
Rate-based Transition Systems for Stochastic
Process Calculi?

FULL VERSION

Rocco De Nicola1, Diego Latella2, Michele Loreti1, and Mieke Massink2

Dipartimento di Sistemi e Informatica - Università di Firenze1

Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”- CNR2

Abstract. A variant of Rate Transition Systems (RTS), proposed by
Klin and Sassone, is introduced and used as the basic model for defin-
ing stochastic behaviour of processes. The transition relation used in our
variant associates to each process, for each action, the set of possible
futures paired with a measure indicating their rates. We show how RTS
can be used for providing the operational semantics of stochastic exten-
sions of three classical formalisms, namely CSP, CCS and π-calculus. It
is also shown that, in contrast with the original definition by Priami, our
semantics for stochastic π-calculus guarantees associativity of parallel
composition.

1 Introduction

A number of stochastic process algebras have been proposed in the last two
decades with the aim of combining two very successful approaches to concurrent
systems specification and analysis, namely Labeled Transition Systems (LTS)
and Continuous Time Markov Chains (CTMC). Indeed, LTS have proved to be
a very convenient framework for providing compositional semantics of languages
for specifying large complex system and for the analysis of their qualitative prop-
erties of systems. CMTC have, instead, been used mainly in performance evalua-
tion, and thus for the analysis of quantitative properties taking into account also
aspects of both time and probability. Examples of stochastic process algebras in-
clude TIPP [8], PEPA [13], EMPA [2], stochastic π-calculus [22] and StoKlaim
[6]. Semantics of these calculi have been given by variants of the Structured Op-
erational Semantics (SOS) approach but, as noticed in [17], they are not based
on any general framework for operational semantics descriptions of stochastic
processes, and indeed differ substantially from one another. Moreover, due to
the different underlying models, it is rather difficult to appreciate differences
and similarities of such semantics.

The common feature of all the above mentioned approaches is that the actions
used to label transitions are enriched with rates of exponentially distributed
? Research partially funded by EU IP SENSORIA (contract n. 016004), EU project

RESIST/FAERUS (IST-2006-026764), the CNR-RSTL project XXL, the FIRB-
MUR project TOCAI.IT and by the PRIN PACO.

random variables (r.v.) characterising their duration. On the other hand, they
differ for the way synchronization rates are determined, the actions performed
by processes are counted, etc. . Although the same class of r.v. is assumed, i.e.
exponentially distributed ones, we have that the underlying models and notions
are significantly different, ranging, e.g. from multi relations for PEPA, to proved
transition systems for stochastic π-calculus, to unique rate names for StoKlaim.

In [17], a variant of Labelled Transition Systems is introduced, namely Rate
Transition Systems (RTS), which is used for defining the stochastic semantics of
process calculi. The main feature of RTS is that the transition relation is actually
a function ρ associating a rate value in IR≥0 to each state-action-state triple:
ρ(P, α,Q) = λ > 0 if and only if P evolves via action α to Q with rate λ. Stochas-
tic semantics of process calculi are defined by relying on the general framework
of SGSOS. Moreover, in [17] they give conditions for guaranteeing associativity
of parallel composition operator in the SGSOS framework. A consequence of
this result is that one cannot guarantee the associativity of parallel composi-
tion operator up to stochastic bisimilarity when the synchronisation paradigm
of CCS is used in combination with the synchronisation rate computation based
on apparent rates [13]. This implies for instance that Stochastic π suffers of that
problem.

Notice that, associativity of parallel composition is a very desirable property
in particular in the context of network and distributed systems, for instance in
presence of dynamic process creation.

In the present paper, we introduce a variant of Rate Transition Systems
(RTS) where the transition relation associates terms and actions to functions
from terms to rates; any such function assigns to each term the rate with which
it can be reached from the source of the transition via the action. Moreover, we
adapt the apparent rate approach to calculi like CCS and π-calculus. This adap-
tation guarantees associativity and commutativity properties of parallel compo-
sition.

The stochastic semantics of the considered process algebras is defined by
a transition relation - that associates to a given process P and a given
transition label α a function denoted by P, Q,. . . mapping each term into a
non-negative real number. The reduction P

α- P has the following meaning:

– if P(Q) = v, (with v 6= 0), then Q is reachable from P by executing α, the
duration of such execution being exponentially distributed with rate v;

– if P(Q) = 0, then Q is not reachable from P via α

Moreover, we have that if P
α- P then ⊕P

def
=
∑
Q P(Q) represents the

total rate of α in P . The approach is somewhat reminiscent to that of Deng
et al. [7] where probabilistic process algebra terms are associated to a discrete
probability distribution over such terms.

In the rest of the paper, after introducing Rate Transition Systems, we show
how they can be used for providing the stochastic operational semantics of three
classical formalisms, namely CSP, CCS and π-calculus. We prove that our char-
acterizations of the stochastic variants of the above mentioned process calculi

either are in full agreement with the originally proposed ones or show the differ-
ences. Furthermore, we show in our approach associativity of the parallel compo-
sition operator can be guaranteed also in the stochastic extensions of CCS and
π-calculus. We also introduce a natural notion of bisimulation over RTS that
is finer than Markovian bisimulation and use it to establish the associativity
results. Due to space limitation, all proofs are omitted from the main body of
the paper. The most relevant, less obvious, ones are reported in the appendix.

2 Rate transitions systems

The semantics of process algebras is classically described by means of Labelled
Transitions Systems (LTS). These consist of a set of states, a set of transition
labels and a transition relation. States correspond to the configurations systems
can reach. Labels describe the actions systems can perform internally or that
are used to interact with the environment. Transition relations describe system
evolution as determined by the execution of specific actions.

The semantics of stochastic process algebras [11, 14] are classically defined
by means of Continuous Time Markov Chains (CTMC), one of the most popular
models for the evaluation of performance and dependability aspects of informa-
tion processing systems. CTMC are in turn based on the notion of exponentially
distributed r.v. [18, 9].

Definition 1. A positive real-valued r.v. X is exponentially distributed with
rate λ ∈ IR, with λ > 0, if the probability of X being at most t, i.e. Prob(X ≤ t),
is 1 − e−λt if t ≥ 0 and is 0 otherwise, where t is a real number. The expected
value of X is 1

λ .

Exponentially distributed random variables enjoy the memoryless property,
i.e. Prob(X > t+ t′ | X > t) = Prob(X > t′), for t, t′ ≥ 0.

Definition 2. A Continuous-Time Markov Chain (CTMC) is a tuple (S,R)
where S is a countable set of states and R a rate matrix assigning non-negative
values to pairs of states, such that for all, s ∈ S,

∑
s′∈S R[s, s′] converges1.

Intuitively, (S,R) models a stochastic process where, for any state s ∈ S,
whenever

∑
s′∈S R[s, s′] > 0, the probability to take an outgoing transition

from s by (continuous) time t is 1− e−
∑

s′∈S
R[s,s′]·t, i.e. the s-residence time is

exponentially distributed with rate
∑
s′∈S R[s, s′], and the probability to take

a transition from state s to state s′, given that s is left, is R(s,s′)∑
s′′∈S

R[s,s′′]
. If∑

s′∈S R[s, s′] = 0, then s is said to be absorbing, i.e. if the process enters state
s, it remains in s forever. In what follows, the rate matrix function R of any
CTMC (S,R) is lifted to sets of states C ⊆ S in the natural way: R[s, C]

def
=∑

s′∈C R[s, s′].

1 Notice that this definition allows self loops in CTMC, i.e. R[s, s] > 0 is allowed. We
refer the reader to [1] for details.

2.1 Rate Transition Systems and Markov Chains

We now present Rated transitions system (RTS), a generalisation of LTS, specif-
ically designed for describing stochastic behaviours of process algebras and in-
strumental to generate CMTC to be associated to given systems. RTS have been
introduced in [17], however, in that work, a rate is associated to each transition,
while in our approach the transition relation associates to each state and to each
action a function mapping each state to a non negative real number. Formally:

Definition 3 (Rate Transition Systems). A rate transition systems is a
triple (S,A, -) where S is a set of states, A a set of transition labels, -

a subset of S × A × ΣS and ΣS is the set [S → IR≥0] of (total) functions from
S to IR≥0.

