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The Interaction of ‘Supply’, ‘Demand’, and ‘Technological Capabilities’ in terms of 

Medical Subject Headings: A Triple Helix Model of Medical Innovation  

 

Abstract 

We develop a model of innovation that enables us to trace the interplay among three key 

dimensions of the innovation process: (i) demand of and (ii) supply for innovation, and (iii) 

technological capabilities available to generate innovation in the forms of products, processes, 

and services. Building on Triple Helix research, we use entropy statistics to elaborate an 

indicator of mutual information among these dimensions that can provide indication of reduction 

of uncertainty. To do so, we focus on the medical context, where uncertainty poses significant 

challenges to the governance of innovation. The Medical Subject Headings (MeSH) of 

MEDLINE/PubMed provide us with publication records classified within the categories 

“Diseases” (C), “Drugs and Chemicals” (D), “Analytic, Diagnostic, and Therapeutic Techniques 

and Equipment” (E) as knowledge representations of demand, supply, and technological 

capabilities, respectively. Three case-studies of medical research areas are used as representative 

‘entry perspectives’ of the medical innovation process. These are: (i) Human Papilloma Virus, 

(ii) RNA interference, and (iii) Magnetic Resonance Imaging. We find statistically significant 

periods of synergy among demand, supply, and technological capabilities (C-D-E) that points to 

three-dimensional interactions as a fundamental perspective for the understanding and 

governance of the uncertainty associated with medical innovation. Among the pairwise 

configurations in these contexts, the demand-technological capabilities (C-E) provided the 

strongest link, followed by the supply-demand (D-C) and the supply-technological capabilities 

(D-E) channels.  

 

Keywords: innovation model; Triple Helix; uncertainty; redundancy; synergy; mutual 

information; medical innovation; Medical Subject Headings; MEDLINE/PubMed. 
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1. Introduction 

 

The development of models of innovation capable of increasing our understanding of the 

innovation process and of tracing/predicting innovation dynamics have been a longstanding 

central topic in the science-policy and innovation-studies literature as well as of policy debates 

(Martin, 2012). The complexity of the models of innovation proposed has increased over time: 

the “chain-linked” model of innovation, for example, advanced on linear models (technology-

push and demand-pull) by introducing feedback and feed forward loops among the different 

stages of the innovation process (Kline and Rosenberg, 1986). However, such interactive models 

are not sufficient to explain what drives innovation and technological development and why 

certain firms are more capable than others in pursuing innovation (Marinova and Phillimore, 

2003). Evolutionary economists, building on nonlinear feedback analysis from evolutionary 

biology, have instead pointed to the role of routines (i.e., standardized patterns of actions 

representing ‘genes’) that firms use to develop products and services (along technological 

trajectories), which, in turn, generate variation (Nelson & Winter, 1977; 1982). Products and 

services compete in market and non-market selection environments (Nelson & Winter, 1977) 

including technological (Dosi, 1982) and technoeconomic paradigms (Perez, 1983). 

 

In such a framework, one can expect more than a single selection mechanism to be relevant in 

the case of innovation. In his study of post-Schumpeterian contributions, Andersen (1994, p. 

195) noted that “(E)volutionary economics cannot rely on a standard form of explanation to the 

same extent as evolutionary biology.” Biological evolution theory, assumes variation as a driver 

and selection to be naturally given, while cultural evolution is driven by individuals and groups 
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who make conscious decisions on the basis of potentially different criteria (Newell & Simon, 

1972). As such, the evolving construct is not a given unit of analysis (Andersen, 1992, p. 14). 

Boulding (1978, p. 33) suggested that “(W)hat evolves is something very much like knowledge.” 

Yet, not only bodies of knowledge are evolving, but also markets. Henceforth arises the basic 

question, under which conditions can the different selection mechanisms be expected to co-

evolve and lead to (options for) new innovations?  

 

When different selection mechanisms can operate upon one another, a complex systems dynamic 

is generated. From this perspective, the model of the National Innovation System (e.g., Freeman, 

1987; Lundvall, 1988; Nelson, 1993), and its subsequent extensions to systems of regional 

(Braczyk et al., 1998) or sectorial (Malerba, 2002) innovation, can be considered as the 

specification of possible levels of integration (cf. Carlsson, 2006); but both integration and 

differentiation among selection environments can be expected to operate continuously in 

complex systems of innovation. The interactions among selection mechanisms generate options 

for innovation by decoding and recoding the relevant criteria (Cowan & Foray, 1997) or, in other 

words, puzzle-solving (Arthur, 2009; Bradshaw & Lienert, 1991).  

 

The literature on the co-evolution between two selection environments highlights processes of 

mutual shaping (McLuhan, 1964), niche formation (Schot & Geels, 2007), or lock-in (Arthur, 

1989). While stable equilibria are often attractors along the evolutionary pathway, pathways 

along trajectories can, however, become meta-stable or selected for globalization at the regime 

level, when three selection/variation mechanisms operate upon one another (Etzkowitz & 

Leydesdorff, 2000). Co-evolutions between two sub-dynamics can be continuously upset by a 
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third, leading to crises, hyper-stability, and other complex phenomena (Leydesdorff & van den 

Besselaar, 1998; Ulanowicz, 2009).  

 

---------------------------------------- 
Insert Figure 1 about here 

---------------------------------------- 
 

Here we consider a nonlinear three-dimensional model of innovation, with a specific focus on 

the medical context as discussed below. Figure 1 depicts the interactions among three key 

dimensions in innovation studies: supply-side factors, demand articulation, and technological 

capabilities (e.g. state-of-the-art instrumentations) to generate new products, processes and 

services. The triangle of arrows allows for—potentially alternating—clockwise and counter-

clockwise rotations and even (next-order) loops. The relation between any two dynamics can be 

spuriously correlated upon by a third factor, which may enhance or dampen the relation between 

the other two.  

 

For example, the relation between demand articulation and technological capabilities may lead 

to new supply-side offering of products, processes or services. In other words, the relations 

between each two dimensions can be auto-catalyzed by the third so that proliferations or 

extinctions become possible when the order of the arrows can circularly be closed into recursive 

loops (Krippendorff, 2009; Ulanowicz, 2009). A self-organizing complex system thus can be 

expected to emerge from linear flows when feedback loops continue to exist (Maturana, 2000). 

 

For the measurement of these complex dynamics, we turn to entropy statistics (Shannon, 1948; 

Theil, 1972). These measures have been used in Triple Helix research to build an indicator of 
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mutual information (relational dependence) among three dimensions x, y, and z, namely Txyz 

(McGill, 1954; Yeung, 2008, pp. 59)—the mathematical formulation of this indicator will be 

provided and utilized as part of our analyses. Negative Txyz values have been associated with the 

reduction of the uncertainty that prevails at the system level because of synergetic integration, 

while positive values can be considered as indicating differentiation among the interactions 

(Leydesdorff, Park, & Lengyel, 2014).1 Leydesdorff & Ivanova (2014) showed that negative 

information in a Triple Helix configuration finds its origin in redundancy that is generated when 

uncertainty is selected from different perspectives. New options are generated in the interactions 

among selection mechanisms. The total number of options—the maximum entropy—is thus 

increased. The increase in the redundancy may outweigh the increase of uncertainty generated in 

ongoing processes of variation. 

 

The relevance of this indicator for innovation studies can be appreciated from the two 

perspectives of reducing uncertainty or increasing redundancy. First, one can expect a 

configuration with less uncertainty to be more rewarding with regards to risk-taking than periods 

with high uncertainty in the relevant (selection) environments. Reduction of the prevailing 

uncertainty provides innovators with dynamic opportunities comparable to local niches (e.g., 

Schot & Geels, 2007). Note that reduction of uncertainty at the systems level provides an 

advantage for reflexive agency insofar as it is perceived.  

 

Second, the increase in redundancy itself is a structural effect at the systems level—that is, a 

result of interacting selection mechanisms. The relative reduction of uncertainty in the 

                                                             
1 Unlike variance analysis, uncertainty analysis in terms of bits of information does not presume normality in the 

distributions (Garner & McGill, 1956). 
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configuration is caused by an increase of the redundancy in terms of the number of options 

available for innovation. (The two components—relative information and redundancy—are each 

other’s complement, adding up to the maximum entropy of a system.) Among the total number 

of options possible, the redundancy represents the configurations which have not (yet) been 

realized. An increase in this number does not necessarily affect the number of the realized 

options as long as the maximum number of options also increases (Brooks & Wiley, 1986, p. 43; 

cf. Khalil & Boulding, 1996).  

