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Computation of the Structured Singular Value via
Moment LMI Relaxations

Dario Piga∗,

Abstract—The Structured Singular Value (SSV) provides a
powerful tool to test robust stability and performance of feedback
systems subject to structured uncertainties. Unfortunately, com-
puting the SSV is an NP-hard problem, and the polynomial-time
algorithms available in the literature are only able to provide,
except for some special cases, upper and lower bounds on the
exact value of the SSV. In this work, we present a new algorithm
to compute an upper bound on the SSV in case of mixed
real/complex uncertainties. The underlying idea of the developed
approach is to formulate the SSV computation as a (nonconvex)
polynomial optimization problem, which is relaxed into a se-
quence of convex optimization problems through moment-based
relaxation techniques. Two heuristics to compute a lower bound
on the SSV are also discussed. The analyzed numerical examples
show that the developed approach provides tighter bounds than
the ones computed by the algorithms implemented in the Robust
Control Toolbox in Matlab, and it provides, in most of the cases,
coincident lower and upper bounds on the structured singular
value.

Index Terms—Structured Singular Value, Robust Control,
Polynomial optimization, Moment-based LMI relaxations.

I. INTRODUCTION

The Structured Singular Value (SSV), introduced by Doyle
in [1], provides a powerful tool to test robust stability and
performance of closed-loop Linear Time-Invariant (LTI) sys-
tems subject to structured uncertainties. Unfortunately, com-
puting the SSV is an NP-hard problem [2], [3] and thus,
for medium/large-scale problems commonly encountered in
industrial applications, the exact value of the SSV cannot be
calculated within an acceptable amount of computational time.
In order to overcome this issue, polynomial-time algorithms
have been developed to compute lower and upper bounds
on the SSV [4]–[13] in case of real, complex or mixed
real/complex uncertainties. Upper bounds provide sufficient
(and thus conservative) conditions to guarantee robust stability
of feedback systems under a specified level of uncertainty.
The conservativeness of the upper bounds can be evaluated by
computing lower bounds on the SSV, which, besides providing
sufficient conditions for instability, also give the values of
structured uncertainties destabilizing the closed-loop system.

Although most of the previously cited algorithms were
developed more than twenty years ago (and some of them
are also implemented in the wide-spread commercial Matlab
toolbox Robust Control Toolbox [14]), it is still worth de-
veloping new algorithms to compute tighter bounds on the
SSV, in order to reduce the conservativeness in analysing the
robust properties of feedback systems, and thus pushing the
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performance limits of the controlled systems. In this paper,
a novel approach is proposed to compute an upper bound
on the SSV through convex optimization. The computation
of lower bounds is also discussed. No limitations on the
considered perturbations are assumed, in the sense that the
proposed algorithm is able to deal with pure real, pure complex
and mixed real/complex uncertainties. The main idea of the
discussed procedure is to formulate the calculation of the
SSV as a nonconvex optimization problem with Linear Matrix
Inequality (LMI) and bilinear constraints. An approximation
of the solution of the formulated optimization problem is then
computed through moment-based LMI relaxations, originally
proposed in [15] and [16] to relax polynomial optimization
problems into a sequence of convex Semidefinite Programming
(SDP) problems. It has been observed that, in practice, moment
LMI relaxations provide an accurate (and sometimes exact)
approximation of the global optimum of a generic polynomial
optimization problem (see, e.g., [17]). Furthermore, conditions
for finite convergence of the moment-based relaxations are
also available [18]. The algorithm developed in this paper
for the computation the SSV benefits from the mentioned
advantages of the moment-based relaxations. In most of the
examples analyzed by the author (some of them reported in
Section VI), the computed lower and upper bounds coincide,
thus yielding the exact value of the SSV.