In the sequel RTS will be denoted by R,R1,R′,. . . , while P,Q,R, . . . will
range over the elements of ΣS . Intuitively, s1

α- P and P(s2) = v ∈ IR>0

means that s2 is reachable from s1 via the execution of α with rate v. On the
other hand, P(s1) = 0 means that s2 is not reachable from s1 via α. Notice
that the above definition, differently from the original one in [17], includes also
nondeterministic systems where from a certain state the same actions can lead
to different rate functions.

Notation 1. In the sequel, we will use ∅ to denote the constant function 0, while
[s1 7→ v1, . . . , sn 7→ vn] will denote a function associating vi to si and 0 to all
the other states. Moreover, if P ∈ ΣS and R ⊆ S×S is an equivalence relation,
P/R

denotes a function in Σ[S]R = [[S]R → IR≥0] such that:

P/R
([s]R) =

∑
s′∈[s]R

P(s′)

where [S]R denotes the quotient of R, and [s]R the equivalence class of s.

Definition 4. Let R = (S,A, -) be an RTS, then:

– R is fully stochastic if and only if for each s ∈ S, α ∈ A, P and Q we
have: s

α- P, s
α- Q =⇒P = Q

– R is image finite if and only if for each s ∈ S, α ∈ A and P such that
s

α- P we have: {s′|P(s′) > 0} is finite

The following definition characterises the quotient RTS w.r.t. a given equiv-
alence relation R on states.

Definition 5. Let R = (S,A, -) be an RTS and R ⊆ S × S be an equiv-
alence relation, then [R]R is the RTS ([S]R, A, -) where the transition
relation is uniquely characterised, for all s ∈ S, by:

[s]R
α- PR ⇔ s

α- P

In general, given RTS (S,A, -) we will be interested in the CTMC
composed by the states reachable from a subset C of S only via the actions in
A′ ⊆ A. To that purpose we use the following two definitions:

Definition 6. For sets C ⊆ S and A′ ⊆ A, the set of derivatives of C through
A′, denoted Der(C,A′), is the smallest set such that:

– C ⊆ Der(C,A′),
– if s ∈ Der(C,A′) and there exists α ∈ A′ and Q ∈ ΣS such that s

α- Q
then {s′ | Q(s′) > 0} ⊆ Der(C,A′)

Definition 7. Let R = (S,A, -) be a fully stochatic RTS, for C ⊆ S,
the CTMC of C, when one considers only actions A′ ⊆ A is defined as
CTMC[C,A′]

def
= (Der(C,A′),R) where for all s1, s2 ∈ Der(C,A′):

R[s1, s2]
def
=
∑
α∈A′

Pα(s2) with s1
α- Pα.

Notice that, RTS which are not fully stochastic are naturally mapped to
Continuous Time Markov Decision Processes [23].

2.2 Rate aware bisimulation

Two key concepts in the theory of process algebras are the notions of behavioural
equivalence and congruence which permit identifying different terms correspond-
ing to processes exhibiting similar behaviour. These notions have been very use-
ful for formal reasoning about processes, for minimising process representations
and for replacing equivalent components with “better” ones according to spe-
cific quality criteria. In the literature, many behavioural equivalences have been
proposed which differ in what they consider the essential aspects of observable
behaviour. More recently, such behavioural equivalences have been extended to
Markovian process algebras where “better” would refer to better performance.

In this paper, we focus on Strong Markovian Bisimulation Equivalence [13],
which has a direct correspondence with the notion of lumpability—a successful
minimisation technique—of CTMCs [13, 16], and for which efficient algorithms
have been devised for computing the best possible lumping [12]. We introduce
Rate Aware Bisimulation Equivalence as the natural equivalence induced by the
next state function and show that it implies Strong Markovian Bisimulation
Equivalence. We point out that our semantic approach makes the definition of
the Rate Aware Bisimulation Equivalence very natural.

Definition 8 (Strong Markovian bisimilarity [5]). Given a generic CTMC
(S,R)

– An equivalence relation E on S is a Markovian bisimulation on S if and only
if for all (s1, s2) ∈ E and for all equivalence classes C ∈ S/E the following
condition holds: R[s1, C] ≤ R[s2, C].

s1

α

s2

λ2

s3

λ1

s4

α

s5

λ3

s6

λ4

s7

α

s8

λ5

Fig. 1. s1 ∼ s4 ∼ s7 when λ1 + λ2 = λ3 + λ4 = λ5

– Two states s1, s2 ∈ S are strong Markovian bisimilar, written s1 ∼M s2, if
and only if there exists a Markovian bisimulation E on S with (s1, s2) ∈ E.

Definition 9 (Rate Aware Bisimilarity).

– An equivalence relation E on C is a rate aware bisimulation if and only if,
for all (s1, s2) ∈ E, for all α and P:

s1
α- P =⇒ ∃Q : s2

α- Q ∧ ∀C ∈ C/EP(C) = Q(C)

– Two states s1, s2 ∈ S are rate aware bisimilar (s1 ∼ s2) if there exists a rate
aware bisimulation E such that (s1, s2) ∈ E.

States s1, s4 and s7 of the RTS shown in Fig. 12 are rate aware bisimilar
whenever λ1 + λ2 = λ3 + λ4 = λ5.

Notice that rate aware bisimilarity and strong bisimilarity [19] coincide when
one does not take rates into account, i.e. when the range of rate functions is
{0, 1}. The following proposition guarantees that if two processes are rate aware
equivalent, then the corresponding states in the generated CTMC are strong
Markovian equivalent.

Proposition 1. Let R = (S,A, -), for each A′ ⊆ A and for each s1, s2 ∈ S
and CTMC[{s1, s2}, A′]: s1 ∼ s2 =⇒ s1 ∼M s2

Notice that the reverse is not true. For example, with the reference of Fig-
ure 2, states s1 and s4 are Markovian equivalent in the CTMC[{s1, s4}, {α}],
which does not contain states s2 and s5, but s1 6∼ s4.

3 PEPA: A Process Algebra for Performance Evaluation

The first process algebra we take into account is the Performance Evaluation Pro-
cess Algebra (PEPA) developed by Hillston [13]. This algebra enriches CSP [15]
with combinators useful for modeling performance related features.

2 In the Fig. 1 we have s1
α- [s3 7→ λ1, s2 7→ λ2], s4

α- [s5 7→ λ3, s6 7→ λ4] and

s7
α- [s8 7→ λ5].

s1

s2

γ, λ2

s3

α, λ1

s4

s5

β, λ3

s6

α, λ1

Fig. 2. s1 ∼M s4 and s1 6∼ s4

Like in CSP, in PEPA systems are described as interactions of components
that may engage in activities. Components reflect the behaviour of relevant parts
of the system, while activities capture the actions that the components perform.
The specification of a PEPA activity consists of a pair (α, λ) in which action α
symbolically denotes the performed action, while rate λ characterises the nega-
tive exponential distribution of its duration.

If A is a set of actions, ranged over by α, α′, α1, . . ., then PPEPA is the set
of process terms P, P ′, P1, . . . defined according to the following grammar

P ::= (α, λ).P | P + P | P��LP | P/L | A

where λ is a positive real number, L is a subset of A and A is a constant which
is assumed defined by an appropriate equation A

4
= P for some process term P ,

where constants occur only guarded in P , i.e. under the scope of a action prefix.
Component (α, λ).P models a process that perform action α and then be-

haves like P . The action duration is determined by a random variable exponen-
tially distributed with rate λ.

Component P + Q models a system that may behave either as P or as Q,
representing a race condition between components. The cooperation operator
P ��L Q defines the set of action types L on which components P and Q must
synchronise (or cooperate); both components proceed independently with any
activity not occurring in L. The expected duration of a cooperation of activities
α ∈ L is a function of the expected durations of the corresponding activities in
the components. Roughly speaking, it corresponds to the longest one (the actual
definition can be found in [13], where the interested reader can find all formal
details of PEPA). Components P/L behaves as P except that activities in L are
hidden and appearing as τ transitions. The behaviour of process variable A is
that of P , provided that a definition A

4
= P is available for A.

We now provide the stochastic semantics of PEPA in terms of RTS. To this
aim, we consider the RTSRPEPA = (PPEPA,A, -) where - is formally
defined in Fig. 3. These rules permit deriving with a single proof all possible
configurations reachable from a process with a given transition label.