 

The number of options available to an innovation system for realization may be as decisive for 

its survival as the historically already-realized innovations. Although uncertainty features in all 

innovation processes (Freeman & Soete, 2007, pp. 242 ff.), it poses crucial challenges to the 

governance of innovation especially in the medical context (Consoli et al., 2015; Gelijns et al., 

2001), which is the focus of our analyses. Also, the importance of the interplay among supply, 

demand, and technological capabilities in the medical innovation process is discussed in the 

framework on the progress of medical knowledge and practice proposed by Nelson et al. (2011) 

in terms of three enabling forces: advances of scientific understanding of diseases, learning in 

clinical practices, and advances in technological capabilities (which often originate outside of 

medicine) for the development of novel modalities of diagnosis and treatment.  

 

The Medical Subject Headings (MeSH) provided by the MEDLINE/PubMed publication data of 

the U.S. National Library of Medicine offer a valuable framework for operationalizing our 

research question about windows of opportunities in terms of numbers of options and possible 

reduction of the prevailing uncertainty in relation to the three sources identified by Nelson et al 
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(2011).2 The MeSH classification provides a rich controlled vocabulary, composed of individual 

“descriptors” (mi) that classify the topics/concepts of publications at different levels of 

specificity. The descriptors are organized in a tree-like network structure consisting of 16 

branches (high-level topics) denoted by α = {A, B, C, D, E, F, G, H, I, J, K, L, M, N, V, Z}. 

Within each branch, descriptors with shorter “Tree Number” identification codes are relatively 

general concepts that branch out into more specific concepts.3 

 

On the basis of this classification and in the vein of previous studies (Agarwal & Searle, 2008, 

2009; Leydesdorff, Rotolo, & Rafols, 2012; Shi et al., 2015), we use three MeSH branches as 

knowledge representations of supply, demand, and technological capabilities. The “Diseases” 

branch (α = C) is considered as a knowledge representation of demand for innovations—

knowledge and understanding of diseases incentivizes both patients and doctors to articulate 

demand; the “Drugs and Chemicals” branch (α = D) as a knowledge representation of the supply 

side in terms of therapeutics diagnostics (e.g. biological markers); and the “Analytic, Diagnostic, 

and Therapeutic Techniques and Equipment” branch (α = E) as a knowledge representation of 

the state of art of technological capabilities (e.g. surgical procedures, investigative techniques) 

that can mediate the supply-demand nexus. We note that a single MeSH term mi is not intended 

                                                             
2 The of US National Library of Medicine of the United States (NLM) have constantly received relatively large 

funding for maintaining and updating its biomedical and health information services—for example, the 2015 

budget for these services was of $117 Million (National Library of Medicine, 2015). This has enabled a relatively 

uniform application of the MeSH classification to publications by indexers over many years.  
3 For example, the descriptor “Nervous System” [Tree Number: A08] includes several child descriptors of 

increasing specificity: “Central Nervous System” [Tree Number: A08.186], “Brain” [Tree Number: 

A08.186.211],…, “Pituitary Gland, Anterior” [Tree Number: A08.186.211.464.497.352.435.500.500]. 



 

9 
 

to individually represent demand, supply, or technological capabilities. Rather, we constructively 

use the co-occurrence statistics derived from the sets of mi occurring within each publication to 

project each research area onto the C-D-E representation. Figure 2 shows the network structure 

of the MeSH system, indicating the breadth and depth of the knowledge domains represented by 

the three selected MeSH branches. 

---------------------------------------- 
Insert Figure 2 about here 

---------------------------------------- 
 

Our empirical strategy is structured as follows. We first explore the co-evolutionary dynamics 

within the C, D, and E knowledge spaces and search for the presence of statistical regularities 

that enable us to characterize the MeSH classification system. To do so, we apply statistical 

formulations from quantitative linguistics and information theory. We then analyze the 

redundancy between the C, D, and E as “information channels” first bi-laterally and then tri-

laterally. The latter will provide indication on the emergence of synergies among supply, 

demand, and technological capabilities over time arising from configurational feedback loops. 

We perform our analyses on the co-occurrence statistics of individual MeSH descriptors drawn 

from roughly 100,000 medical publications associated with three case-studies of medical areas 

characterized by breakthrough scientific discoveries and technological innovations, which are 

representative examples of supply, demand, and technological capabilities. We use this 

framework to test the null hypothesis that the tri-lateral relations are fully specified by the 

superposition of purely bi-lateral interactions, which in terms of the schematic Figure 1, tests the 

presence of tri-lateral interactions represented by the circulating arrows. 
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2. Case-studies and data 

To address our research question about innovation opportunities captured by the number of 

options and the possible reduction of the prevailing uncertainty among supply-demand-

technological capabilities in the medical context, we first identify case-studies of medical areas 

that (i) are representative of the three dimensions of our model as operationalized in terms of C, 

D, and E branches, i.e. medical areas that provide three different ‘entry perspectives’ on the 

medical innovation process; (ii) can be characterised by prominent innovation dynamics in terms 

of breakthrough scientific discoveries and technological innovations; and (iii) for which 

qualitative insights that can support the meaningful interpretation of the results of our analyses 

are already available.  

 

Using these criteria, we selected the following case-studies: Human Papilloma Virus (HPV), 

RNA interference (RNAi), and Magnetic Resonance Imaging (MRI).  These are considered as 

representative of C (demand), D (supply), and E (technological capabilities), respectively. 

Furthermore, the scientific discoveries and technological advancements within these medical 

areas were recognized by the award of Nobel Prizes in Physiology or Medicine. Recent research 

(Leydesdorff & Rafols, 2011; Leydesdorff et al., 2012, Rotolo et al., in press) provided us with 

qualitative insights into the innovation dynamics underlying these medical contexts. We begin by 

providing some background on these case-studies.  

 

First, HPV is a sexually transmitted virus. HPV infections are relatively diffused in the 

population and affect several parts of the human body (e.g., genitals, mouth, and throat). In the 

1980s, Harald zur Hausen, a virologist, and his team of researchers at the German Cancer 
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Research Centre provided evidence of the strong association between HPV (specifically HPV 

types 16 and 18) and cervical cancer (zur Hausen, 1976, 1987). Zur Hausen was awarded the 

2008 Nobel Prize in Physiology or Medicine for this discovery. The discovery enabled the 

emergence of a novel class of diagnostics for cervical cancer based on the detection of HPV 

DNA fragments (Hogarth, Hopkins, & Rodriguez, 2012) as well as two different HPV vaccines, 

namely Gardasil and Cervarix, that have been commercialized by Merck and GlaxoSmithKline 

since 2006 and 2007, respectively. More recently, researchers have also discovered that HPV 

variants are also linked to head and throat cancers, producing a paradigm shift in what was 

already considered a mature research area (Scudellari, 2013).  

 

Second, RNAi refers to the intracellular process by which microRNA (miRNA) or small 

interference RNA (siRNA) are able to specifically block fundamental gene expression pathways. 

Andrew Fire and Craig C. Mello provided evidence of the gene-silencing effect of miRNA in 

1998 (Fire et al., 1998). This discovery constituted the basis for their 2006 Nobel Prize in 

Physiology or Medicine. The additional role of siRNA was discovered by Hamilton and 

Baulcombe (1999). The potential of RNAi as a biological tool has been investigated, as the 

silencing of certain genes by means of RNAi could possibly be used to stop progression of 

diseases (e.g., cancers, genetic diseases, and infection agents). Given the broad range of potential 

therapeutic applications, the discoveries of miRNA and siRNA have increasingly attracted the 

attention of researchers as well as generated high expectations (Sung and Hopkins, 2006; 

Haussecker and Kay, 2015). More recently, however, the clinical development of RNAi has 

slowed down because of problems in translating from in vitro to in vivo experiments 

(Haussecker, 2012; Lundin, 2011). 
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Finally, MRI represents technological capability that has been repeatedly refined, evolving 

rapidly in the early 1970s from nuclear magnetic resonance (NMR) theory into a non-invasive 

imaging technology (Lauterbur, 1973). Paul C. Lauterbur and Peter Mansfield shared the 1993 

Nobel Prize in Physiology or Medicine for this application (Blume, 1992). The subsequent 

application of this technology within the biomedical domain alone are too many to adequately 

list. 

 
---------------------------------------- 

Insert Table 1 about here 
---------------------------------------- 

 

To identify publications related to these medical areas, we queried the MEDLINE/PubMed 

database in May/June 2014. Figure 3A shows the growth of this large open medical publications 

index, which exhibits a 3.6% annual growth rate since the 1960s, comprising more than 21 

million article records through 2010. In addition to the growth in the MEDLINE/PubMed 

database size, Figure 3B also shows the growth in the C, D and E branch vocabulary size, and 

the marked growth in the diversity (measured as the normalized entropy) of individual MeSH 

descriptors within each of these branches.  