The paper is organized as follows: preliminary defini-
tions and notations used in the paper are first introduced in
Section II. In Section III, the computation of the SSV is
formulated as a polynomial optimization problem, and the
computation of an upper bound on the SSV is discussed in
Section IV. In Section V, two heuristics to compute a lower
bound on the SSV are presented. Two numerical examples
are reported in Section VI to show the performance of the
developed algorithm. A comparison with the results obtained
by the Robust Control Toolbox is also provided.

II. NOTATION AND PRELIMINARIES

The following notation will be used throughout the paper.
NH complex conjugate transpose of the matrix N.
⊗ Kronecker product.
diag(x) diagonal matrix, whose diagonal entries are

the components of the vector x.
xi i-th component of the vector x.
Nn

0 set of n-dimensional vectors with nonnegative
integer components.

An
h set defined as

{
α ∈ Nn

0 :
n∑

i=1

αi ≤ h

}
.
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Zα shorthand notation for Zα1
1 Zα2

2 · · ·Zαn
n =

n∏
i=1

Zαi
i .

Rh[Z] set of real-valued polynomials in the indeter-
minant Z∈Rn with degree less or equal than h.

bh(Z) canonical basis of Rh[Z], i.e., bh(Z)={Zα}α∈An
h
.

{gα}α∈An
h

set of coefficients of the polynomial g ∈ Rh[Z]

in the canonical basis bh(Z), i.e., g(Z)=
∑

α∈An
h

gαZ
α.

The structured singular value is now formally defined. Let
us consider the set of complex matrices ∆ ⊂ Cs1,s2 , whose
elements ∆ ∈ ∆ admit the structure:

∆ =



p1I 0

. . .

pnrI

δ1I

. . .

δncI

∆1

. . .

0 ∆nf



,

(1)
where: pj ∈ R (with j = 1, . . . , nr); δj ∈ C (with j =
1, . . . , nc) and ∆j ∈ Cpj ,qj (with j = 1, . . . , nf ). The sizes
of the identity matrices in (1) can be different for different
blocks. For a given nonnegative real number r, let Br

∆ be the
(open) set of complex matrices ∆ whose admit the structure
in (1) and such that ∥∆∥ < r, i.e.,

Br
∆ = {∆ ∈ ∆ : ∥∆∥ < r} . (2)

Definition 1: Given a complex matrix M ∈ Cs2,s1 , the
structured singular value of M w.r.t. the uncertainty set ∆
is defined as:

µ∆(M) =
1

r∗
,

with
r∗ = sup{r ∈ R |det (I −M∆) ̸= 0 for all ∆ ∈ Br

∆}.
�

As pointed out in [3], the computation of the SSV µ∆(M)
is an NP-hard problem and it requires to verify the non-
singularity of the matrix I−M∆ against all structured uncer-
tainties ∆ belonging to Br

∆. In the next section, the problem of
checking robust non-singularity of the matrix I−M∆ will be
formulated as a (nonconvex) optimization problem with LMI
and bilinear equality constraints, and it will be solved through
efficient convex-relaxation techniques.

III. CHECKING ROBUST NON-SINGULARITY OF THE
MATRIX I −M∆

First, let us rewrite the constraint ∥∆∥ < r as:(
r2I ∆

∆H I

)
≻ 0. (3)

The following theorem (originally presented by the author
and coworkers in [19]), provides necessary and sufficient
conditions to test robust non-singularity of I − M∆ against
the set of structured uncertainties Br

∆.

Theorem 1: For a given real number r ≥ 0, the matrix
I −M∆ is nonsingular for all (structured) uncertainties ∆ ∈
Br
∆ if and only if the solution of the following optimization

problem is bounded:
max

x ∈ Cs2

∆ ∈ ∆

∥x∥22

s.t. (I −M∆)x = 0,

(
r2I ∆

∆H I

)
≻ 0.