Rule (Act) states that (α, λ).P evolves with α to [P 7→ λ] (see Notation 1).
Rule (∅-Act) states that no process is reachable from (α, λ).P by performing
activity β 6= α.

Rule (Sum) permits modeling stochastic behaviors of non deterministic
choice. This rule states that the states reachable from P + Q via α are all
those that can be reached either by P or by Q. Moreover, transition rates are
determined by summing local rates of transitions occurring either in P or in Q.
Indeed, P + Q denotes the next state function R such that:

R(R) = P(R) + Q(R)

For instance, if one considers process ((α, λ1).P1+(β, λ2).P2)+(α, λ3).P3 (where
α 6= β and P1 6= P3), the following derivation can be proved:

(α, λ1).P1
α- [P1 7→ λ1] (β, λ2).P2

α- ∅

(α, λ1).P1 + (β, λ2).P2
α- [P1 7→ λ1] (α, λ3).P3

α- [P3 7→ λ3]

((α, λ1).P1 + (β, λ2).P2) + (α, λ3).P3
α- [P1 7→ λ1, P3 7→ λ3]

Notice that, for applying rule (Sum) it is crucial to have rule (∅-Act). For
instance, in the example above, we have applied rule (∅-Act) for proving the
transition (β, λ2).P2

α- ∅.
Rules (Int) and (Coop) governe cooperation. Rule (Int) states that if α 6∈

L computations of P��LQ are obtained by considering the interleaving of the
transitions of P and Q. Hence, if we let P and Q be the next state functions of
P and Q after α (α 6∈ L), the next state function of P��LQ after α is obtained
by combining P��LQ and P��LQ, i.e. the next state function of P , composed
with Q, and the next state function of Q, composed with P , respectively, as
defined below.

Notation 2. For next state function P, process algebra operator op and process
Q we let P op Q (resp. Q op P, op P) be the function R such that:

R(R) =
{

P(P) R = P op Q (resp. Q op P, op P)
0 otherwise

Rule (Coop) is used for computing the next state function when a synchro-
nization between P and Q occurs. In that case, the next state function of P��LQ
is determined as P��LQ, as defined below.

Notation 3. For next state functions P, Q and set L ⊆ A, P��LQ is the
function such that:

P��LQ(R) =
{

P(P) ·Q(Q) R = P��LQ
0 otherwise

As described in [13], actual rates in P��LQ are multiplied by the minimum of
the apparent rate of α in P and Q and divided by their product. The apparent
rates of α in a process P is defined as the total capacity of P to carry out
activities of type α. In [13], the apparent rate of α in a process P is computed

(α, λ).P
α- [P 7→ λ]

(Act)
α 6= β

(α, λ).P
β- ∅

(∅-Act)

P
α- P Q

α- Q

P +Q
α- P + Q

(Sum)
P

α- P Q
α- Q α 6∈ L

P��LQ
α- (P��LQ) + (P��LQ)

(Int)

P
α- P Q

α- Q α ∈ L

P��LQ
α- P��LQ · min{⊕P,⊕Q}

⊕P·⊕Q

(Coop)

P
α- P α 6∈ L

P/L
α- P/L

(P-Hide)
α ∈ L

P/L
α- ∅

(∅-Hide)

P
τ- Pτ ∀α ∈ L.P α- Pα

P/L
τ- Pτ/L+

P
α∈L Pα/L

(Hide)
P

α- P A
4
= P

A
α- P

(Call)

Fig. 3. PEPA Operational Semantics Rules

by using an auxiliary function rα(P). By using our RTS approach, if P
α- P,

then the apparent rate of α in P is determined as:

⊕P =
∑
Q

P(Q)

Rule (P-Hide) states that the set of processes reachable from P/L with α
is determined by the set of processes reachable from P with α. Rule (∅-Hide)
states that no process is reachable from P/L with α ∈ L. Rule (Hide) states
that the set of processes reachable from P/L with a τ is determined by the set
of processes reachable from P with τ and by considering, for each α in L, the
set of processes reachable from P with α.

Notice that ∀α ∈ L.P α- Pα in the premises of rule (Hide) denotes that
to prove a transition one has to prove a transition for each α ∈ L. Theorem 1
below guarantees the finiteness of the proposed semantics.

Theorem 1. RPEPA is fully stochastic and image finite.

In the sequel by -
PEPA we mean the transition relation defined in [13].

Theorem 2. For all P,Q ∈ PPEPA and α ∈ A the following holds:

P
α- P ∧P(Q) = λ > 0⇔ P

α,λ-
PEPA Q

The RTS associated to PEPA processes can be used for associating to each
process P a CTMC. This is obtained by considering CTMC[{P},A] where A is
the set of all activities that process P can perform.

4 Stochastic CCS

The second stochastic process algebra we consider in this paper is a stochas-
tic extension of the Calculus of Communicating System (CCS) [19]. Differently
from CSP, where processes composed in parallel cooperate in a multi-party syn-
chronization, in CCS parallel processes interact with each other by means of a
two-party synchronisation.

In Stochastic CCS (StoCCS), output actions are equipped with a parameter
(a rate, λ ∈ IR+) characterising a random variable with a negative exponential
distribution, modeling the duration of the action. Input actions are annotated
with a weight (ω ∈ N+): a positive integer that will be used for determining the
probability that the specific input is selected when a complementary output is
executed. This approach is inspired by the passive actions presented in [13].

Let C be a set of channels ranged over by a, b, c, . . ., C denotes the co-names
of C. Elements in C are ranged over by a, b, c, A synchronization between
processes P and Q occurs when P sends a signal over channel (action a) while Q
receives a signal over the same channel (action a). The result of a synchronization
is an internal, or silent, transition that is labeled τ . In StoCCS a synchronization
over channel a is rendered by the label ←→a . The reasons of this choice will be
clarified later. We let

←→
C be {←→a |a ∈ C}. The set of labels L is then C∪C∪{τ}∪

←→
C ,

while its elements are ranged over by `, `′, `1,
PCCS is the set of Stochastic CCS process terms P, P ′, P1, Q,Q

′, Q1 . . . de-
fined according to the following grammar:

P,Q ::= 0 | G | P |Q | P [f] | P\L | A

G ::= aω.P | aλ.P | G+G

where L ⊆ C while f is a renaming function, i.e. a function in L → L such that
f(a) = f(a) and f(τ) = τ . A is a constant which is assumed being defined by a

proper defining equation A
4
= P for some process term P , where each constant

can occur only guarded in P . We shall assume that each process G never contains
at the same time an input and an output action on the same channel. In other
words, processes of the form a.P + a.Q are forbidden.

Action prefixing and non-deterministic choice have the same meaning as in
PEPA. Process P |Q models a system where P and Q proceed in parallel and
interact with each other using the two-parties synchronisation described above.
Restriction (P\L) and renaming (P [f]) are respectively used for inhibiting in-
teractions of P over channels in L and for renaming channels in P according to
function f .

Following a similar approach as the one used for PEPA, we now define
the stochastic semantics of StoCCS in term of RTS. We let RStoCCS =
(PCCS ,L, -), where - is formally defined in Fig. 4.

The proposed semantics follows the same approach used by Priami in [22]
and makes use of the PEPA notions of active and passive actions.

aω.P
a- [P 7→ ω]

(In)
` 6= a

aω.P
`- ∅

(∅-In)

aλ.P
a- [P 7→ λ]

(Out)
` 6= a

aλ.P
`- ∅

(∅-Out)

P
`- P Q

`- Q

P +Q
`- P + Q

(Sum)
P

`- P Q
`- Q ` 6=←→a

P |Q `- P|Q+ P |Q
(Int)

P
←→a- P P

a- Pi P
a- Po Q

←→a- Q Q
a- Qi Q

a- Qo

P |Q
←→a- P|Q+ P |Q + Pi·Qo

⊕Pi
+ Po·Qi

⊕Qi

(Sync)

0
`- ∅

(Nil)
` ∈ L

P\L `- ∅
(∅-Res)

P
`- P ` 6∈ L

P\L `- P\L
(P-Res)

P
τ- Pτ ∀` ∈ L.P

←→
`- P←→

`

P\L τ- Pτ\L+
P
`∈L P←→

`
\L

(Res)

∀` : P
`- P`

P
β- P

`:f(`)=β P`[f]
(Ren)

A
4
= P P

`- P

A
`- P

(Call)

Fig. 4. StoCCS Operational Semantics

All the rules have the expected meaning and are similar to those defined for
PEPA and simply render the CCS semantics in a context where all the possible
next processes are computed in a single derivation.