 

In order to perform medical-area specific analyses, we used keywords-based search strategies 

denoted by q. We report the queries used in the retrieval in Table 1. For each area, we retrieve 

the Aq publications and tally the uses of the individual MeSH descriptors mi across the 

vocabulary set of size Vq; records with no MeSH descriptors were excluded from the data.4 HPV 

                                                             
4 The year 2014 was excluded since the records for this year were not yet complete at the date of this research. The 

majority of the publications with no MeSH descriptors are from recent years (after 2010), as they have yet to be 
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and RNAi are represented in the set by a similar number of publications (18,696 and 17,083 

respectively), while the sample of publications associated with MRI is about three times larger 

(62,842 publications). Note that the collected publications span different time periods: HPV 

publications are represented since 1963, RNAi publications since 1998, and MRI publications 

since 1978.  

 

At the article level, each publication p is characterized by an informative ‘fingerprint’ 

comprising the Np unique MeSH descriptors (mi) assigned to it (with Np >0). This set of distinct 

descriptors form a group {m1, m2…, mNp}, which summarizes the topical content of p at different 

levels of specificity. On the basis of this information, we calculate the average number of mi per 

publications, <Mq>, which ranges from 11 to 13 across the examined case-studies; additional 

descriptive statistics are reported in Table 1 and depicted in Figure 3.  

 
---------------------------------------- 

Insert Figure 3 about here 
---------------------------------------- 

 

The relational knowledge order has temporal features that are also important to identify, 

measure, and interpret. Figure 3C (left) shows aggregate measures of growth by year y, both in 

terms of the number of publications Aq(y), as well as the size of the MeSH vocabulary Vq(y). One 

factor contributing to the growth trends is the increasing journal coverage by 

MEDLINE/PubMed over time (Figure 3A). Nevertheless, we find that the trends exhibit 

common patterns independent of the time period: relatively fast growth during the first decade, 
                                                                                                                                                                                                    

annotated. The percent of publications with no MeSH descriptors, before the year 2011, is 2.4% (362 

publications), 3.7% (340 publications), and 2.7% (1379 publications) for HPV, RNAi, and MRI, respectively. 

However, our results are not sensitive to MeSH annotation vacancy nor time lags in the collection of data since our 

quantitative measures are calculated within each year group. 
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which then saturates at approximately 103 publications per year. The saturation in the growth of 

each research area is indicated by a kink in each count trajectory when plotted on a logarithmic 

scale. Compared to the early ‘seed phase’ growth regime, the eventually slowed growth rate 

likely reflects the upper limits to the research activity according to fundamental funding and 

labor limitations (Price, 1963, p. 85; Mutschke & Haase, 2001).5 

 

As discussed, the focus of our analysis is on MeSH descriptors within α = {C, D, E}, with  

roughly half of the MeSH descriptors we analyzed being classified within these branches.6 The 

numbers of assigned MeSH descriptors, np,α, the average, <α>, the standard deviation, σα, and 

the median, Med(α) of the number of descriptors per publication for the selected branches α are 

reported in Table 1 and Figure 3. These support our assumption that RNAi is mostly represented 

by MeSH descriptors within branch D, while MRI is represented by descriptors within branch E. 

In contrast, HPV appears at first to be equally represented by C, D, and E branches. However, 

the signed-rank test (Wilcoxon test) indicates that the differences in the medians between the C, 

D, and E distributions are significantly different from zero (p<0.001 for each pairwise 

comparison). Moreover, Figure 3D, which reports the distributions P(np,α) measuring the 

                                                             
5 It is also worth mentioning that MEDLINE/PubMed query service, which is based on a non-autonomous category 

scheme that requires human input and regulation, appears to be functioning efficiently as a search and retrieval 

service. This is evidenced by the saturation in the Aq(y) observed for MRI. The saturation around approximately 

103 publications per year reflects the intended outcome of the query, which is aimed at obtaining a refined subset 

of research articles that are specifically related to MRI in context, without being overwhelmed by the numerous 

publications that use the technology in a peripheral way. Consider that in the broadest sense, the total number of 

publications per year loosely related or relying on MRI is most certainly much more than 103 per year (e.g., the 

Journal of Magnetic Resonance Imaging publishes around 103 articles per year alone). 
6 The MeSH tree is however not a ‘real’ tree because there are instances of local loops within the MeSH network, 

with some MeSH descriptors belong to multiple α and/or multiple tree levels. For example, 6.9% of the mi in the 

C, D, and E branches have more than one branch affiliation. 
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likelihood of finding np,α MeSH descriptors from branch α in a given publication p, shows that in 

the bulk of the distribution P(np,c) for HPV is shifted more towards larger np,c values. This further 

confirms that HPV is foremost situated within branch C. 

 

3. Empirical approach and results 

 

3.1. Medical areas as vocabulary spaces of MeSH descriptors 

 

The MeSH vocabulary space is a growing system, characterized by the entry of individual mi, 

which due to the nature of its relational construction, can be expected to affect the organization 

of a large subnetwork of the vocabulary space. The persistent expansion of the MeSH 

communication system, visualized in Figure 3B, shows the total number of MeSH descriptor 

uses, Mα(y), and the vocabulary size, Vα(y), of all mi within a given branch α, calculated using all 

of the MEDLINE articles indexed in year y (as indicated in Figure 3A). Furthermore, the usage 

C(mi,y) of individual MeSH mi, measured by the number of articles annotated by mi in year y, 

provides insight into the diversity of the MeSH descriptors. To quantify the usage diversity 

across all mi within a given α, we calculated the normalized entropy (termed efficiency), with log 

calculated in base 2: 

∑
∈

−=
)(

)(/log),(log),()(
yVi

ii yVymPymPyE
α

αααα

 

 where Pα(mi,y)= C(mi,y)/ Mα(y) is the frequency of mi in y. Figure 3B shows that each efficiency 

trajectory Eα(y) is increasing over time, especially in the case of branch E, indicative of the 

increasingly diverse (specific) role of ‘analytic, diagnostic, and therapeutic techniques and 

equipment’ in the medical enterprise. On the other hand, the entropy ED(y) for branch D appears 
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to be saturating since the year 2000, suggesting a bottleneck in the discovery and developmental 

process of drugs and chemicals. 

 

Thus, owing to its wide range and increasing depth and specificity, the MeSH descriptors 

provide a quantifiable framework for observing and measuring the co-evolutionary dynamics of 

innovation. While the synergetic relations across the C, D, and E branches are the main focus of 

our analysis, in order to better understand the quantitative features of this communication 

system, we start here by analyzing the statistical patterns in Aq(y) and Vq(y) that are common 

across each q. We then use the knowledge of the underlying MeSH vocabulary statistics to 

visualize the usage trajectories of individual mi as well as the association patterns between the C, 

D, and E branches. Together, these data-driven explorations provide insight and intuition for the 

final section, where our Triple Helix supply-demand-technological capabilities model of medical 

innovation is specified using the mutual information in C, D, and E as the measure of potential 

synergy. 

 

We initiate the micro-level analysis from an intuitive starting point based on the fundamental 

question: How do the statistical patterns in the MeSH classification (communication) system 

compare with those often present in other language systems?  Quantitative models of language 

are based on principles of ‘efficient communication’ (between the messengers and receivers, so 

as to reduce the effort of articulation while also maintaining manageable levels of noise in the 

communication signal) and ‘organization’ (according to topics, categories, and grammar) that 

play key roles within a vocabulary space. Zipf’s law, Heaps’ law, and other emergent features 

such as category schemes, can be used as empirical benchmarks to compare language models 
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(e.g., Ferrer I Cancho & Sole, 2003; Puglisi, Baronchelli & Loreto, 2008; Serrano, Flammini & 

Menczer, 2009). In this spirit, for each medical research area q, we first demonstrate statistical 

patterns in the vocabulary space, which indicate that the MeSH categories can be considered as 

statistically stable and efficient means of communication. 

  

We first identify the set of unique mi for each query (q) as the vocabulary Vq. We then index each 

mi by its rank r within the respective vocabulary by sorting the MeSH descriptors in descending 

order according to the total number C(r) of appearances in each specific q, i.e. C(r=1)≥ C(2)≥ 

C(3)≥ … C(r=Vq). Figure 4 illustrates the dynamic features of the MeSH space, highlighting the 

entry and rank-instability among the top-200 most occurring MeSH descriptors up to 2013. Each 

mi is identified in the left-most column by its primary branch: C (red), D (green), E (yellow) and 

‘Other’ (white). Also, the identity of the top-100 mi are shown in Figure 5 for visual inspection.7 

Moreover, in order to analyze the temporal information, we also tracked C(r,y), the number of 

publications from year y annotated by the MeSH descriptor r, and assigned a local year-specific 

rank ry to that mi. Focusing on the top-200 mi, we separated this group into six subsets (sextiles) 

of 33 for each y based upon ry. Because ry corresponds to a percentile within the top 200, we use 

a partitioned color scheme in Figure 4A that facilitates the visualization of the rank (in)stability 

of mi over time. This method shows how the rank ordering is sensitive to the entry of new mi as 

well as the relative growth and decay in the use of established mi. 
                                                             
7 It is worth noting that the top few descriptors in each query are general, if not entirely contained, within the 

definition of each q. The descriptors that follow tend to become increasingly specific corresponding to lower 

branches of the MeSH tree (see Figure 4). Because C(r) takes the form of an extremely right-skewed power-law 

distribution, one which is nearly scale-free except for the slight truncation for large r (due to finite-size constraints 

because the vocabulary space is not infinite in size), there is no natural cutoff rc that separates the core mi from the 

rest of the mi in the vocabulary set. This is important for our analysis, as it indicates that we should not discard any 

mi above or below some threshold, because a natural threshold cannot be clearly identified. 
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---------------------------------------- 
Insert Figures 4 and 5 about here 
---------------------------------------- 

 
 

We emphasize the MeSH entry process using white cells to indicate the absence of any 

publications in y with MeSH descriptor r, C(r,y)=0,  and black cells to indicate the mi with rank 

ry > 200. Hence, a transition from white to non-white indicates the birth of a MeSH descriptor 

into the corpus Vq, representing a growth mechanism that has notable implications on the 

organization and dynamics of the communication system (Petersen, 2012). This can be 

appreciated by calculating the entry rate of new MeSH descriptors and their long-term impact. 