(4)

Proof: First, the “only if ” part is proven. If I −M∆
is robustly nonsingular against the set of (structured) uncer-
tainties Br

∆, then, for all ∆ ∈ Br
∆, only the trivial solution

x = 0 satisfies the constraint (I −M∆)x = 0. Therefore, the
solution of Problem (4) is equal to zero, thus bounded. The “if”
part is proven by contradiction. Assume that I −M∆ is not
robustly nonsingular against Br

∆. This means that there exists
a matrix ∆ in Br

∆ such that the solution x of the linear system
(I −M∆)x = 0 is not the trivial one, i.e., (I −M∆)x∗ = 0
for some x∗ ̸= 0. Therefore, for every β ∈ C, also x = βx∗

satisfies the constraint (I −M∆)x = 0, and thus x = βx∗

also belongs to the set of feasibility of Problem (4) for any
β ∈ C. Then, the solution to problem (4) is unbounded,
contradicting the hypothesis.

Corollary 2: The SSV of M w.r.t. ∆ is equal to:

µ∆(M) =
1√
t∗
, (5)

where t∗ is the solution of the following optimization problem:

t∗ = min
t ∈ R
x ∈ Cs2

∆ ∈ ∆

t

s.t. t ≥ 0, ∥x∥22 ≥ x̄,

(I −M∆)x = 0,

(
tI ∆

∆H I

)
≽ 0.

(6)

with x̄ being an arbitrary strictly positive real constant.
Proof: Statement of the Corollary follows directly from

the definition of µ∆(M) and from Theorem 1. In fact, for any
point (t′, x′, ∆′) belonging to the set of feasibility of Problem
(6), the solution x′ of the linear system (I −M∆′)x′ = 0 is
not the trivial one (since ∥x′∥22 ≥ x̄ > 0). Thus, the matrix
∆′, which belongs to the set B

√
t′

∆

∪
∂B

√
t′

∆ (with ∂B
√
t′

∆ being
the closure of B

√
t′

∆ ), makes I − M∆′ singular. Then, I −
M∆ is not robustly nonsingular against the set B

√
t′

∆

∪
∂B

√
t′

∆ .
The minimum value of t′ such that I − M∆ is not robustly
nonsingular against the set B

√
t′

∆

∪
∂B

√
t′

∆ is then t∗. Therefore,
for any t ≤ t∗, there is no matrix ∆ belonging to the (open)
set B

√
t

∆ which makes I −M∆ singular.
Note that, since both x and ∆ might be complex, Problem

(6) involves complex optimization variables. By reminding that
an Hermitian matrix H = Hre+ iHim is positive semidefinite
if and only if (

Hre −Him

Him Hre

)
≽ 0, (7)

Problem (6) can be equivalently rewritten as the following
optimization problem with real decision variables:
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t∗ = min
t, xre, xim,

∆re,∆im

t (8a)

s.t. t ≥ 0, (8b)
∥xre∥22 + ∥xim∥22 − x̄ ≥ 0, (8c)
(I−Mre∆re+Mim∆im)xre+(Mim∆re+Mre∆im)xim=0,

(8d)
(I−Mre∆re+Mim∆im)xim−(Mim∆re+Mre∆im)xre=0,

(8e)
tI ∆re 0 −∆im

∆⊤
re I ∆⊤

im 0

0 ∆im tI ∆re

−∆⊤
im 0 ∆⊤

re I

 ≽ 0. (8f)

The computation of µ∆(M) has been then recast into
the (nonconvex) polynomial optimization Problem (8) with:
a (convex) linear constraint (8b); a (convex) LMI constraint
(8f); a (nonconvex) polynomial inequality constraint (8c) and
a set of (nonconvex) bilinear equality constraints (8d)-(8e),
involving the product among the decision variables xre, xim,
∆re and ∆im. In the recent years, efficient methods have been
proposed in the literature to relax optimization problems with
matrix and polynomial constraints into (convex) semidefinite
programming problems. Such LMI-relaxation techniques are
discussed in [15], [16], [20], [21] and they are based on
the problem of moments and on the dual representation of
nonnegative polynomials as sum-of-squares (SOS). In the
following section, we briefly discuss the application of the
moment-based LMI relaxation [16] to Problem (8), which
allows us to compute a lower bound of t∗ (or equivalently,
an upper bound on the SSV µ∆(M)).