More attention has to be paid to rule (Sync) that is used for deriving syn-
chronisations of parallel processes. In PEPA we have multi-party synchronisa-
tions. Hence, the next states of P��LQ after ` ∈ L can be simply obtained by
combining the possible next states of P and Q after `. In CCS we have two-party
synchronisations, thus the next states of P |Q after←→a , i.e. after a synchronisation
over channel a, are:

1. the next states of P alone after ←→a , in parallel with Q;
2. the next states of Q alone after ←→a , in parallel with P ;
3. the next states of P after a in parallel with the next states of Q after a;
4. the next states of P after a in parallel with the next states of Q after a.

Moreover, synchronisation rates between inputs in P and outputs in Q (and
vice-versa) are obtained by multiplying the input weights of P , i.e. Pi, by the
output rates of Q, i.e. Qo, over the total weight of all the inputs in P , i.e. ⊕Pi

(and vice-versa).

As an example, consider P
4
= a2.P1 and Q

4
= a4.Q1|a2.Q2, then we have

that ←→a leads process P |Q to P1|(Q1|a2.Q2) with rate 4
3 and to P1|(a4.Q1|Q2)

with rate 2
3 .

Theorem 3. RStoCCS is fully stochastic and image finite.

Unfortunately, the proposed semantics, like in [17], does not respect a
standard and expected property of the CCS parallel composition. Indeed,
using the above semantics, this operator is not associative. For instance
aλ.P |(aω1 .Q1|aω2 .Q2) and (aλ.P |aω1 .Q1)|aω2 .Q2 exhibit different stochastic be-
haviours. The former, after ←→a , reaches P |(Q1|aω2 .Q2) with rate λ·ω1

ω1+ω2
and

P |(aω1 .Q1|Q2) with rate λ·ω2
ω1+ω2

. The latter reaches both (P |Q1)|aω2 .Q2 and
(P |aω1 .Q1)|Q2 with rate λ. From the results in [17] it follows that it is im-
possible to define an SGSOS semantics that guarantees the associativity of CCS
parallel composition.

In the sequel, we show that this problem can be overcome by using our
approach. To that purpose we modify rule (Sync) in such way that:

– the rates of the synchronisations occurring in P and Q are updated in order
to take into account the inputs available in both P and Q.

– the rates of the synchronisations between outputs in P and inputs in Q (and
vice-versa) have to be divided by the total rate of input in both P and Q.

Rule (Sync) can be reformulated as follows:

P
←→a- P P

a- Pi P
a- Po Q

←→a- Q Q
a- Qi Q

a- Qo

P |Q
←→a- P|Q·⊕Pi

⊕Pi+⊕Qi
+ P |Q·⊕Qi

⊕Pi+⊕Qi
+ Pi·Qo

⊕Pi+⊕Qi
+ Po·Qi

⊕Pi+⊕Qi

Using this rule, the associativity of parallel composition is guaranteed.

Theorem 4. In StoCCS parallel composition is associative up to rate aware
bisimilarity, i.e. for each P , Q and R, P |(Q|R) ∼ (P |Q)|R

Notice that this result is not in contradiction with the one presented in [17]
where it is proved that associativity of parallel composition does not hold if one
uses PEPA-like synchronisation rates for CCS. Indeed, our result is obtained
thanks to the use of a specific explicit label for synchronisations transitions (←→a)
that in [17] are labelled by τ . Our choice permits updating synchronisation rates
while taking into account possible new inputs popping up along the derivation.
Notice finally that, if is easy to prove that ∼ is a congruence for each operator
of StoCCS.

The CTMC associated to a StoCCS process P is obtained by considering
CTMC[{P},

←→
C ∪ {τ}].

5 Stochastic π-calculus

In this section we consider a stochastic extension of π-calculus [20]. π-calculus
is an algebra that extends CCS in such a way that names can be exchanged
over channels. Like in CCS, in the π-calculus processes are composed by means
of non-deterministic choice and parallel composition. However, restriction and

fn bn

0 ∅ ∅
aω(x).P {a} ∪ fn(P)− {x} {x} ∪ bn(P)

aλ(b).P {a, b} ∪ fn(P) bn(P)

τλ.P fn(P) bn(P)
G1 +G2 fn(G1) ∪ fn(G2) bn(G1) ∪ bn(G2)
P +Q fn(P) ∪ fn(Q) bn(P) ∪ bn(Q)

Fig. 5. Process free and bound names

renaming are replaced by name restriction ((νa)P). This is used for declaring a
name ‘a’, that is new, or private, within process P .

Like for Stochastic CCS, in our proposal for the Stochastic π-calculus output
actions are equipped with a rate while input actions are annotated with a weight.

Let N be the set of names ranged over by a, b, . . . , x, y, . . ., we let PSπ be the
set of process terms defined by the following syntax:

P,Q ::= 0 | G | P |Q |(νa)P | A

G ::= aω.P |aλ.P | G+G

We assume that each process G never contains at the same time an input and
an output action on the same channel; A is a constant which is assumed being
defined by a proper defining equation A

4
= P for some process term P , where

each constant can occur only guarded in P .
Let P be a process, fn(P) and bn(P) denote the set of free and bound names

in P . Function fn(P) and bn(P) are formally defined in Fig. 5.
The semantics of Stochastic π-calculus processes is defined by means of RTS

RStoπ = (PSπ, Λ, -) where - is formally defined by the rules in Fig. 6
while Λ is the set of transition labels α defined by means of the following syntax:

α ::= ab | a(b) | ab | a(b) | ←→a (b) | ←→a (•) | τ

where ab (ab) denotes output (input) of name b over a; a(b) (a(b)) denotes the
output (input) of a private name b over a; ←→a (b) (←→a (•)) denotes a synchroni-
sation over a where name b (a private name) has been exchanged. Indeed, to
guarantee associativity of parallel composition, we have to make explicit the
name exchanged in an interaction. However, if this name is private, we do not
care about its exact value.

Let α ∈ Λ; functions fn(α) and bn(α), denoting the free and bound names
in α, are formally defined as follows: fn(ab) = fn(ab) = fn(←→a (b)) = {a, b};
fn(a(b)) = fn(a(b)) = fn(←→a (•)) = {a}; fn(τ) = bn(τ) = ∅; bn(ab) = bn(ab) =
bn(←→a (b)) = bn(←→a (•)) = ∅; bn(a(b)) = bn(a(b)) = {b}. In the following we will
use n(α) to denote fn(α) ∪ bn(α). We will also use ch(α) to denote the channel
used in the action α.

The rules in Fig.6 extend those of CCS (Fig. 4) to take name passing into
account. In these rules, an early approach is used [20]. Notice that, differently

abλ.P
ab- [P 7→ λ]

(Out)
α 6= a(b) fn(abλ.P) ∩ bn(α) = ∅

abλ.P
α- ∅

(∅-Out)

a(x)ω.P
ab- [P [b/x] 7→ ω]

(In)
α 6= ab α 6= a(b) fn(a(x)ω.P) ∩ bn(α) = ∅

a(x)ω.P
α- ∅

(∅-In)

b 6∈ fn(P)

a(x)ω.P
a(b)- [P [b/x] 7→ ω]

(B-In)
P1

α- P1 P2
α- P2

P1 + P2
α- P1 + P2

(Sum)

0
α- ∅

(Nil)
P1

α- P1 P2
α- P2 α 6=←→a

P1|P2
α- P1|P2 + P1|P2

(Int)

A
4
= P P

α- P

A
α- P

(Rec)
P

ab- P b 6= a c 6∈ fn(P)

(νb)P
a(c)- P[c/b]

(R-Open)

P
α- P b 6∈ n(α)

(νb)P
α- (νb)P

(P-Res)
P

τ- P ∀b.P
←→a (b)- Pb P

←→a (•)- Pν

(νa)P
τ- (νa)P +

P
b(νa)Pb + Pν

(H-Res1)