To measure the relative importance of the new mi, we counted the total number of appearances of 

the new MeSH descriptors from a given year, and divided this “net impact” by the total number 

of appearances of the top 200 MeSH descriptors from the same year, so to control for the growth 

of Aq(y). As an illustrative example, Figure 4C highlights the burst of MeSH entries in the period 

1996-1998 for HPV. During this period, the ten new MeSH descriptors account for a 5% share 

relative to the top 200 MeSH descriptors in the period following 1996, marking a noteworthy 

entry period within the knowledge space of HPV.  

 

This set of new HPV MeSH descriptors merits closer inspection. Figure 4C lists them 

individually, along with their associated main branch, and their individual impact, calculated as 

the fraction of publications after their inception in which they appeared. These new descriptors 

are associated with key discoveries that link certain types of cancers to specific HPV variants 

represented by the four mi corresponding to Human papillomavirus 6,11,16, and 18. Indeed, 

HPV 16 and 18 (appearing in 14% and 6% of subsequent publications) have since been 

established as the culprits associated with cervical cancer. The relational information contained 
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in these MeSH entry patterns further sheds light on the complex cross-cutting nature of the 

combinatorial creativity in innovation processes. This is demonstrated by the fact that the new 

MeSH descriptors are representatives of six branches, such as “Patient Acceptance of Health 

Care” which is from the Health Care branch (N), with only three from the D and E branches.   

 

Furthermore, by projecting MEDLINE/PubMed articles onto the C-D-E representation, we are 

also able to provide quantitative insights into the historical evolution of MeSH descriptor 

combinations and the innovations they represent. For example, Table 2 demonstrates the key 

relations between “DNA, viral” and the new methods associated with MeSH from branch E (e.g. 

“Polymerase Chain Reaction”, “In Situ Hypbridization”) in HPV research. In the RNAi domain, 

the impact of “Transfection” methods is appreciated by noting its impact on various fundamental 

lines of cancer research. Similarly, the development of “Contrast Media” chemicals has also had 

a wide-reaching effect in MRI research, mediating the application of this technology to the 

microscopic cellular domain. As such, analyzing MeSH combinations that span all three 

branches may serve as a useful research evaluation indicator of novelty representing the 

integration of the three innovation channels. 

 

Returning to the entry-exit process illustrated in Figure 4A, a transition between black and non-

black cells indicates notable rank transitions out of the set of top-200 used MeSH descriptors. 

Interestingly, the black cells are dispersed across the entire range, consistent with burstiness in 

topicality (Chen, 2006), reflects how the research front captured by scientific literature can 

quickly change direction, either by chance or by external redirection (e.g. by funding initiatives). 

Nevertheless, the top-33 MeSH descriptors in each query (yellow scale), are relatively stable and 
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represent the core vocabulary subset. The rest of the MeSH descriptors exhibit variable rank 

mixing. As it will be discussed in the next section, this variability is consistent with the 

innovative dynamics represented by the coupling of the C, D, and E branches of the MeSH 

classification. It should also be noted that the level of rank-stability provides valuable 

information concerning the organization and dynamics of complex systems (Blumm et al., 

2012).  

 

Insight into the evolution of the knowledge order can be obtained by applying a system-size 

scaling analysis, as commonly implemented in computational linguistics. Consider the two basic 

quantities that define each q: (i) the number of distinct MeSH descriptors (the size of the 

vocabulary) used in a given year, Vq(y), and (ii) the total number of MeSH descriptors used in 

that same year, Mq(y), which is roughly proportional to the total number of papers Aq(y) (see 

Figure 3). Heaps’ (1978) law, V = b Mβ, represents a simple yet revealing allometric scaling 

relation between a corpus size measure, M, and a diversity measure, V. The scaling exponent β 

quantifies how the topical diversity (variety) of a research area—measured by the vocabulary 

size Vq(y)—depends on the conceptual volume of the research area, Mq(y). Furthermore, since 

Mq(y) and Vq(y) tend to grow over time, the value of the scaling exponent β provides indication 

of the marginal returns to Mq(y) that may arise with the inclusion of a new descriptors: the 

derivative dM/dV = b -1/β V (1/β)-1 is increasing with V for β<1 and decreasing with V for β>1. 

(The constant b is a mathematical artifact, and is not important here since the allometric relation 

is fundamentally scale free, i.e. β does not depend on the units chosen to measure M or V.)  
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The value β<1 is commonly found for systems characterized by efficiency-oriented principles of 

organization (Bettencourt et al., 2007). For each q we observe sub-linear values, β ≈ 0.7, 

indicating an economy of scale, whereby there is a decreasing marginal need for new MeSH 

descriptors, but an increasing marginal returns per new mi—likely arising due to the tree-like 

network structure that is fundamental to the MeSH classification system.  Sub-linear β values 

have also been previously reported for seven different languages captured in extensive written 

corpora (Petersen, 2012).  

 

Heaps’ law is frequently complemented by a second statistical regularity: Zipf’s (1949) law, 

which measures the size-distribution of the entities. Knowledge of the size distribution—here the 

distribution of C(r)—can provide insight into the organization and relational structure of the 

communication system by ruling out certain underlying processes while pointing to others—e.g. 

preferential attachment, structure-mediated growth, life-cycles, and the role and strength of 

communicator noise (Ferrer i Cancho & Sole, 2003; Newman 2005; Amaral et al., 1998; 

Petersen et al., 2012; Petersen et al., 2014). The possible functional forms of C(r) (e.g., linear, 

exponential, power-law, discrete generalized beta distribution) can be distinguished by plotting 

on a log-log scale. Our results indicate that the C(r) are indeed approximately distributed 

following Zipf’s law: C(r) = C(1) r-ξ, that is, as a power-law distribution with scaling exponent ξ 

≈ 1, for several orders of magnitude.   

 

The statistical regularities captured by β and ξ are robust across the three examined case-studies 

of medical areas, thus indicating that each of the MeSH vocabularies forms a relatively 

comprehensive representation of a respective knowledge space. These results legitimate a 
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quantitative decomposition of each q into its fundamental (topical) knowledge representations. 

As such, we expect that reasonable queries, in general, can be expected to map onto a 

representative knowledge order featuring these statistical regularities. 

 

Albeit entirely descriptive, these data-mining exercises serve as formal data-exploration 

procedures that are necessary prerequisites in large data-centric analyses: had the statistical 

regularities failed to emerge, we would not have been legitimated  to continue with a 

comparative case-study analysis. In summary, we argue in this section that the composition and 

dynamics of the MeSH classification for the three case-studies of medical areas under study can 

be considered as interactions among three knowledge orders. This provides us with a starting 

point for investigating the mutual relations and potential synergy contained in the Triple Helix of 

C-D-E categories. In the following sections we further investigate our central hypothesis that the 

evolution of each medical area is mediated by synergies among the demand-supply-technological 

capabilities communication channels. 

 

3.2. Tracing mutual information and redundancy in C-D-E 

 

To evaluate the mutual information between C, D and E branches, we use the Shannon’s 

definition of information for a single discrete random variable x (Shannon, 1948): 

∑−=
i

iix xPxPH )(log)( 2  

This is defined in bit units when using log2. On the basis of this definition, the pairwise mutual 

information (transmission) between two variables x and y is defined as:  

Txy = Hx + Hy - Hxy, 
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where the joint entropy is ∑−=
ij

iiiixy yxPyxPH ),(log),( 2 . Txy by definition can assume only 

positive values (Theil, 1972). In the case of three discrete random variables x, y, and z the mutual 

information is instead defined as: 

Txyz = Hx + Hy + Hz – Hxy – Hxz – Hyz + Hxyz, 

where the joint entropy is ∑−=
ijk

kiikiixyz zyxPzyxPH ),,(log),,( 2 . Txyz can assume both 

positive and negative values (Abramson, 1963, pp. 131 ff.; McGill, 1954; Yeung, 2008, pp. 59f.). 