IV. LMI RELAXATION: UPPER BOUND ON µ∆(M)

Before discussing the application of the moment-based
relaxation [16] to Problem (8), let us introduce some useful
definitions.

Let us call the functions defining the set of feasibility of
Problem (8) as follows:

g1= t; g2=∥xre∥22 + ∥xim∥22 − x̄;

G3=diag ((I−Mre∆re+Mim∆im)xre+(Mim∆re+Mre∆im)xim);

G4=diag ((I−Mre∆re+Mim∆im)xim−(Mim∆re+Mre∆im)xre);

G5=


tI ∆re 0 −∆im

∆⊤
re I ∆⊤

im 0

0 ∆im tI ∆re

−∆⊤
im 0 ∆⊤

re I

 ;

and let us stack the optimization variables of Problem (8) in a
vector Z ∈ Rn, with n being the number of decision variables
in (8).

For a sequence y = {yα}α∈An
h

and for a generic polynomial
g ∈ Rh[Z], let us define the map Ly(g) as:

g 7→ Ly(g) =
∑

α∈An
h

gαyα. (9)

The sequence y = {yα}α∈An
h

is referred as sequence of
moments of order h of a (non-specified) Borel probability

measure ν on Rn, i.e., yα =

∫
Zαν(dZ). Let us define the

so-called moment matrix Nh(y) truncated to order h as

Nh(y) = Ly(bh(Z)b⊤h (Z)), (10)

where the operator Ly is applied entry-wise to the matrix
bh(Z)b⊤h (Z).

Let us define the so-called truncated localizing matrix
Nh(gy) of order h associated with the polynomial g as:

Nh(gy) = Ly(bh(Z)b⊤h (Z)g(Z)). (11)

Similarly, for a matrix G(Z) whose entries are polynomial
functions in the variable Z, the truncated localizing matrix
Nh(Gy) associated with the polynomial matrix G is defined
by:

Nh(Gy) = Ly(bh(Z)b⊤h (Z)⊗G(Z)). (12)

For a given integer h ≥ 1, the SDP-relaxed problem of
order h associated to (8) is defined as:

t∗h = min
{yα}α∈An

2h

Ly (t) (13a)

s.t. Nh(y) ≽ 0, Nh−1(g1y) ≽ 0, Nh−1(g2y) ≽ 0,
(13b)

Nh−1(G3y) = 0, Nh−1(G4y) = 0, Nh−1(G5y) ≽ 0.
(13c)

Theorem 3: The following results hold:
(i) for any relation order h ≥ 1, t∗h is a lower-bound of

t∗, i.e., t∗h ≤ t∗;
(ii) t∗h converges, from below, to t∗, i.e., t∗h ≤ t∗h+1 ≤ t∗

and lim
h→∞

t∗h = t∗;
(iii) for any relation order h ≥ 1, the matrix I − M∆

is nonsingular for all the uncertainties ∆ ∈ B
√

t∗h
∆ ,

or equivalently,
1√
t∗h

is an upper bound of µ∆(M).

Furthermore:

µ∆(M)≤ 1√
t∗h+1

≤ 1√
t∗h
; lim

h→∞

1√
t∗h

= µ∆(M).

Proof: Parts (i) and (ii) follow from a direct appli-
cation of the moment-based LMI relaxation [16]. A sketch
of the proof of part (i) is here provided. Let Z∗ be the
optimizer of the polynomial Problem (8) and let y∗ be equal
to b2h(Z

∗). We remind that b2h(Z
∗) = {(Z∗)α}α∈An

2h
.

