⇒ in� Login(managerId).
in � RequestForApproval(clientConversation,userId,data,rate).
out� ShowRequestForApproval(userId,data,rate).

in� Accept().clientConversation I [out � RequestApproved(userId,data,rate)]
⊕
in� Re ject().clientConversation I [out � RequestDenied(userId)]

instance Bank I RiskAssessment⇐ in � AssessRisk(conversation,userId,data). · · ·

instance Bank I RateCalculator⇐ in � CalculateRate(conversation,data). · · ·

instance Bank I DataValidation⇐ in � ValidateUserData(conversation,userId,data).
out� DataValidationRequest(userId,data).

in� DataIsValid().conversation I [out � DataIsValid()]
⊕
in� DataIsInvalid().conversation I [out � DataIsInvalid()]

]

Figure 5: The Credit Request Scenario (Correlation Based Implementation)

11

tation changed from � in the previous example to � in this one.

def CreditRequest⇒ ···
here(thisConversation).
out � ValidateUserData(thisConversation,userId,data).

in � DataIsInvalid(). · · ·
⊕
in � DataIsValid(). · · ·

|
instance Bank I DataValidation⇐

in � ValidateUserData(conversation,userId,data).
· · ·
· · · .conversation I [out � DataIsValid()]
⊕
·· · .conversation I [out � DataIsInvalid()]

The same happens with message RequestForEvaluation which also carries the conversation han-
dler, allowing the response to be posted back in the context of service instance of CreditRequest
(using local communication) by both ReviewApplication and AuthorizeCredit service instances.
Both syntactic contexts (in the CreditRequest and ReviewApplication for instance) are semanti-
cally correlated by the context name and thus may exchange locally posted messages.

4 Typing Services and Processes

Conversation contexts are natural candidates to be subject to interesting typing disciplines, both
in terms of the message interchange patterns that may happen at its border (along the lines of
behavioral or session types), and in terms of the resources they use or expose to external clients.
We would thus expect types (or logical formulas) specifying various properties of interfaces, of
service contracts, of endpoint session protocols, of security policies, of resource usage, and of
service level agreements, to be in general assigned to context boundaries. Enforcing boundaries
between subsystems is also instrumental to achieve loose coupling of systems. Along these lines,
we are developing a compositional type system for CSCC, based on (spatial-) behavioral types,
along the lines of [8]. An interesting challenge addressed by our type system is the verification of
the delegation of conversation references according to quite strict usage disciplines, involving the
context-awareness primitive. This feature allows the static verification of systems where several
(more that two) partners join and leave dynamically a conversation (represented by a context) in a
coordinated way. For a simple example, consider the code fragment from the Car Repair scenario
of the Automotive case study (Figure 3)

instance RepairShop I BookRepair⇐
in � BookRepairShop(data).
out � BookRepairOperation().
in � BookingAccepted(shopLoc,bookingRe f).

(out � RepairShopBookingOK(shopLoc,bookingRe f)
|
out � LocalDiagnosis(data))

12

this code fragment is assigned type

! ↓ BookRepairShop(DataType); ? ↓ RepairShopBookingOk(LocType,Re f Type)

in a type environment of the form

RepairShop : I [
BookRepair(? � BookRepairOperation();

! � BookingAccepted(LocType,Re f Type);
?← LocalDiagnosis(DataType))]

Notice that the type assigned to the service instance is a behavioral type, describing the sequence of
messages exchanged at the context border, while the type assigned to service BookRepair describes
the protocol of the conversations with its clients. The type assigned to context RepairShop specifies
the interactions that take place in the context and its published services.

Consider the code fragment from the Credit Request scenario of the Finance case study (Fig-
ure 4),

def CreditRequest⇒ in � Login(userId).in � Request(data).
out � ValidateUserData(userId,data).

in � DataIsInvalid().out � InvalidDataNoti f ication()
⊕
in � DataIsValid().out � RequestForEvaluation(userId,data).

in � RequestApproved(userId,data,rate).out � RequestApproved()
⊕
in � RequestDenied(userId).out � RequestRe jected()

that implements the CreditRequest service which is assigned type

CreditRequest(! � Login(IdType); ! � Request(DataType);
(? � InvalidDataNoti f ication() and ? � RequestApproved() and ? � RequestRe jected()))

describing the behavior of its clients. In this case the user endpoint is expected to emit a message
Login and then a message Request and then wait for the emission of either a message InvalidDataNoti f ication,
RequestApproved, or RequestRe jected.