Leydesdorff & Ivanova (2014) suggested that positive Txyz values correspond to relational 

integration, while negative values correspond to ‘synergetic integration’ in terms of correlations 

and positions. The reduction in the uncertainty is generated (as mutual redundancy) because the 

interaction terms have different meanings in each of the full sets and can thus be counted twice. 

In other words, a communication field or ‘overlay’ (Etkzowitz & Leydesdorff, 2000) can be 

generated on top of the sum of communication channels because of possible next-order loops in 

the communication (Ivanova & Leydesdorff, 2014).  

 

The Txyz indicator enables us to quantify this effect (Jakulin, 2005; Yeung, 2009), with a focus on 

C, D and E branches. Three interacting (pairwise) information channels can be defined, i.e. C-D, 

C-E and D-E. These can be used to assess the TCD, TCE, and TDE bilateral mutual information as 

well as the TCDE trilateral mutual information. When these are considered together, they give rise 

to complex features in a ‘triple helix’ configuration that can be additional (or subtractive) with 

respect to the sum of single-channel systems (Krippendorff, 2009).  
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In principle, every distinct triplet (mi, mj, mk) of MeSH descriptors assigned to each publication 

can be interpreted as a “knowledge encoding”. However, the combinatorial space of all distinct 

mi triplets corresponds to a language system with an extremely large alphabet and would be 

inefficient and easily dominated by fluctuations (noise). By way of example, consider the central 

dogma of the genetic transmission of biological information, which is based upon the 64-letter 

codon alphabet that is translated (with redundancy) into a code based on a 20 to 22 letter amino 

acid alphabet. The built-in redundancy in the translation steps of this communication system has 

implications for the efficiency, directionality, and error correction capability of the genetic code 

(Yockey, 2005).  

 

In order to avoid the problems associated with an extremely large alphabet, for theoretical and 

computational reasons, we explore more redundant representations of the knowledge space. 

Specifically, we do not track all relational combinations of MeSH descriptors (mi, mj, mk), but 

instead count the number of MeSH descriptors from each of the C, D, and E branches, (np,C, np,D, 

np,E), assigned to a given publication p. Because the number of MeSH descriptors assigned to 

each publication can be interpreted in various ways, we proceed with a heuristic that investigates 

different projections of a given publication p onto C-D-E. All three definitions are based on a 

count vector, Zp,CDE ≡ (zp,C,zp,D,zp,E) = f(np,C,np,D,np,E),  where each component zp,α depends on np,α 

via a function f : np,α à zp,α.  

 

In the first definition of f, we consider z as a binary indicator: zp,α is equal to 1 if np,α > 0, i.e. if at 

least one MeSH descriptor from the α branch is assigned to p, and 0 otherwise. In the second 

definition of f, we use the median value as threshold: zp,α is equal to 1 if np,α > Med(α), and 0 
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otherwise (median value are listed in Table 1). In the final definition of f, we use a full count 

definition, i.e. zp,α = np,α. Since the first two definitions reduce the branch representation to a 

binary field, they significantly reduce the observation (communication) space to the eight 

possible combinations corresponding to Zp,CDE = (±1,±1,±1). Thus, while a binary representation 

may be more efficient, it is also an extremely redundant communication system. The full count 

representation, however, is less efficien: there are about 203=8000 possible “encodings” because 

the maximum np,α value we observed was roughly 20 for each of the three C, D, E categories.  

 

3.2.1. Defining confidence intervals 

 

In the analysis that follows, we shall first investigate the conditions under which the bilateral 

(TCD, TCE, and TDE) and trilateral (TCDE) mutual information are significantly different from zero.8  

In order to establish statistical significance levels, we next outline a shuffling null model that 

enables us to specify confidence intervals for the empirically observed 21ααT and TCDE values.  

 

Our shuffling method operates at the level of publications, which are each characterized by np,α 

descriptors. For each year, we count the total number of descriptors from all Aq(y) publications in 

that year:  

∑
=

++=
)(

1
,,, )()(

yA

p
EpDpCp nnnyM  

                                                             
8 It is worth noting that mutual information is equal to zero when the underlying random variables are independent, 

i.e. the joint distribution of the random variables is equal to the product of the individual distributions (e.g., 

P(nC,nD) is equal to P(nC)P(nD)). 
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We then shuffle these MeSH descriptors, maintaining (i) the total number ∑
=

=
)(

1
,)(

yA

p
pnyM αα  of 

descriptors from each branch per year, and (ii) the total number (np,C + np,D + np,E) of descriptors 

assigned to each publication. In other words, the procedure preserves the average, but not the 

median np,α since the marginal probability distributions may change. However, the numbers of 

publications and descriptors shown in the panels on the left of Figure 3 and also in Figure 5 

remain unchanged since our shuffling is performed only within the publications of a given y and 

q.  

 

This shuffling method reveals how much the mutual information T may depend on the specific 

allocation of MeSH descriptors at the publication level. Values of 21ααT and TCDE that exceed the 

confidence intervals established by randomization indicate that the pairwise and triple-helix 

relations are in excess of what one can expect to be contributed to the C-D-E signal by semantic 

noise, which may very well exist in the process of assigning MeSH descriptors to individual 

publications (e.g., indexer effects). 

 

 

3.2.2. The pairwise mutual information 

 

The pairwise mutual information )(21 yT αα  corresponding to the full count representation zp,α = 

np,α is depicted in Figure 6. As noted above, for each query and each count map definition, we 

shuffled the Mq(y) descriptors in year y and calculated )(21 yT rand
αα

. We constructed 100 
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randomized )(21 yT rand
αα

 time series to estimate 90% confidence intervals corresponding to the 

value for which only 5% of the randomized )(21 yT rand
αα

 were above or below, respectively. We 

also use the upper and lower confidence-interval bounds as indicators for the degree to which 

)(21 yT αα
 is significantly different from zero.  

 

For each q and each α1-α2 pair, Figure 6 shows a decreasing )(21 yT αα
, which saturates between 

0.05 to 0.2 bits. This is consistent with the expectation of outward expansion of an emerging 

research field because of increasing specialization, corresponding to a reduction of the mutual 

dependence between α1 and α2. In other words, this indicates that MeSH descriptors of each α are 

becoming more distinctly informative (decoupled) in increasingly elaborated discourses, rather 

than being locked into the space of initial combinations. There are, however, short periods in 

which )(21 yT αα
increases (e.g. for HPV around 2000 and MRI around 1996). This provides 

indication of increasing dyadic coupling, possibly originating from paradigm shifts that 

collectively reconfigure the direction of an entire field. The comparison of the magnitudes of the 

)(21 yT αα
 for each q shows that TCE(y) values are on average the largest, with TDC(y) being 

slightly larger than TDE(y). This lends support to our conclusion that the C-E channel represents 

the strongest dyadic link, as in Figure 8.  

 

The analysis also reveals various periods when )(21 yT αα
 in the empirical data is above the 90% 

confidence interval, thus indicating an increase in the mutual information above what is expected 

from just the background coupling of mi. Figure 6 suggests that these periods tend to occur in 
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each )(21 yT αα
where the dominant branch representing each query, αq, is not included, i.e., 

TDE(y) for HPV, TCE(y) for RNAi, and TCD(y) for MRI. Because our identification strategy 

identifies each research area with a main branch, thereby serving as its ‘entry point’ into the 

multidimensional model, the pattern of excess )(21 yT αα
 between the adjacent branches points to 

presence of higher-order C-D-E coupling. The instances of mutual information in excess of the 

90% confidence intervals also provide quantitative indication that the three branches are coupled 

via tri-lateral relations, which are ‘blinded’ in the analysis of bilateral relations. In other words, a 

communication field (or ‘overlay’ of communications) is indicated as significantly contributing 

to reducing the uncertainty that prevails in the configurations among the three branches. 

Investigating the sources of this excess reduction of uncertainty is an avenue for further research, 

likely requiring closer inspection of micro-level analysis of dyadic, triadic, and higher-order 

correlations between individual mi. 