P
←→a (b)- Pb P

←→a (•)- Pν

(νb)P
←→a (•)- (νb)(Pb + Pν)

(H-Res2)
ch(α) = b ∨ (b ∈ n(α) ∧ α 6= ab)

(νb)P
α- ∅

(∅-Res)

P
←→a (b)- P P

ab- Pi P
ab- Po Q

←→a (b)- Q Q
ab- Qi Q

ab- Qo

P |Q
←→a b- P|Q·⊕Pi

⊕Pi+⊕Qi
+ P |Q·⊕Qi
⊕Pi+⊕Qi

+ Pi|Qo

⊕Pi+⊕Qi
+ Po|Qi
⊕Pi+⊕Qi

(Sync)

P
←→a (•)- P P

a(b)- Pi P
a(b)- Po Q

←→a (•)- Q Q
a(b)- Qi Q

a(b)- Qo

P |Q
←→a (•)- P|Q·⊕Pi

⊕Pi+⊕Qi
+ P |Q·⊕Qi
⊕Pi+⊕Qi

+ (νb)(Pi|Qo)
⊕Pi+⊕Qi

+ (νb)(Po|Qi)
⊕Pi+⊕Qi

(R-Sync)

Fig. 6. π-calculus Operational Semantics Rules

P |(νn)Q ≡ (νn)(P |Q) if n /∈ fn(P)
(νn)(νm)P ≡ (νm)(νn)P

(νm)P ≡ (νn)P [n/m] if n /∈ fn(P)

Fig. 7. Structural congruence laws.

from CCS, (∅-In) and (∅-Out) have a side condition introduced for avoiding the
un-wanted binding of free names.

Moreover, name restriction hides interactions over restricted channels
((H-Res1)) and private names exchanged over public ones ((H-Res2)). Finally,
rules (Sync) and (R-Sync) handle the synchronisations over channels when a
public or a private name is exchanged, respectively.

Theorem 5. RStoπ is image finite.

The proposed semantics is not fully-stochastic. Indeed, different names can be
selected when private names are communicated. For instance, (νa)baλ.P |axω.Q
reduces with ←→a (•) to [(νc)(P [c/a]|Q[c/x]) 7→ λ] and to [(νd)(P [d/a]|Q[d/x]) 7→
λ]. However, the next state functions only differ for the names of private channels.
We let ≡ be the smallest equivalence relation satisfying the Rules in Fig. 7. This
equivalence, permits identifying those terms that are equivalent up-to renaming
of restricted channels. We can finally prove the following result:

Theorem 6. [RStoπ]≡ is image finite and fully stochastic.

It is worth noticing that the semantics of [22] that does not guarantee associa-
tivity of parallel composition can be captured within our approach by replacing
rule (Sync) of Figure 6 with a rule similar to (Sync) of Figure 4 used to model
binary synchronization for CCS.

Finally, the CTMC associated to a process P is obtained by considering only
the synchronisations occurring in P . Let A = {←→a (b)|a, b ∈ N} ∪ {←→a (•)|a ∈
N} ∪ {τ}, the CTMC associated to P is CTMC[{P},A].

6 Conclusions

We have introduced Rate Transition Systems and have used them as the basic
model for defining stochastic behaviour of processes. The transition relation as-
sociates to each process, for each action, the set of possible futures paired with a
measure indicating their rates. An evident pleasant characteristic of our approach
is that all the target terms derivable from a specific source term and an action
are computed in a single relation. Moreover, the incorporation of functions intro
transitions becomes compact and some extent simplifies the definition of the op-
erational semantics. We have then shown how RTS can be used to provide the
stochastic operational semantics of CSP, CCS and pi-calculus and have proved
that our characterizations of the stochastic variants coincide with the originally

proposed ones or that the differences are only those needed to guarantee nicer
properties of the considered semantics, such as associativity of parallel compo-
sition. We have also introduced a natural notion of bisimulation over RTS that
is finer than Markovian bisimulation and useful for reasoning about stochastic
behaviours.

Even if in the present paper we have considered a synchronisation mechanism
implicitly based on active and passive actions, other synchronisation patterns
proposed in the literature can be easily dealt with using our approach. For
instance, one could associate proper rates both to output and input actions and
define the synchronisation rate as a suitable function of such rates.

RTS can be easily adapted for expressing stochastic models other than
CTMCs, e.g. Interactive Markov Chains [10]. One way for doing that is to ex-
tend the range of rate functions with a distinguish element models interactive
transitions.

As future work, we plan to study the format of our rules and see whether
we could get similar general results about bisimulation congruence as in [17].
We plan also to apply our framework to richer formalism for service oriented
programming where quality of service and performance measures are key issues.
Indeed, we have already started research in this direction within the Sensoria
project by providing a Markovian semantics to CaSPiS [3] to obtain what we
called MarCaSPiS [21] and for investigating the integration of probabilistic
and time-stochastic extensions of Tuple Space based coordination languages [4].
Moreover we plan to consider different distribution functions than exponential
ones for action durations and/or delays.

References

1. C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. Model-Checking Al-
gorithms for Continuous-Time Markov Chains. IEEE Transactions on Software
Engineering, 29(6):524–541, 2003.

2. M. Bernardo and R. Gorrieri. A tutorial on EMPA: A theory of concurrent pro-
cesses with nondeterminism, priorities, probabilities and time. Theoret. Comput.
Sci., 202(1-2):1–54, 1998.

3. M. Boreale, R. Bruni, R. De Nicola, and M. Loreti. Sessions and pipelines for
structured service programming. In G. Barthe and F. S. de Boer, editors, Proc.
of FMOODS’08, volume 5051 of Lecture Notes in Computer Science, pages 19–38.
Springer, 2008.

4. M. Bravetti, D. Latella, M. Loreti, M. Massink, and G. Zavattaro. Combining
timed coordination primitives and probabilistic tuple spaces. In Proceedings of
TGC 2008, Lecture Notes in Computer Science, Barcellona, Spain, 2008. Springer.
To appear.

5. E. Brinksma and H. Hermanns. Process algebra and markov chains. In
E. Brinksma, H. Hermanns, and J.-P. Katoen, editors, Euro Summer School on
Trends in Computer Science, volume 2090 of Lecture Notes in Computer Science,
pages 183–231. Springer, 2001.

6. R. De Nicola, J.-P. Katoen, D. Latella, M. Loreti, and M. Massink. Model checking
mobile stochastic logic. Theoretical Computer Science, 382(1):42–70, 2007.

7. Y. Deng, R. van Glabbeek, M. Hennessy, C. Morgan, and C. Zhang. Characterising
testing preorders for finite probabilistic processes. In Proceedings of the 22nd An-
nual IEEE Symposium on Logic in Computer Science (LICS’07), volume 313-325.
IEEE Computer Society, 2007.

8. N. Glotz, U. Herzog, and M. Rettelbach. Multiprocessor and distributed systems
design: The integration of functional specification and performance analysis using
stochastic process algebras. In L. Donatiello and R. Nelson, editors, Performaance
Evaluation of Computer and Communication Systems. - Joint Tutorial Papers of
Performance ’93 and Sigmetrics ’93, volume 729 of Lect. Notes in Comput. Sci.
Springer, 1993.

9. B. Haverkort. Markovian Models for Performance and Dependability Evaluation.
In E. Brinksma, H. Hermanns, and J. Katoen, editors, Lectures on Formal Methods
and Performance Analysis, volume 2090 of Lect. Notes in Comput. Sci., pages 38–
83. Springer, 2001.

10. H. Hermanns. Interactive Markov Chains. Springer, Berlin/New York, 2002. LNCS
2428.

11. H. Hermanns, U. Herzog, and J.-P. Katoen. Process algebra for performance eval-
uation. Theoret. Comput. Sci., 274(1-2):43–87, 2002.

12. H. Hermanns and M. Siegle. Bisimulation Algorithms for Stochastic Process Alge-
bras and Their BDD-Based Implementation. In ARTS, Lecture Notes in Computer
Science, pages 244–264. Springer, 1999.

13. J. Hillston. A compositional approach to performance modelling, 1996. Distin-
guished Dissertation in Computer Science. Cambridge University Press.

14. J. Hillston. Process algebras for quantitative analysis. In IEEE Symposium on
Logic in Computer Science, pages 239–248. IEEE, Computer Society Press, 2005.