The point y∗ = b2h(Z
∗) belongs to the set of feasibility

of Problem (13). In fact, Nh(y
∗) = bh(Z

∗)b⊤h (Z
∗) ≽ 0;

Nh(g1y
∗) = bh(Z

∗)b⊤h (Z
∗)g1(Z

∗) ≽ 0 and Nh(g2y
∗) =

bh(Z
∗)b⊤h (Z

∗)g2(Z
∗) ≽ 0 since g1(Z

∗) ≥ 0 and g2(Z
∗) ≥ 0;

Nh(G3y
∗) = bh(Z

∗)b⊤h (Z
∗)⊗G3(Z

∗) = 0 and Nh(G4y
∗) =

bh(Z
∗)b⊤h (Z

∗) ⊗ G4(Z
∗) = 0 since G3(Z

∗) = 0 and
G4(Z

∗) = 0; Nh(G5y
∗) = bh(Z

∗)b⊤h (Z
∗) ⊗ G5(Z

∗) ≽ 0
since G5(Z

∗) ≽ 0. As a consequence, since Ly∗ (t) = t∗ and,
as already discussed, Z∗ is feasible for Problem (13), then
t∗h ≤ t∗. Part (iii) directly follows from parts (i) and (ii) and
Corollary 2.

The asymptotic convergence properties highlighted in The-
orem 3 can be interpreted as follows: the global optimum
of the nonconvex optimization Problem (8) can be computed
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by solving a convex SDP problem with infinite-size LMI
constrains. Nevertheless, in practice, an accurate (and most of
the times exact) approximation of the SSV µ∆(M) is usually
attained at a small value of the relaxation order h, i.e., h = 2
(see the examples in Section VI). A discussion on the accuracy
of the computed upper bound 1√

t∗h
on µ∆(M) is reported in

the next section, together with some techniques that can be
used to compute a lower bound on µ∆(M) and a structured
matrix ∆∗ ∈ ∆ which makes I −M∆∗ singular.

V. COMPUTATION OF A LOWER BOUND ON µ∆(M)

Two heuristics to compute a lower bound on µ∆(M), and
thus to evaluate the conservativeness of the computed upper
bound 1√

t∗h
, are briefly discussed in this section. The first

heuristic is based on well known results of the moment LMI
relaxation [15], and it provides a sufficient condition to: (i)
verify whether the solution of the SDP-relaxed Problem (13)
coincides with exact SSV µ∆(M); (ii) compute a matrix
∆∗ ∈ ∆ which makes I−M∆∗ singular. The second proposed
heuristic refines the minimizer of the SDP-relaxed Problem
(13) in order to compute, through convex optimization, a
matrix ∆∗ ∈ ∆ which renders I −M∆∗ singular.

A. Method 1: Extraction of the global minimizer from the first-
order moments of y∗

Consider the point ŷ∗ in Rn:

ŷ∗:=

{
y∗α :

n∑
i=1

αi=1, α∈Nn
0

}
={y∗100···00, y∗010···00, . . . ,y∗000···01},

(14)
with y∗ being the minimizer of the SDP-relaxed Problem (13)
for a fixed finite value of h. It follows that, if Z∗ = ŷ∗ is
a feasible point of the polynomial optimization Problem (8),
then Z∗ = ŷ∗ is also a global minimizer of (8) (see Section

6.6 in [22] for a detailed proof). Thus,
1√
t∗h

coincides with

µ∆(M) and a structured matrix ∆∗ ∈ ∆ : ∥∆∗∥ =
√
t∗h

which renders I − M∆∗ singular can be then derived from
Z∗. Based on the author’s experience, in most of the cases,
the point ŷ∗ has been observed to belong (up to a numerical
precision) to the feasible set of Problem (8) for a relaxation
order h ≤ 2. Therefore, in most of the analyzed cases, the
SDP-relaxed Problem (13) provides the exact value of the SSV
µ∆(M) for h ≤ 2. It is worth remarking that the use of
the first order moments is inspired by the results discussed in
[23], where it is shown that, when the moment matrix Nh(y

∗)
has rank one, the first order moment vector ŷ∗ is the global
minimizer of the original polynomial optimization problem. In
the (rare) cases when Z∗ = ŷ∗ does not belong to the set of
feasibility of Problem (8), the heuristic described in the next
subsection can be used to compute a lower bound on µ∆(M).