 
---------------------------------------- 

Insert Figure 6 about here 
---------------------------------------- 

 
 

3.2.3. The mutual information in three dimensions 

 

The dynamics of the mutual information in three dimensions can provide insight into the 

evolution of redundancy (synergy) within the C-D-E triple-helix relations. The yearly mutual 

information in three dimensions is defined as: 

TCDE(y)= HC(y) + HD(y) + HE(y) -HCD(y) - HCE(y) - HDE(y) + HCDE(y). 
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As discussed, TCDE can be negative, thereby indicating a reduction of uncertainty due to 

increasing redundancy. To appreciate the origin of negative values, it may be helpful to rewrite 

the equation above in terms of two contributions, as follows:  

TCDE(y) = [TCD(y) + TCE(y) + TDE(y)] + [HCDE(y) - HC(y) - HD(y) - HE(y)] 

Due to the subadditivity property, ∑ =
≤

n

i in xHxxxH
121 )(),...,,( , which hold for any dimension 

n≥ 2, the second bracket makes a negative contribution, whereas the terms in the first bracket are 

strictly positive.9  

 

In other words, negative TCDE(y) values arise when the differences in entropy in the second 

bracket outweigh the contributions from the pairwise mutual information. This scenario 

represents ‘synergetic’ resonance, generating reduction of uncertainty, among the three helices 

(Leydesdorff & Ivanova, 2014; Leydesdorff, Park & Lengyel, 2014). As discussed, a reduction 

of uncertainty can also be considered as a niche that can provide opportunities for innovation 

(Schot & Geels, 2007).  

 

                                                             
9 In two dimensions the inequality 

12

2

1 21 ),()(0 ∑ =
=−≤

i i TxxHxH   corresponds to the exact definition of the 

mutual information, thus establishing its positivity. In three dimensions, 

∑∑ +−=−≤
=

3
123

3

1 321 ),,()(0
ij iji i TTxxxHxH , and in four dimensions, 

∑∑∑ +−=−≤
=

64
1234

4

1 4321 ),,,()(0
ij ijijk ijki i TTTxxxxHxH , where the sums are over the permutations of 

the indices. It follows (inductively) that in any given dimension n, we may conjecture that there exists a 

combination of mutual information corresponding to ∑ =
−≤

n

i ni xxHxH
1 1 ),...,()(0 , which is by definition 

positive (or zero in the null case of complete independence). Note that the sign of the nth-order mutual information 

alternates consequentially with each additional dimension (Leydesdorff & Ivanova, 2014). 
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Figure 7 shows TCDE(y) for each query and using each of the three MeSH count definitions. This 

figure reports the 90% confidence intervals (shaded regions) calculated from 100 randomized 

)(yT rand
CDE

 time series. To reemphasize, the mean random trajectory )(yT rand
CDE

 measures the 

background (systemic) redundancy, since all paper-level information is eliminated by the 

randomization procedure. Negative deviations indicate more synergy than expected by random 

mixing, and positive deviations indicate less synergy than expected from random fluctuations. 

 
---------------------------------------- 

Insert Figure 7 about here 
---------------------------------------- 

 

The differences among the counting definitions are more pronounced for TCDE (in Figure 7) than 

for the pairwise )(21 yT αα
 (Figure 6).  For the first two counting methods, which apply 

thresholds to np,α thereby significantly reducing the information content of the communication 

channels, we observe TCDE(y) ≈ 0. Values around zero indicate that the pairwise mutual 

information are perfectly balanced by the excess uncertainty. As such, the synergies are not 

evident using these two simple counting schemes.  

 

When using the full-count method, we find that most TCDE(y) values are significantly negative, 

ranging from -0.1 to -0.4 bits, depending on q and y. In other words, the nonzero TCDE(y) 

indicates that the C-D-E interaction is indeed significant, further suggesting the limitations of the 

analysis of bilateral information in tracing innovation dynamics in the medical context. However, 

most of the empirical TCDE(y) curves are contained within the 90% confidence interval bands, 

meaning that the synergy is, most of the time contained, at the systemic level. When TCDE(y) is 

not contained by the 90% confidence interval bands, it is typically more negative, indicating 
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synergy significantly more than expected from the background resonance of C-D-E. The most 

apparent periods of synergy occur for HPV during the period 1999-2001, for RNAi during the 

period 2010-2012, and for MRI from 2004 to 2013.  

 

Decomposition of the three pairwise mutual information trajectories for HPV in Figure 6 reveals 

that TCD(y), owing to a relatively large HD(y), is responsible for the deviations in TCDE(y). This 

increase of uncertainty in the configuration indicates a ‘re-organization’ in the chemical and 

drugs branch (D), consistent with the entry of “Cancer vaccines” and other important MeSH 

descriptors representing breakthroughs in the years 1996-1998 immediately preceding, as well as 

with the intense research efforts focused on the development of molecular biology-based 

diagnostic technologies (Hogarth et al., 2012), which sourced from chemicals (e.g. proteins) 

comprising D.  

 

For additional examples on the interaction between C-D-E, consider the new mi highlighted in 

Figure 4C, which capture the shifting of the research front during the subsequent decade towards 

the rapid development of HPV (cancer) vaccines. Moreover, the excess redundancy exhibited by 

MRI from 1984-present is owed to the increasing number of diseases and biomarkers that 

contributed to the relevance of MRI as a diagnostic instrument (Blume, 1992; von Hippel, 1988), 

which translated into additional redundancy in the C-D-E relations. The period indicated for 

RNAi (2010-2013) corresponds with the current period of relative stagnation for technical 

reasons, which, in turn, offers opportunities for advancements and innovation in new directions 

(Rotolo et al., in press).  
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4. Discussion and conclusions 

 

We developed a Triple Helix model of innovation based on three interacting sub-dynamics: 

supply of and demand for innovation, and technological capabilities that are available to mediate 

innovation. Such a specification was operationalized with the use of entropy statistics of mutual 

information among three interacting dimensions (McGill, 1954; Yeung, 2008). We use the 

indicator Txyz to measure the reduction of uncertainty and increasing redundancy in the 

innovation process (Leydesdorff and Ivanova, 2014).  

 

Given the persistent uncertainty that is present in all the stages of the medical innovation process 

(e.g. Consoli et al. 2015; Gelijns et al. 2001), the quantitative measurement of uncertainty using 

information theory is particularly apt for testing our model. In order to operationalize a study of 

the mutual information among supply, demand, and technological capabilities, we leveraged the 

vast, consistent and detailed vocabulary of terms, namely MeSH descriptors (mi), used to 

describe the topical content of individual medical publications. More specifically, we used the 

set of descriptors associated with the “Diseases” (C), “Drugs and Chemicals” (D), and “Analytic, 

Diagnostic, and Therapeutic Techniques and Equipment” (E) branches of the MeSH 

classification as knowledge representations of supply, demand, and technological capabilities, 

respectively, and the co-occurrence of descriptors in publications as information for the 

longitudinal analyses of (bilateral and trilateral) mutual information between the dimensions 

discussed above.  
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Due to the data-intensive nature of our analysis, we began with prerequisite testing of our 

measurement instruments by examining the MeSH classification from a language-

communication system perspective. The prevalence of mi from the C, D, and E branches 

provided the opportunity to identify two statistical regularities: (i) the relationship between the 

number of unique MeSH descriptors and the total number of descriptors used in a given year 

follows Heaps’ law with a scaling coefficient β ≈ 0.7; while (ii) the relationship between the 

number of times a descriptor is assigned to publications, its use C(r), and the rank of this 

descriptor in comparison to other descriptors, r,  follows a Zipf’s law with scaling coefficient ξ ≈ 

1.0. These statistical regularities, which were common to each q, point to the capacity, stability, 

and efficiency of the MeSH ‘communication systems’ representing knowledge orders. 

Interestingly, the sublinear (β<1) Heaps’ coefficient values point to the presence of increasing 

marginal returns associated with the addition of a new descriptor to the vocabulary space of a 

given knowledge area. 

 

We then analyzed the descriptors composing the MeSH vocabulary of three case-studies of 

medical areas, namely RNAi, HPV, and MRI. We selected these case-studies as representatives 

of the three medical innovation dimensions, thus representing different ‘entry perspectives’ for 

our model. Our analyses confirmed this ex-ante selection: HPV was mostly represented by 

descriptors within C (demand), RNAi by descriptors within D (supply), and MRI by descriptors 

within E (technological capabilities). Our results revealed the existence of a stable core set of 

descriptors that delineate a given medical area as well as of various unstable descriptors that 

enter in and exit from the vocabulary over time (e.g., those descriptors that move in and out of 

the top-200 MeSH rankings in Figure 4).  
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To give an example of the significant cross-cutting information contained in the entry dynamics 

of the MeSH descriptor vocabularies, we refer to the case of HPV research, for which descriptors 

of cervical-cancer specific HPV variants (“Human papillomavirus 16, and 18”) entered into the 

vocabulary during the years 1996-1998 (see Figure 4C). During this same period, several other 

descriptors entered in the vocabulary of HPV research (e.g., “cancer vaccines”, “young adult” 

females, “Patient Acceptance of Health Care” and “Health Knowledge, Attitudes, Practice”). 

These additional descriptors are indeed central to recent debates concerning the ethics of cancer 

vaccines, public anti-vaccination movements, and government vaccination policies and 

interventions (Horne et al., 2015).  

In other words, our investigations into the dynamic properties of the MeSH categories identified 

both change—as in the growth of the communication system measured by Vq(t)—and stability—

in the form of statistical regularities over time and across q captured by Zipf’s and Heaps’ laws. 