15. C. Hoare. Communicating Sequential Processes. Series in Computer Science. Pren-
tice Hall, 1985.

16. J. Kemeny and J. Snell. Finite Markov Chains. Springer, 1976.
17. B. Klin and V. Sassone. Structural operational semantics for stochastic process cal-

culi. In Proceedings of FOSSACS 2008, volume 4968 of Lecture Notes in Computer
Science. Springer, 2008.

18. V. Kulkarni. Modeling and Analysis of Stochastic Systems. Chapman & Hall, 1995.
19. R. Milner. Communication and Concurrency. Series in Computer Science. Prentice

Hall, 1989.
20. R. Milner, J. Parrow, and J. Walker. A Calculus of Mobile Processes, I and II.

Information and Computation, 100(1):1–40, 41–77, 1992.
21. R. D. Nicola, D. Latella, M. Loreti, and M. Massink. MarCaSPiS: a markovian

extension of a calculus for services. In Proceedings of SOS 2008, Electronic Notes
In Theoretical Computer Science, Reykjavik, Iceland, 2008. Elsevier.

22. C. Priami. Stochastic π-Calculus. The Computer Journal, 38(7):578–589, 1995.
23. M. Puterman. Markiv Decision Processes. 1994.

A Rate aware bisimulation

Definition 10. Let R ⊆ X ×X, RT is the transitive closure of X.

Lemma 1. Let R1, R2 ⊆ X ×X be equivalence relations, then (R1 ∪R2)T :

1. is an equivalence relation;
2. for each C ∈ X/R there exists A ⊆ X/R1 and B ⊆ X/R2 such that:

C =
⋃
A∈A

A C =
⋃
B∈B

B

3. for each R′ such that R1 ⊆ R′ and R2 ⊆ R′: R ⊆ R′.

Proof.

1. It is easy to prove that R = (R1 ∪R2)T is an equivalence relation. Indeed R
is reflexive, symmetric and transitive.

2. We have to prove that each equivalence class C of R in X can be partitioned
into equivalence classes of R1 (resp. R2) in X. Formally: for each C ∈ X/R

there exists A ⊆ X/R1 (resp. B ⊆ X/R2) such that:

C =
⋃
A∈A

A (resp. C =
⋃
B∈B

B)

Let C ∈ X/R. For each x ∈ C there exists A ∈ XR1 such that x ∈ A. We let:

{A|A ∈ XR1 : C ∩Ai 6= ∅}

We have that C ⊆ ∪A∈AA (it is clear that for each A1, A2 ∈ A, if A1 6= A2,
A1 ∩ A2 = ∅). Let us assume that there exists A ∈ A and y ∈ A such that
y 6∈ C. Let x ∈ A∩C. Since A is an equivalence class for R1 we have that for
each x ∈ A, (y, x) ∈ R1. Since R1 ⊆ R we have that (y, x) ∈ R. At the same
time, C is an equivalence class of R. Hence, for each a ∈ C if there exists
b ∈ X : (a, b) ∈ R then b ∈ C. Hence, y ∈ C. This contracts the hypothesis
that there exists A ∈ A and y ∈ A such that y 6∈ C and A is a partition of
C.

3. Let R′ ⊆ X ×X be an equivalence relation such that R1 ⊆ R′ and R2 ⊆ R′.
We have to prove that for each (x, y) ∈ R =⇒ (x, y) ∈ R′. Let (x, y) ∈ R,
we can distinguish the following cases:
– (x, y) ∈ R1

=⇒ {R1 ⊆ R′}

(x, y) ∈ R′

– (x, y) ∈ R2

=⇒ {R2 ⊆ R′}

(x, y) ∈ R′

– there exist a0, . . . , an+1 ∈ X such that: x = a0, y = an+1 and for each
0 ≤ j ≤ n (aj , aj+1) ∈ Ri (i ∈ {1, 2}):

=⇒ {R1 ⊆ R′ and R2 ⊆ R′}

∀j(0 ≤ j ≤ n)(aj , aj+1) ∈ R′

=⇒ {R′ is an equivalence relation, x = a0, and y = an+1}

(x, y) ∈ R′

Lemma 2. Let R1 and R2 be rate aware bisimulations on R = (S,A,→), the
transitive closure of R1 ∪R2, R = (R1 ∪R2)T is a rate aware bisimulation.

Proof. We have to prove that for each (x, y) ∈ R:

x
α- P =⇒ y

α- Q ∧ ∀C ∈ S/RP(C) = Q(C)

If (x, y) ∈ R we can distinguish two cases:

1. (x, y) ∈ Ri (i ∈ {1, 2}):
x

α- P

=⇒ {Ri is a rate aware bisimulation}

y
α- Q ∧ ∀A ∈ S/Ri

P(A) = Q(A)

=⇒ {Lemma 1}

∀C ∈ SR : ∃A ⊆ S/Ri
:
∑
A∈AP(A) =

∑
A∈AQ(A)

=⇒ {A is a partition of C}

∀C ∈ S/RP(C) = Q(C)

2. (x, y) ∈ R and there exists x0, . . . , xn+1 such that: x = x0, y = xn+1 and for
each 0 ≤ j ≤ n (xj , xj+1) ∈ Ri (i ∈ {1, 2}). For all j we have:

xj
α- Pj

=⇒ {Ri is a rate aware bisimulation}

xj+1
α- Pj+1 ∧ ∀A ∈ S/Ri

Pj(A) = Pj+1(A)

=⇒ {Lemma 1}

∀C ∈ SR : ∃A ⊆ S/Ri
:
∑
A∈APj(A) =

∑
A∈APj+1(A)

=⇒ {A is a partition of C}

∀C ∈ S/RPj(C) = Pj+1(C)

=⇒ {by transitivity}

∀C ∈ S/RP0(C) = Pn+1(C)

=⇒ {x = x0, y = y0}

x
α- P =⇒ y

α- Q ∧ ∀C ∈ S/R : P(C) = Q(C)

Hence, R is a rate aware bisimulation.

Corollary 1. ∼= (
⋃
{R|R is a rate aware bisimulation})T

B Proof Theorem 1

The theorem follows by proving that

E = {(s, s′)|s, s′ ∈ Der({s1, s2}, A′) : s ∼ s′}

is a Markovian bisimulation. Since ∼ is an equivalence relation, E is an equiv-
alence too. Hence, we have to prove that for each (x, y) ∈ E and for each
C ∈ Der({s1, s2}, A′)/E : R[x,C] ≤ R[y, C].

Since, R is fully stochastic it follows that for each s and a, one is able to
identify a single P〈s,a〉 such that s

a- P〈s,a〉.
(x, y) ∈ E

⇒ {E is a rate aware bisimulation}

∀a ∈ A′ ∀C ⊆ S/E .P〈x,a〉(C) = P〈y,a〉(C)

≡ {Def. P(C)}

∀a ∈ A′ ∀C ⊆ S/E .
∑
s∈C P〈x,a〉(s) =

∑
s∈C P〈y,a〉(s)

≡ {∀i.xi = yi =⇒
∑
i xi =

∑
i yi}

∀C ⊆ S/E .
∑
a∈A′

∑
s∈C P〈x,a〉(s) =

∑
a∈A′

∑
s∈C P〈y,a〉(s)

≡ {Commutativity of +}

∀C ⊆ S/E .
∑
s∈C

∑
a∈A′ P

〈x,a〉(s) =
∑
s∈C

∑
a∈A′ P

〈y,a〉(s)

≡ {Def. CTMC[{s1, s2}, A′] and R}

∀C ⊆ S/E .
∑
s∈C R[x, s] =

∑
s∈C R[y, s]

≡ {Def. R[s, C]}

∀C ⊆ S/E .R[x,C] = R[y, C]

⇒ {Def. strong Markovian bisimulation}

E is a strong Markovian bisimulation

C Proof Theorem 1

Image finiteness. We have to prove that for each P and α if P
α- P then

|P| = |{Q|P(Q) > 0}| is finite. The proof proceeds by induction on the syntax
of P .

Base Cases:
P = (β, λ).Q: We can distinguish two cases.