The instance created inside context FinanceCreditPortal expects the enclosing context to have
the following behavior

? � ValidateUserData(IdType,DataType);
(! � DataIsInvalid()
or
! � DataIsValid(); ?RequestForEvaluation(IdType,DataType);

(!RequestApproved(IdType) or !RequestRe jected(IdType)))

We can see here that the control over the credit request workflow is clearly specified by the type of
an instance of service CreditRequest. The CrediRequest server endpoint is a process that expects
the enclosing context to accept data to be validated (by another local process), and that the request
is accepted for evaluation, and that, in sequence, the context is capable of giving an answer (either
RequestApproved or RequestRe jected).

13

We can also see the loose-coupling between this instance and the remaining components. The
concrete implementation of CreditRequest service is independent on how the remaining compu-
tations are achieved. The whole evaluation and approval process can be made either by a single
process or by a set of processes and external services as in this case.

5 Concluding remarks

We have briefly presented the Conversation Calculus, a model for service oriented computation.
We have illustrated the calculus by using it to encode two examples taken from the SENSORIA
case studies using the Conversation Calculus. The model underlying the calculus is focused on
the essential aspects of distribution, process delegation, communication, context sensitiveness, and
loose coupling.

The examples we have shown here illustrate well the usage of the novel primitives in the orches-
tration of several processes in a loosely-coupled style where service instances act as local processes
both in the client and the server side. The novel communication primitives are of key importance
to achieve such designs. We used, in the case of the Finance case study, a single process as the
control point of a workflow. We have also shown the usefulness of the context awareness operator
in isolating and correlating the communication among processes involved in a single workflow.

We have presented a glimpse of the typing of processes and contexts which describe the be-
havior of the processes in terms of message interchange patterns that may happen at their context
borders.

References

[1] Sensoria project. http://www.sensoria-ist.eu/.

[2] Sensoria S&N Finance Case Study Definition and Requirements, Sensoria Report.
http://www.pst.ifi.lmu.de:8080/FinanceCaseStudy, 2006.

[3] Michel Alessandrini. Finance Case Study - Scenario descriptions. Technical Report 2007-
SandN-1, S&N AG, April 2007.

[4] M. Banci, A. Fantechi, S. Giannini, and F. Santanni. Automotive Case Study: a UML De-
scription Scenario. Technical report, Sensoria, 2006.

[5] M. Boreale, R. Bruni, L. Caires, R. De Nicola, I. Lanese, M. Loreti, F. Martins, U. Montanari,
A. Ravara, D. Sangiorgi, V. Vasconcelos, and G. Zavattaro. SCC: a Service Centered Calculus.
In Proceedings of WS-FM 2006, 3rd International Workshop on Web Services and Formal
Methods, Lecture Notes in Computer Science. Springer-Verlag, 2006.

[6] Michele Boreale, Roberto Bruni, Rocco De Nicola, and Michele Loreti. A service oriented
process calculus with sessioning and pipelining. Technical report, 2007. Draft.

[7] M. J. Butler, C. A. R. Hoare, and C. Ferreira. A trace semantics for long-running transactions.
In A. E. Abdallah, C. B. Jones, and J. W. Sanders, editors, 25 Years Communicating Sequential
Processes, volume 3525 of Lecture Notes in Computer Science, pages 133–150. Springer,
2004.

14

[8] L. Caires. Spatial-Behavioral Types for Distributed Services and Resources. In U. Montanari
and D. Sanella, editors, Proceedings of the Second International Symposium on Trustworthy
Global Computing, Lecture Notes in Computer Science. Springer-Verlag, 2006.

[9] L. Caires, H. T. Vieira, and J. C. Seco. A Model of Service Oriented Oriented Computation.
TR-DI/FCT/UNL 6/07, Universidade Nova de Lisboa, 2007.

[10] A. Alves et al. Web Services Business Process Execution Language Version 2.0. Technical
report, OASIS, 2006.

[11] J. L. Fiadeiro, A. L., and L. Bocchi. A formal approach to service component architecture.
In M. Bravetti, M. N., and G. Zavattaro, editors, Web Services and Formal Methods, Third
International Workshop,WS-FM 2006 Vienna, Austria, September 8-9, 2006, Proceedings,
volume 4184 of Lecture Notes in Computer Science, pages 193–213. Springer-Verlag, 2006.

[12] Ivan Lanese, Vasco T. Vasconcelos, Francisco Martins, and Antonio Ravara. Disciplining
Orchestration and Conversation in Service-Oriented Computing. In 5th IEEE International
Conference on Software Engineering and Formal Methods, 2007.

[13] J. Misra and W. R. Cook. Computation orchestration: A basis for wide-area computing.
Journal of Software and Systems Modeling, 2006.

15

	Introduction
	CSCC
	Examples
	Automotive Case Study
	Finance Case Study
	Correlation Based Communication

	Typing Services and Processes
	Concluding remarks