Stability prevails and provides us with a baseline against which one can measure. We then 

developed and implemented a shuffling null model for MeSH descriptors that enabled us (i) to 

assess the extent to which values of mutual information fall within an expected or unexpected 

range over time, (ii) to identify the significance of the non-zero mutual information values, and 

(iii) to detect the possible origin of the deviations from the empirical confidence intervals (e.g. 

MeSH indexer effects). 

 

---------------------------------------- 
Insert Figure 8 about here 

---------------------------------------- 
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To highlight the crucial role of technological capabilities as a driving force of the medical 

innovation process, it is worth noting that the percentage of MeSH descriptors in the E branch 

has increased during the entire period following the mid-1990s for each case-study (see Figure 

4B). Furthermore, cross-comparison of the probability distributions P(np,α) in Figure 3 and the 

)(21 yT αα
curves in Figure 6 indicate that C-E (demand-technological capabilities) relation is the 

strongest of the three bilateral channels. Indeed, the growth in the prevalence of mi from branch 

E is further complemented by a surge in the late 1980s in the diversity of mi from branch E, 

quantified using the entropy efficiency index Eα(y), which we calculated for the entire medical 

literature, comprising more than 21 million MEDLINE articles through 2010 (see Figure 3B). 

These trends likely arise due to technological capabilities representing both inputs to and outputs 

of the scientific production function (Stephan, 1996). For example, MRI is used in biomedical 

research as well as in diagnostic patient care, serving as a widespread image analysis tool, from 

the micro scale of individual molecules (e.g. disease biomarkers) to the macro scale of organs 

(e.g. dynamics of the brain and heart).  

 

We then longitudinally examined the mutual information in two (namely, TCD, TCE, and TDE) and 

three dimensions (namely, TCDE). The analysis of bilateral mutual information revealed 

decreasing trends that stabilize around small but nonzero values, indicating that the descriptors 

become increasingly and distinctly informative over time. Conversely, values of bilateral 

information above the 90% confidence intervals are observed in those periods when a dominant 

branch used to classify publications in the field has not yet emerged. On the basis of the 

definition of the mutual information indication, a decrease in bilateral mutual information can be 

considered as a signal of differentiation among the C, D, and E axes during the expansion and 
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branching of a field due to new discoveries or technological advancements, and subsequent 

specialization in the relevant (sub-)fields. Thus, as an avenue of future research, this mutual 

information method provides a means to study the rate of specialization. 

 

Despite the very different vocabulary spaces (that is, the three MeSH branches in use) and 

inception years, the analyses of trilateral mutual information revealed statistically significant 

(nonzero) negative mutual information values, TCDE(y), for each examined case-study, thereby 

rejecting the null hypothesis that TCDE = 0.10 This indicates mutual redundancy shared among the 

three pairwise communication channels, corresponding to ‘synergetic integration’ or, in other 

words, emerging options, and therefore reduction of uncertainty. However, we found TCDE(y) 

contained within the 90% confidence intervals for most of the observation period, but, when 

outside the confidence intervals, TCDE(y) often assumed more negative values indicating more 

‘synergetic integration’ than expected from the background mixing levels of C-D-E. 

 

The significant nonzero TCDE(y) further highlights that the governance of the (medical) 

innovation process (e.g. in translational medicine) should account for the key contributions from 

a variety of dimensions. In this paper, we conceptualized three dimensions in terms of supply, 

demand, and technological capabilities, as well as the (e.g. triplex) interactions among these 

                                                             
10 This is only the case when entropy is assessed on the basis of the full counts of the descriptors assigned to 

publications, i.e. when the whole publication-level information is preserved. When the other two threshold-based 

counting methods are considered (presence of a descriptor or the median value of the number of descriptors from a 

given branch within the list of descriptors assigned to publications by MEDLINE/PubMed), TCDE values did not 

significantly differ from zero, thus suggesting that the collection of MeSH descriptors is significantly more 

informative than just a count of descriptors on the basis of pre-selected thresholds. Binary counts cannot contain 

sufficient information to show the synergy effects because the values cannot be added, and no redundancy thus 

generated. (The Boolean “1” OR “1” remains “1”.) 
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dynamic communication channels. Left unaccounted, there is the possibility that policies can 

become ‘locked-in’ when the focus is only on two of the three dimensions, because the third may 

be spuriously structuring the configuration. For example, in the medical context, supporting the 

development of drugs for the treatment of a given disease and advance the understanding of the 

disease may not be a sufficient condition to generate innovation options. Indeed, along these 

lines, Yao et al. (2015) have used data-driven efforts to identify and quantify the institutional 

(funding) misalignment of biomedical supply and demand. Advances of technological 

capabilities that enables new modalities of medical diagnosis and treatment along with the 

knowledge that accumulates with the use of these (through clinical practice) are also of critical 

importance (Nelson et al., 2011). In this regard, our analysis reveals that, in the supply-demand-

technological capabilities interplay, the technological capabilities dimension was an important 

driving force for the three case-studies of medical areas we examined. This may suggest that this 

dimension can potentially function as control and support system for the governance of certain 

medical innovations. 

 

The TCDE indicator we developed, measuring the mutual information among supply, demand, and 

technological capabilities, attempts to fill an important gap in science policy and innovation 

studies literature consisting of a missing link between the extensive conceptual efforts made on 

the role of uncertainty in technological change (e.g., Freeman, 1987) and the lack of indicators 

capable of providing a quantification of the uncertainty (Rotolo, Hicks, Martin, 2015). From a 

governance perspective, such an indicator assumes even more importance considering its 

potential of informing the policy-making process about innovation uncertainty. Also, our study 

identifies the value in developing and maintaining classification systems that are capable of 
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generating high-quality data, which are useful for increasing our quantitative understanding of 

the scientific knowledge order and, moreover, capable of keeping pace with the rapid change of 

the innovation process itself (Griliches, 1994). Indeed, the MeSH classification, for example, 

provides data that can function beyond their institutional context, i.e., the MEDLINE/PubMed 

article retrieval database.  

 

Our study presents some limitations that are worth discussing. First, we measured uncertainty in 

terms of mutual information between supply, demand, and technological capabilities. Yet, 

different forms of uncertainty exist and these can be associated with different levels of 

‘ignorance’ (Stirling 2007) and hidden variables (i.e. additional dimensions). Future studies 

could further explore on the link between different forms of uncertainty and their 

operationalization. Second, we built knowledge representations of supply, demand, and 

technological capabilities on the basis of publication data and the MeSH classification. Yet, 

these representations are focused on three branches of the classification, which provide a certain 

set of perspectives on the communication process in the medical context, as well biased toward 

medical research. Additional insights may come from the analysis of the mutual information 

among other branches of the classification as well as on the use of classification systems (e.g. 

patent technological classifications) that can provide a more comprehensive (proprietary in 

additional to academic) representation of medical applications. Finally, the presence of statistical 

regularities featuring relatively stable descriptive parameters, in addition to the common patterns 

of bilateral and trilateral mutual information we found across the examined case-studies, suggest 

that the growth of a research domain’s communication system may be driven by fundamental 

underlying organizational processes that perhaps do not depend strongly on the specific details of 
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a research area (e.g., Amaral et al., 1998). This points to future research avenues, towards a 

systematic analysis of additional medical areas in order to generalize our findings.  

 

In summary, we decomposed the medical innovation process in terms of its functional 

components that were defined as supply, demand, and technological capabilities. The resulting 

Triple Helix model of supply-demand-technological capabilities enabled us to shed light on the 

bi- and tri-lateral interactions among these co-evolving selection environments and to specify an 

indicator of uncertainty that underlies the medical innovation process. The availability of 

knowledge representations of this process, in the form of high-quality (in breadth and depth) 

longitudinal data, enabled us to provide novel quantitative insights into three (Nobel Prize) 

research areas which capture the profound social and technological impact of biomedical 

innovation. Our main finding is the statistically significant nonzero values observed for TCDE, 

with negative values representing ‘synergetic integration’ across the three medical innovation 

channels we analyzed. As such, this important triple-interaction represents a key feature, 

neglected by linear and two-dimensional (e.g. supply-demand) models, that should not be 

neglected by theories and policies developed in contexts where technological capabilities are 

essential. Moreover, within this three dimensional C-D-E model summarized in Figure 8, we 

identified the demand-technology (C-E) pairwise channel to be the strongest relational link. 
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Tables 
 

Table 1. Search queries used to retrieve MEDLINE/PubMed data for the three examined case-
studies of medical areas. Aq is the number of publications returned by a given search query q; Vq 
is the total number of distinct MeSH descriptors (vocabulary size) assigned to publications in the 
given dataset; <Mq> is the average number of MeSH descriptors per publication; <α>, σα, and 
Med(α) are the average, standard deviation, and median number of MeSH descriptors in each 

branch per publication, respectively. 
 