1. α = β

⇒ {Def. - }

P = [Q 7→ λ]

⇒ {Def. [Q 7→ λ]}

|P| = 1

2. α 6= β

⇒ {Def. - }

P = ∅

⇒ {Def. ∅}

|∅| = 0

Inductive Hypothesis: Let P1 and P2 be such that for each α:

Pi
α- P =⇒ |P| is finite

Inductive Step: According to the syntax of P we can distinguish the following
cases:
P = P1 + P2:
⇒ {Def. - }

P = P1 + P2 where P1
α- P1 and P2

α- P2

⇒ {Def. P + Q}

|P| ≤ |P1|+ |P2|

⇒ {Inductive Hypothesis}

|P| is finite.

P = P1��LP2:
– α ∈ L
⇒ {Def. - }

P = P1��LP2·min{⊕P1,⊕P2}
⊕P1·⊕Q2

where P1
α- P1 and P2

α- P2

⇒ {Def. P��LQ}

|P| ≤ |P1| · |P2|

⇒ {Inductive Hypothesis}

|P| is finite.

– α 6∈ L
⇒ {Def. - }

P = P1��LP2 + P1��LP2 where P1
α- P1 and P2

α- P2

⇒ {Def. P + Q}

|P| ≤ |P1|+ |P2|

⇒ {Inductive Hypothesis}

|P| is finite.

P = P1/L:
– α ∈ L
⇒ {Def. - }

P = ∅

⇒ {Def. ∅}

|P| = 0

– α 6∈ L
⇒ {Def. - }

P = P1/L where P1
α- P1

⇒ {Def. P/L}

|P| = |P1|

⇒ {Inductive Hypothesis}

|P| is finite.

P = A: let A
4
= P1

⇒ {Def. - }

P = P1 where P1
α- P1

⇒ {Inductive Hypothesis}

P is finite.

Fully stochastic. We have to prove that for each P and α if P
α- P and

P
α- Q then P = Q. The proof proceeds by induction on the syntax of P .

Base Cases:
P = (β, λ).Q: We can distinguish two cases.

1. α = β
⇒ {only rule (Act) can be applied}

P = [Q 7→ λ] = Q

2. α 6= β
⇒ {only rule (∅-Act) can be applied}

P = ∅ = Q

Inductive Hypothesis: Let P1 and P2 be such that for each α:

Pi
α- P ∧ Pi

α- Q =⇒P = Q

Inductive Step: We prove here P = P1��LP2. The other cases are similar.
P = P1��LP2:

– α ∈ L
⇒ {Def. - }

P = P1��LP2 · min{⊕P1,⊕P2}
⊕P1·⊕Q2

where P1
α- P1 and P2

α- P2

Q = Q1��LQ2 · min{⊕Q1,⊕Q2}
⊕Q1·⊕Q2

where P1
α- Q1 and P2

α- Q2

⇒ {Inductive Hypothesis}

P1 = Q1,P2 = Q2

⇒ {Def. P��LQ}

P = Q

– α 6∈ L
⇒ {Def. - }

P = P1��LP2 + P1��LP2 where P1
α- P1 and P2

α- P2

Q = Q1��LP2 + P1��LQ2 where P1
α- Q1 and P2

α- Q2

⇒ {Inductive Hypothesis}

P1 = Q1,P2 = Q2

⇒ {Def. P + Q}

P = Q

D Proof Theorem 2

In a multi-transition system the relation is replaced by a multi-relation in which
the number of instances of a transition between states is recognised. In [13] op-
erational semantics of PEPA is defined by means of the labelled multi-transition
system induced by the following rules:

(α, λ).P
(α,λ)- P

P1
(α,λ)- P ′

P1 + P2
(α,λ)- P ′

P2
(α,λ)- P ′

P1 + P2
(α,λ)- P ′

P1
(α,λ)- P ′, α 6∈ L

P1��LP2
(α,λ)- P ′��LP2

P1
(α,λ1)- P ′1 P2

(α,λ2)- P ′2 α ∈ L

P1��LP2
(α,R)- P ′1��LP

′
2

P1��LP2
(α,λ)- P1��LP

′

P2
(α,λ)- P ′, α 6∈ L

A
(α,λ)- P ′

P
(α,λ)- P ′, (A

def
= P)

In the rule for cooperation, with α ∈ L, R stands for the following value:

R =
r1

rα(P1)
· r2
rα(P2)

·min(rα(P1), rα(P2))

where, for process P , rα(P) denotes the apparent rate of α in P , i.e. the total
capacity of P to carry out activities of type α:

1. rα((β, λ).P) =
{
λ if β = α
0 if β 6= α

2. rα(P +Q) = rα(P) + rα(Q)

3. rα(P/L) =
{
rα(P) if α ∈ L
0 if α 6∈ L

4. rα(P��LQ) =
{

min(rα(P), rα(Q)) if α ∈ L
rα(P), rα(Q) if α 6∈ L

Notice that in [13] multi-transition system is not defined formally. For this rea-
son, we cannot prove a direct correspondence between our semantics and the
one proposed for PEPA. However, we prove that if P

α- P then:

1. rα = ⊕P;
2. P(Q) > 0⇔ P

(α,r)- Q.

1: P
α- P ⇒ rα = ⊕P: we proceed by induction on the syntax of P

Base Cases:
P = (β, λ).Q: We can distinguish two cases.

1. α = β

⇒ {Def. - }

P = [Q 7→ λ]

⇒ {Def. [Q 7→ λ]}

⊕P = λ = rα(P)

2. α 6= β

⇒ {Def. - }

P = ∅

⇒ {Def. ∅}

⊕ ∅ = 0 = rα(P)

Inductive Hypothesis: Let P1 and P2 be such that for each α:

Pi
α- P =⇒ ⊕P = rα(P)

Inductive Step: According to the syntax of P we can distinguish the following
cases:
P = P1 + P2:
⇒ {Def. - }

P = P1 + P2 where P1
α- P1 and P2

α- P2

⇒ {Def. P + Q}

⊕P = ⊕P1 +⊕P2

= {Inductive Hypothesis}

rα(P1) + rα(P2) = rα(P)

P = P1��LP2:
– α ∈ L
⇒ {Def. - }

P = P1��LP2·min{⊕P1,⊕P2}
⊕P1·⊕Q2

where P1
α- P1 and P2

α- P2

⇒ {Def. P��LQ}

⊕P = ⊕P1 · ⊕P2 · min{⊕P1,⊕P2}
⊕P1·⊕Q2

= min{⊕P1,⊕P2}

= {Inductive Hypothesis}

min{rα(P1), rα(P2)} = rα(P1��LP2)

– α 6∈ L
⇒ {Def. - }

P = P1��LP2 + P1��LP2 where P1
α- P1 and P2

α- P2

⇒ {Def. P + Q}

⊕P = ⊕P1 ⊕P2

= {Inductive Hypothesis}

rα(P1) + rα(P2) = rα(P1��LP2)

P = P1/L:
– α ∈ L
⇒ {Def. - }

P = ∅

⇒ {Def. ∅}

⊕P = 0 = rα(P)

– α 6∈ L
⇒ {Def. - }

P = P1/L where P1
α- P1

⇒ {Def. P/L}

⊕P = ⊕P1

⇒ {Inductive Hypothesis}

rα(P1) = rα(P)

2: P
α- P ⇒ P(Q) 6= 0 ⇔ P

α,λ- Q: we proceed by induction on the
syntax of P

Base Cases:
P = (β, λ).Q: We can distinguish two cases.