B. Method 2: Refinement of the first-order moments of y∗

In the cases Z∗ = ŷ∗ in (14) is not feasible for Problem (8)
(that is, Method 1 cannot be applied), Z∗ = ŷ∗ can be used
as a starting point to compute a matrix ∆ ∈ ∆ which makes
I −M∆ singular, as described in the following.

Consider the vector Z∗ = ŷ∗ and take only the components
of Z∗ associated to the optimization variables xre and xim.
Let us denote such components as x∗

re and x∗
im. Under the

condition that the vector x∗
re + jx∗

im is not null, the key idea
of the heuristic described in the following is to find a matrix
∆∗ ∈ ∆ with minimum norm such that x∗

re + jx∗
im belongs

to the null space of the matrix I −M∆∗. Following the same
considerations used to derive Problem (8), this idea can be
translated into the following convex semidefinite programming
problem:

t̂ = min
t,∆re,∆im

t (15)

s.t. t ≥ 0,

(I−Mre∆re+Mim∆im)x
∗
re+(Mim∆re+Mre∆im)x

∗
im=0,

(I−Mre∆re+Mim∆im)x
∗
im−(Mim∆re+Mre∆im)x

∗
re=0,

tI ∆re 0 −∆im

∆⊤
re I ∆⊤

im 0

0 ∆im tI ∆re

−∆⊤
im 0 ∆⊤

re I

 ≽ 0.

The minimizer of (15) thus provides a matrix ∆∗ ∈ ∆, with
norm ∥∆∗∥ =

√
t̂, which renders I −M∆∗ singular. A lower

bound on the SSV µ∆(M) is then given by
1√
t̂
. Evaluating

the level of conservativeness of the described heuristic is not
an easy task, nevertheless it provides, in practice, satisfactory
results in the (rare) cases when Method 1 fails.

VI. EXAMPLES
A. Example 1

Consider the complex matrix M :

M=



0 1
2

1 1 1
2

1
2

− 1
2

0 0 1
2

0 1 1 1
2

0

− 1
2

1
2

− 1
2

1 1
2

1
2

1
2

0 − 1
2

1
2

+i



1 − 1
2

0 0 0

0 0 1 1 − 1
2

1 − 1
2

0 0 0

0 1 1
2

1
2

− 1
2

1 1
2

0 − 1
2

− 1
2

,

and the block structured uncertainty set ∆ ⊂ C5,5:

∆=

∆ =


p1 0 0 0

0 p1 0 0

0 0 p1 0

0 0 0 ∆1

∣∣∣p1 ∈ R, ∆1 ∈ C2,2

 .

The developed moment-based LMI relaxation has been applied
to compute upper and lower bounds on the structured singular
value µ∆(M). The Yalmip Matlab interface [24] has been used
to construct the SDP-relaxed Problem (13), whose solution has
been computed through the solver MOSEK [25]. The obtained
bounds are reported in Table I, together with the bounds
calculated through the Matlab command mussv, belonging to
the Robust Control Toolbox (the reader is referred to [14] for
details on the algorithms implemented in the command mussv).
The CPU time taken by the solver MOSEK to compute the
solution of Problem (13) is 272 seconds on a 2.40-GHz Intel
Pentium IV with 3 GB of RAM, while computing bounds
on µ∆(M) with the command mussv required 3.2 seconds.
Results in Table I show that, the upper and the lower bounds
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TABLE I
EXAMPLE 1. LOWER AND UPPER BOUNDS ON THE SSV µ∆(M)

COMPUTED THROUGH THE MATLAB COMMAND mussv AND THROUGH THE
MOMENT LMI RELAXATION FOR δ = 2.