 Case-studies 
 HPV RNAi MRI 

 
q 

 
HPV*[Title] or “Human 
Papilloma Virus*”[Title] or 
“Human Papillomavirus*”[Title] 
 

 
“miRNA”[Title] or 
“microRNA”[Title] or 
siRNA[Title] or RNAi[Title] or 
“RNA interference”[Title] or 
“interference RNA” [Title] 
 

 
“magnetic resonance 
imaging”[Title] or 
mri[Title] 
 

Period 1963 – 2013 1998 – 2013 1978 – 2013 
Aq 18,696 17,083 62,842 
Vq 5,777 8,187 11,655 

<Mq> 13 11.8 11 
<C> ± σC 2.5 ± 1.7 0.9 ± 1.1 1.7 ± 1.6 
<D> ± σD 2.1 ± 2.4 3.6 ± 2.3 0.8 ± 1.6 
<E> ± σE 2.2 ± 1.9 1.7 ± 1.7 3.3 ± 2.1 
Med(C) 2 0 1 
Med(D) 1 3 0 
Med(E) 2 1 3 

Source: search performed by authors on MEDLINE/PubMed. Data were downloaded on May 28, 2015 for HPV and 
RNAi and on June 5, 2015 for MRI. 
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Table 2. Most frequent MeSH-descriptor pairs. Given that HPV publications are mostly 
associated with C, RNAi with D, and MRI with E, the dyads that belong to the complementary 

branches D and E, C and E, to C and D are reported, respectively. 
 

HPV: 1996–2002 
Branch D descriptor Branch E descriptor Publications 
DNA, Viral Polymerase Chain Reaction 523 
DNA, Viral Vaginal Smears 165 
DNA, Viral In Situ Hybridization 140 
DNA, Viral Sensitivity and Specificity 127 
DNA, Viral Risk factors 119 
Oncogene Proteins, Viral Transfection 100 
DNA Primers Polymerase Chain Reaction 98 
DNA, Viral Prevalence 83 
DNA, Viral Papanicolaou Test 73 
Oncogene Proteins, Viral Polymerase Chain Reaction 71 
   
   

RNAi: 2005–2008 
Branch C descriptor Branch E descriptor Publications 
Neoplasms Genetic Therapy 37 
Liver Neoplasms Transfection 32 
Carcinoma, Hepatocellular Transfection 27 
Breast Neoplasms Transfection 20 
Disease Models, Animal Genetic Therapy 18 
Neoplasm Invasiveness Transfection 18 
Neovascularization, Pathologic Transfection 15 
Carcinoma, Squamous Cell Transfection 14 
Prostatic Neoplasms Transfection 14 
Neoplasm Invasiveness Reverse Tran Polymerase Chain 13 
   

 
MRI: 2002–2008 

Branch C descriptor Branch D descriptor Publications 
Breast Neoplasms Contrast Media 169 
Liver Neoplasms Contrast Media 140 
Myocardial Infarction Contrast Media 114 
Brain Neoplasms Contrast Media 90 
Neovascularization, Pathologic Contrast Media 76 
Disease Models, Animal Contrast Media 76 
Breast Neoplasms Gadolinium DTPA 68 
Myocardial Infarction Gadolinium DTPA 63 
Carcinoma, Hepatocellular Contrast Media 60 
Neoplasms Contrast Media 55 

Source: authors’ elaboration. 
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Figures 

 

 
 

Figure 1: Models of feedback loops based on interactions among: supply, demand, and technical 
capabilities. The directionality of the arrows represents the possibility of differential strength in 

opposite directions.  
 

Source: Authors’ elaboration. 
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Figure 2. Network visualization of the C, D, and E branches (α) of the 2014 MeSH 
classification. The network comprises 16,579 descriptors (nodes) and 23,475. The ‘CDE’ node 
represents an artificial node that connects the first-level MeSH descriptors (e.g., C22, “Animal 
Diseases”), used primarily for network layout purposes. The size of each node i is nonlinearly 

proportional to its in-degree ki
in representing the number of associated descriptors that are 

immediately below i in the classification tree; the node color corresponds to the main branch α. 
The links are directed, representing the path from mesh j to i in the direction of the main tree root 
‘CDE’. The thickness of each directed link is proportional to the total degree ki, and the color is 

nonlinearly proportional to the in-degree divided by the (largest associated) branch level Lj 
corresponding to the ratio qij = ki

in/Lj. Links with exceptionally large qij values, representing core 
MeSH associations, are colored more blue. 

 
Source: Authors’elaboration on the basis of MEDLINE/PubMed data. 
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Figure 3. Number of publications A(y) indexed in MEDLINE/PubMed over time (A). The total 
number of MeSH Mα(y) and the vocabulary size Vα(y), by branch α and by year y (B-top). The 

normalized entropy (efficiency) Eα(y) of the distribution of individual MeSH counts Cα(r,y) 
within branch α and by year y (B-bottom). Number of publications Aq(y) and associated MeSH 

descriptors, total Mq(y) and unique Vq(y), for each search query q listed in Table 1; the black 
curves indicate that the average number of MeSH descriptors per publications (C). Empirical 

probability distributions, P(np,α), representing the likelihood of observing np,α MeSH descriptors 
of type C, D, or E per publication, p (D). 

 
Source: Authors’ elaboration on the basis of MEDLINE/PubMed data. 
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Figure 4. Evolution of the selected medical areas and associated C-D-E MeSH vocabulary. (A) Evolution of the 
relative ranking of the top 200 most frequently used MeSH descriptors in each research area, ranked according to 
C(r) calculated over all years. In each subpanel, the left-most column indicates the primary branch α(r) 
corresponding to each descriptor r; a white label indicates that the descriptor is from a main branch different than C, 
D, and E. The remaining columns indicate ry, which is the local rank of the descriptor r within the year group y. 
White color values indicate no observed counts for r in y, C(r,y) =0; Black color values indicate that the MeSH 
descriptor was not ranked in the top 200 within a given y.  Color transitions along rows indicate the relative rise and 
fall of individual MeSH descriptor use within the vocabulary space. Non-sequential color mixing across columns 
indicates the level of rank instability within a given y, possible indicating a reorganization of the triple-helix 
configuration. (B) The fraction of the subset of MeSH descriptors in C, D, or E, occurring in period y by branch. (C) 
New descriptors (indicated by white to non-white transitions along the rows in panel A) trace the evolution of each 
research area. The number of new descriptors can show non-linear trends, as in the case of HPV. The number and 
long-term use (impact) of the new descriptors are useful indicators to identify important historical contexts, e.g. the 
identification of the cancer-related HPV variants 16 & 18 and the subsequent development of cancer vaccines, in 
addition to other socio-technical contexts, during the period 1996-1998. Source: Authors’ elaboration on the basis of 
MEDLINE/PubMed data. 
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Figure 5. Statistical regularities in the MeSH vocabulary space. Rank distributions of C(r), the total number of 
papers including MeSH descriptor r calculated over all years. For each research area, we demonstrate that the corpus 

of MeSH descriptors follows Heaps’ law – quantifying the allometric scaling of the vocabulary via the scaling 
exponent β – and Zipf’s law – quantifying the size distribution of the MeSH descriptor use via the scaling exponent 
ξ. Best-fit Heaps’ and Zipf’s law exponents are estimated using OLS; the standard error in the last digit shown in the 

parenthesis. We show the top 100 used MeSH descriptors for each q to illustrate the diverse topicality of the 
descriptors. Source: Authors’ elaboration on the basis of MEDLINE/PubMed data. 
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Figure 6. Pairwise mutual information calculated using the full count representation zp,α = np,α. In 
each panel, the solid black curve is Tα1,α2(y) calculated from the real data; the red dashed curve is 

the mean value )(21 yT rand
αα

 and the red shaded area represents the empirical 90% interval 

calculated from 100 randomized time series. 
 

Source: Authors’ elaboration on the basis of MEDLINE/PubMed data. 
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Figure 7. C-D-E triple-helix mutual information. Mutual information calculated using the binary 
count representation (top row), the median threshold method (middle row) and the full count 

representation (bottom row). In each panel, the solid black curve is TCDE(y)  calculated from the 
real data; the red dashed curve is the mean value )(yT rand

CDE
 and the red shaded area  represents 

the empirical 90% interval calculated from 100 randomized time series. 
 

Source: Authors’ elaboration on the basis of MEDLINE/PubMed data. 
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Figure 8: Stylized empirical configuration of feedback loops based on interactions among 
‘supply,’ ‘demand,’ and ‘technologies’. Arrow thicknesses represent the strength level 

determined in our quantitative analysis, with C-E being the strongest, and the C-D-E interaction 
represented by the loop also being identified as an inextricable component of the medical 
innovation model. Our model does not provide any information on the relative interaction 

strength in opposing direction, hence the arrows lack directionality, as compared to Figure 1. 
 

Source: Authors’ elaboration. 
 

 