1. α = β

⇒ {Def. - }

P = [Q 7→ λ]

⇒ {Def. [Q 7→ λ]}

P(R) 6= 0⇔ R = Q

⇔ {Def. - }

P
α,λ- Q

2. α 6= β

⇒ {Def. - }

P = ∅

⇒ {Def. ∅}

∀R. P(R) = 0

⇔ {Def. - }

6 ∃Q. P α,λ- Q

Inductive Hypothesis: Let P1 and P2 be such that for each α:

Pi
α- P =⇒P(Q) 6= 0⇔ P

α,λ- Q

Inductive Step: We prove here P = P1��LP2. The other cases are similar.
P = P1��LP2:

– α ∈ L
⇒ {Def. - }

P = P1��LP2·min{⊕P1,⊕P2}
⊕P1·⊕Q2

where P1
α- P1 and P2

α- P2

⇒ {Def. P1��LP2 · min{⊕P1,⊕P2}
⊕P1·⊕Q2

}

P(R) 6= 0⇔ R = R1��LR2 ∧P1(R1) 6= 0 ∧P1(R2) 6= 0

⇔ {Inductive Hypothesis}

Pi(Q) 6= 0⇔ Pi
α,λ- Q i ∈ {1, 2}

⇔ {Def. - and ⊕P = rα(P)}

P
α,R- Q1��LQ2

– α 6∈ L
⇒ {Def. - }

P = P1��LP2 + P1��LP2 where P1
α- P1 and P2

α- P2

⇔ {Inductive Hypothesis}

Pi(Q) 6= 0⇔ Pi
α,λ- Q i ∈ {1, 2}

⇔ {Def. - }

either P
α,λ- Q��LP2 ⇔P(Q��LP2) 6= 0

or P
α,λ- P1��LQ⇔P(P1��LQ) 6= 0

E Proof Theorem 3

We have to prove that for each P and α

– if P
`- P then |P| = |{Q|P(Q) > 0}| is finite;

– if P
`- P and P

`- Q then P = Q.

The proof proceeds by induction on the syntax of P and it is similar to that for
PEPA.

F Proof Theorem 4

The statement follows by proving that

E = {〈P |(Q|R), (P |Q)|R〉|P,Q,R ∈ PCCS}
∪{〈(P |Q)|R,P |(Q|R)〉|P,Q,R ∈ PCCS}
∪{〈P |(Q|R), P |(Q|R)〉|P,Q,R ∈ PCCS}
∪{〈(P |Q)|R, (P |Q)|R〉|P,Q,R ∈ PCCS}

is a rate aware bisimulation inRStoCCS . It is easy to prove that E is an equivalent
relation. Indeed:

– for each P , 〈P, P 〉 ∈ E ;
– 〈P,Q〉 ∈ E ⇒ 〈Q,P 〉 ∈ E
– 〈P,Q〉 ∈ E ∧ 〈Q,R〉 ∈ E ⇒ 〈P,R〉 ∈ E

We have to prove that if 〈P,Q〉 ∈ E then for each C ∈ PCCS/E :

P
α- P =⇒ Q

α- Q ∧P(C) = Q(C)

We can distinguish three cases:

– P = Q
⇒ {RStoCCS is fully stochastic}

P
α- P ∧Q α- Q =⇒P = Q

⇒ {Def. P(C)}

P(C) = Q(C)

– P = (P1|P2)|P3 and Q = P1|(P2|P3):
• ` 6=←→a
⇒ {Def. - }

P = ((P1|P2) + (P1|P2))|P3 + (P1|P2)|P3 where Pi
`- Pi

⇒ {Def. - }

Q
`- P1|(P1|P2) + P1|(P2|P3) + P1|(P2|P3)

⇒ {C/E = {X|(Y |Z), (X|Y)|Z}}

P(C/E) =

P1(X) Y = P2 ∧ Z = P3

P2(Y) X = P1 ∧ Z = P3

P3(Z) X = P1 ∧ Y = P2

Q(C/E) =

P1(X) Y = P2 ∧ Z = P3

P2(Y) X = P1 ∧ Z = P3

P3(Z) X = P1 ∧ Y = P2

⇒
P(C/E) = Q(C/E)

• ` =←→a
⇒ {Def. - }

P =

P1|P2·⊕Pi
1

⊕Pi
1
+⊕Pi

2
|P3·(⊕Pi

1+⊕Pi
2)

⊕Pi
1+⊕Pi

2⊕P3
+

P1|P2·⊕Pi
2

⊕Pi
1
+⊕Pi

2
|P3·(⊕Pi

1+⊕Pi
2)

⊕Pi
1+⊕Pi

2⊕P3
+

Pi
1|P

o

⊕Pi
1
+⊕Pi

2
|P3·(⊕Pi

1+⊕Pi
2)

⊕Pi
1+⊕Pi

2⊕P3
+

Po
1 |P

i

⊕Pi
1
+⊕Pi

2
|P3·(⊕Pi

1+⊕Pi
2)

⊕Pi
1+⊕Pi

2+⊕Po
3

+

(P1|P2)|P3·⊕Pi
3

⊕Pi
1+⊕Pi

2+⊕Pi
3

+ (Pi
1|P2+P1|Pi

2)|P
o
3

⊕Pi
1+⊕Pi

2⊕Pi
3

+ (Po
1 |P2+P1|Po

2)|Pi
3

⊕Pi
1+⊕Pi

2⊕Pi
3

= ((P1|P2)|P3)·⊕Pi
1

⊕Pi
1+⊕Pi

2⊕P3
+ ((P1|P2)|P3)·⊕Pi

2
⊕Pi

1+⊕Pi
2⊕P3

+ (Pi
1|P

o)|P3

⊕Pi
1+⊕Pi

2⊕P3
+ (Po

1 |P
i)|P3

⊕Pi
1+⊕Pi

2+⊕Po
3

+

(P1|P2)|P3·⊕Pi
3

⊕Pi
1+⊕Pi

2+⊕Pi
3

+ (Pi
1|P2+P1|Pi

2)|P
o
3

⊕Pi
1+⊕Pi

2⊕Pi
3

+ (Po
1 |P2+P1|Po

2)|Pi
3

⊕Pi
1+⊕Pi

2⊕Pi
3

= ((P1|P2)|P3)·⊕Pi
1

⊕Pi
1+⊕Pi

2⊕P3
+ ((P1|P2)|P3)·⊕Pi

2
⊕Pi

1+⊕Pi
2⊕P3

+ (Pi
1|P

o)|P3

⊕Pi
1+⊕Pi

2⊕P3
+ (Po

1 |P
i)|P3

⊕Pi
1+⊕Pi

2+⊕Po
3

+

(P1|P2)|P3·⊕Pi
3

⊕Pi
1+⊕Pi

2+⊕Pi
3

+ (Pi
1|P2)|Po

3
⊕Pi

1+⊕Pi
2⊕Pi

3
+ (P1|Pi

2)|P
o
3

⊕Pi
1+⊕Pi

2⊕Pi
3

+ (Po
1 |P2)|Pi

3
⊕Pi

1+⊕Pi
2⊕Pi

3
+ (P1|Po

2)|Pi
3

⊕Pi
1+⊕Pi

2⊕Pi
3

where:

Pj
←→a- Pj , P

i
j

a- Pi
j , Pj

a- Po
j

⇒ {Def. - }

Q = P1|(P2|P3)·⊕Pi
1

⊕Pi
1+⊕Pi

2⊕P3
+ P1|(P2|P3)·⊕Pi

2
⊕Pi

1+⊕Pi
2⊕P3

+ Pi
1|(P

o|P3)

⊕Pi
1+⊕Pi

2⊕P3
+ Po

1 |(P
i|P3)

⊕Pi
1+⊕Pi

2+⊕Po
3

+

P1|(P2|P3)·⊕Pi
3

⊕Pi
1+⊕Pi

2+⊕Pi
3

+ Pi
1|(P2|Po

3)

⊕Pi
1+⊕Pi

2⊕Pi
3

+ P1|(Pi
2|P

o
3)

⊕Pi
1+⊕Pi

2⊕Pi
3

+ Po
1 |(P2|Pi

3)

⊕Pi
1+⊕Pi

2⊕Pi
3

+ P1|(Po
2 |P

i
3)

⊕Pi
1+⊕Pi

2⊕Pi
3

⇒ {C/E = {X|(Y |Z), (X|Y)|Z}}

P(C/E) = Q(C/E)

– P = X|(Y |Z) and Q = (X|Y)|Z: follows like the previous one.

G Proof Theorem 5

This theorem can be proved by induction on the syntax of Stoπ processes P
following the same schema proposed for PEPA and StoCCS.

H Proof Theorem 6

The statement follows by proving, by induction on the syntax of P , that:

– if P
α- P, P

α- Q and α ∈ {ab, ab,←→a (b)} =⇒P = Q;
– if P

a(b)- P, P
a(c)- Q then P(Q) = Q(Q[c/b]);

– if P
a(b)- P and P

a(c)- Q then P(Q) = Q(Q[c/b]);
– if P

α- P, P
α- Q and α ∈ {τ,←→a (•)} then P/≡ = Q/≡;