Approach Lower bound Upper bound
on µ∆(M) on µ∆(M)

Matlab command mussv 1.8291 2.1100
Moment LMI 2.1007 2.1007

relaxation

on µ∆(M) computed through the Matlab command mussv do
not coincide, thus conservativeness is introduced in evaluating
µ∆(M). On the other hand, for a relaxation order δ = 2,
the SDP-relaxed Problem (13) provides the exact value of
µ∆(M). This has been verified through the approach dis-
cussed in Section V-A, which also provides a structured matrix

∆∗ ∈ ∆ with norm ∥∆∗∥ =
1√
t∗h

=
1√

2.1007
= 0.4760

which renders I−M∆∗ singular. The numerical value of such
a matrix is given by:

∆∗ =



−0.4760 0 0 0 0

0 −0.4760 0 0 0

0 0 −0.4760 0 0

0 0 0 0.4511 −0.1025

0 0 0 −0.1025 −0.1211

+

+i



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 −0.0609 0.0910

0 0 0 0.0910 0.4354

 .

B. Example 2
In this example, the SSV is used to analyze the robust

stability of linear time-invariant feedback systems under para-
metric uncertainty. The considered closed-loop configuration
is reported in Fig. 1, where the plant G to be controlled is a
mass-damper-spring system whose dynamics are described by
the second-order differential equation:

mẍ(t) + cẋ(t) + kx(t) = u(t),

where x is the displacement of the mass from the equilibrium
position, u is an external force acting on the mass, m ∈ R is
the mass, c ∈ R is the damping coefficient and k ∈ R is the
spring constant. The values of m, c and k are not known ex-
actly, and they are assumed to belong to the (open) uncertainty
intervals: m ∈ (1.2 4.8), c ∈ (0.7 1.3), k ∈ (1.1 2.9), or
equivalently:

m = mo + 1.8p1, c = co + 0.3p2, k = ko + 0.9p3,

where mo = 3, co = 1 and ko = 2 are the nominal values
of m, c and k, while p1, p2 and p3 are normalized uncertain
parameters which take values within the interval (−1, 1).
The transfer function of the controller K is given by:

K(s) =
−9.0229(s− 141.4)(s2 + 0.3333s+ 0.6667)

(s+ 7.997)(s+ 0.002501)(s2 + 7.263s+ 26.54)
.

- -r + e u x- -
6−
f qK G

Fig. 1. Feedback control system. G: plant; K: controller; r: reference signal;
u: external force acting on the mass; x displacement of the mass.

This controller stabilizes the nominal closed-loop system
and minimizes the H∞ norm:∥∥∥∥ Ws (1 + GoK)

−1

WrK (1 + GoK)
−1

∥∥∥∥
∞

,

with Go being the nominal plant, and Ws and Wr being
weighting linear filters with transfer functions:

Ws(s) = 0.85
s2 + 1.8s+ 11

(s+ 7.997)(s+ 0.002501)
, Wr(s) = 0.01.

In order to verify if the controller K achieves robust stability
w.r.t. the considered perturbations on m, c and k, a linear
fractional representation (LFR) of the considered closed-loop
system is derived. The computed LFR has the form:[

z∆

z

]
=

[
N11 N12

N21 N22

][
w∆

r

]
, z =

[
e

u

]
,

z∆ =

 p1 0 0

0 p2 0

0 0 p3


︸ ︷︷ ︸

∆

w∆,

where N11, N12, N21 and N22 are known LTI systems, whose
transfer functions N11(s), N12(s), N21(s) and N22(s) can be
computed through block diagram manipulations. According to
the SSV theory (see, e.g., [1]), the feedback system in Fig. 1 is
guaranteed to be stable for all values of p1, p2, p3 ∈ (−1, 1)
if and only if:

µ∆(N11(iω)) ≤ 1 for all ω ∈ R ∪ {∞}. (16)
The lower and upper bounds on µ∆(N11(iω)) computed
through the Robust Control Toolbox are plotted in Fig. 2 over a
set of 1000 frequency points ω logarithmically equally spaced
in the interval [0.1 100]. For each ω, the average CPU time
taken to compute lower and upper bounds on µ∆(N11(iω))
is 0.12 seconds. Note that, based on the results in Fig. 2,
we can claim neither that the feedback system is robustly
stable (since there exists at least a value of ω such that the
computed upper bound on µ∆(N11(iω)) is greater than 1) nor
that there exist some values of p1, p2, p3 ∈ (−1, 1) which
destabilize the closed-loop system (in fact, the computed lower
bound on µ∆(N11(iω)) is always smaller than 1 within the
considered frequency range). Lower and upper bounds on
µ∆(N11(iω)) are now computed through the moment LMI
relaxation discussed in the paper, by solving the SDP Problem
(13) for a relaxation order δ = 2. For each ω, the average
CPU time taken by solver MOSEK to compute the solution
of Problem (13) is 13 seconds. The obtained bounds are
plotted in Fig. 3, which shows that, in most of the considered
frequency points ω, upper and lower bounds coincide, thus the
exact value of µ∆(N11(iω)) is achieved. The only frequency
points ω where lower and upper bounds do not coincide are
in the range [0.265 0.331] rad/s and at ω = 13.55 rad/s.
Within the range [0.265 0.331] rad/s, the computed lower
bound on µ∆(N11(iω)) is equal to 0 (i.e., no matrix ∆ which
makes I−N11(iω)∆ singular has been found). At ω = 13.55
rad/s, the gap between the upper and lower bound (computed
through the heuristic described in Section V-B) is 0.0475. Note
that, from Fig. 3, we can claim that there exist values of
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Fig. 2. Example 2. Lower bound (gray line) and upper bound (black line)
on the structured singular value µ∆(N11(iω)) computed with the Robust
Control Toolbox in Matlab.
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Fig. 3. Example 2. Lower bound (gray line) and upper bound (black line) on
the structured singular value µ∆(N11(iω)) computed through the moment
LMI relaxation. The gray and the black lines are overlapped, except in the
frequency range [0.265 0.331] rad/s and at ω = 13.55 rad/s.

p1, p2, p3 ∈ (−1, 1) destabilizing the closed-loop system.
In fact, µ∆(N11(iω)) is greater than one at some frequencies.
For example, for ωo = 0.8182 rad/s, µ∆(N11(iωo)) = 1.1178.
The values of the uncertain parameters p1, p2 and p3 leading
to µ∆(N11(iωo)) = 1.1178, and destabilizing the closed-loop
system, are equal to: p1 = −0.7815, p2 = −0.8945 and
p3 = 0.8946. These values have been computed through the
method discussed in Section V-A.

VII. CONCLUSIONS
A new approach to compute an upper bound on the

Structured Singular Value (SSV) of a matrix w.r.t. a set of
structured mixed real/complex uncertainties is presented in this
paper. The main idea underlying the method is to formulate
the computation of the SSV as a polynomial optimization
problem which is solved through efficient moment-based LMI
relaxations. Two heuristics to compute lower bounds on the
SSV are also presented. The reported numerical examples
show that the developed method provides significantly tighter
bounds compared to the ones computed with the algorithms
implemented in the Robust Control Toolbox in Matlab, and,
in most of the cases, it provides the exact value of the SSV.
The presented algorithm can efficiently handle, in commercial
workstations, uncertain matrices with about 7 different real
parametric uncertainties or with about 5 different complex
uncertainties. Furthermore, it is worth pointing out that the
computational load of the proposed algorithm decreases when
“highly structured” uncertainties (e.g., uncertainties with real
repeated blocks) are considered. In fact, in this case, the
formulated polynomial optimization problem involves a lower
number of decision variables. Ongoing activities are devoted
to extending the ideas underlying the developed method for
the design of robust controllers.
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