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The international trade network (ITN) has received renewed multidisciplinary interest due to
recent advances in network theory. However, it is still unclear whether a network approach conveys
additional, nontrivial information with respect to traditional international-economics analyses that
describe world trade only in terms of local (first-order) properties. In this and in a companion paper,
we employ a recently proposed randomization method to assess in detail the role that local properties
have in shaping higher-order patterns of the ITN in all its possible representations (binary/weighted,
directed/undirected, aggregated/disaggregated by commodity) and across several years. Here we
show that, remarkably, the properties of all binary projections of the network can be completely
traced back to the degree sequence, which is therefore maximally informative. Our results imply
that explaining the observed degree sequence of the ITN, which has not received particular attention
in economic theory, should instead become one the main focuses of models of trade.

PACS numbers: 89.65.Gh; 89.70.Cf; 89.75.-k; 02.70.Rr

I. INTRODUCTION

The network of import/export trade relationships
among all world countries, known in the literature as the
International Trade Network (ITN) or the World Trade
Web (WTW), has received a renewed multidisciplinary
interest in recent years [1–13], due to impressive advances
in both empirical and theoretical approaches to the study
of complex networks [14–16]. A number of robust pat-
terns in the structure of this network have been empir-
ically observed, both in its binary (when only the pres-
ence of a trade interaction is considered, irrespective of
its intensity) and weighted (when also the magnitude of
trade flows is taken into account) description. These styl-
ized facts include local properties as well as higher-order
patterns. Local properties involve direct (first-order) in-
teractions alone, resulting in simple quantities such as
node degree (the number of trade partners of a country),
node strength (total trade volume of a country), and their
directed-network analogues (i.e., when these statistics are
computed taking into account edge/trade directionality).
Higher-order characteristics are more complicated struc-
tural properties that also involve indirect interactions, i.e.
topological paths connecting a country to the neighbors
of its neighbors, or to countries farther apart. Exam-
ples include degree-degree correlations, average nearest-
neighbor indicators, and clustering coefficients, to name
just a few of them.

In general, local and higher-order topological proper-
ties are not independent of each other. In particular,

even if one assumes that the network is formed as the
result of local constraints alone, with higher-order prop-
erties being only the mere outcome of a specification of
these constraints, it turns out that so-called structural
correlations are automatically generated. Structural cor-
relations sometimes appear as complicated patterns that
might be confused with genuine correlations involving
higher-order statistics, and interpreted as the presence
of an additional level of topological organization. There-
fore, in any real network it is important to characterize
structural correlations and filter them out in order to as-
sess whether nontrivial effects due to indirect interactions
are indeed present.

In the specific case of the ITN, this problem is partic-
ularly important to assess whether the network formal-
ism is really conveying additional, nontrivial information
with respect to traditional international-economics anal-
yses, which instead explain the empirical properties of
trade in terms of country-specific macroeconomic vari-
ables alone. Indeed, the standard economic approach
to the empirics of international trade [17] has tradition-
ally focused its analyses on the statistical properties of
country-specific indicators like total trade, trade open-
ness (ratio of total trade to GDP, i.e. Gross Domestic
Product), number of trade partners, etc., that can be
easily mapped to what, in the jargon of network anal-
ysis, one denotes as local properties or first-order node
characteristics. Ultimately, understanding whether net-
work analyses go a step beyond with respect to stan-
dard trade theory amounts to assess the effects of in-
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direct interactions in the world trade system. Indeed, a
wealth of results about the analysis of international trade
have already been derived in the macroeconomics liter-
ature [17] without making explicit use of the network
description, and focusing on the above country-specific
quantities alone. Whether more recent analyses of trade,
directly inspired by the network paradigm [1–12], are
indeed conveying additional and nontrivial information
about the structure of international import/export flows,
crucially depends on the answer to the above question.
Some network-inspired studies have already tried to ad-
dress this problem, but with ambiguous results. In some
cases, it was suggested that local properties are enough
to explain higher-order patterns [3, 6, 18], while in others
the opposite conclusion was reached [19]. However, pre-
vious analyses of the ITN focused on heterogeneous rep-
resentations (either binary [2, 3] or weighted [6, 10, 19],
either directed [4, 5, 20] or undirected [2, 3], either ag-
gregated [2, 3, 10] or disaggregated [13] in separate com-
modities) and using different datasets, making consistent
conclusions impossible.

In this and in a companion paper [21], we explicitly
address this problem and exploit a recently proposed an-
alytical method [22] to obtain, for any given topological
property of interest, the value of the corresponding quan-
tity averaged over the family of all randomized variants of
the ITN that preserve the observed local properties. This
allows us to identify empirical deviations from locally-
induced structural correlations. Null models are used in
our exercises to uncover significant features of the net-
work and to understand to which extent some network
statistics are sufficient to explain other network statis-
tics. Our analysis is not however involved in explaining
the underlying causal mechanisms shaping the network.
Therefore, throughout this and its companion paper, we
shall use the term “explaining” in a weak sense. For
example, finding that a local network statistics X “ex-
plains” a higher-order network statistics Y in our null
model will signal the presence of a strong correlation be-
tween the two statistics, so that X can be sufficient to
fully reproduce Y in the network. Of course, we do not
aim at using our null model to identify subtle causal links
between X and Y, which in the real-world may be caused
e.g. by some omitted variables that cause in a proper
way the high observed correlation between X and Y.

In this first paper, we focus on the ITN as a binary
network. We find that higher-order patterns of all bi-
nary (either directed or undirected) projections of the
ITN are remarkably well explained by local properties
alone (the degree sequences). This result is robust to dif-
ferent levels of commodity aggregation: even if with an
increasing scatter, the degree sequence preserves its com-
plete informativeness as more disaggregated and sparser
commodity-specific networks are considered. Moreover,
we perform a temporal analysis and check the robust-
ness of these results over time. Therefore we obtain, for
the first time in this type of study, a detailed and homo-
geneous assessment of the role of local properties across

different representations of the trade network, using var-
ious levels of commodity aggregation, and over several
years. From an international-trade perspective, our re-
sults indicate that binary network descriptions of trade
can be significantly simplified by considering the degree
sequence(s) only. In other words, in any binary repre-
sentation of the ITN, the degree sequence turns out to
be maximally informative, since its knowledge conveys
almost the entire information about the topology of the
network.

In the companion paper [21], we show that the pic-
ture changes completely when considering the ITN as a
weighted network. We find that the ITN is an excel-
lent example of a network whose local topological prop-
erties cannot be deduced from its local weighted prop-
erties. These results highlight an important limitation
of current economic models of trade, that do not aim at
explaining or reproducing the observed degree sequence
but focus more on the structure of weights [23]. In other
words, standard models of trade in economics have been
focusing only on explaining the (positive) flow between
any two countries, disregarding to a great extent theories
that are able to account for the determinants of the cre-
ation of a link (i.e. the transition from a zero trade-flow
to a positive trade flow). The observed extreme informa-
tiveness of the degree sequence leads us to conclude that
such models should be substantially revised in order to
explicitly include the degree sequence of the ITN among
the key properties to reproduce.

II. DATA AND METHODS

This Section describes the data we use to construct the
various representations of the network in this and in the
following paper [21], discusses how the country-specific
properties that are usually considered in world-trade eco-
nomics translate into local topological properties of the
ITN, and discusses how these properties should be kept
as constraints of our analysis using an appropriate net-
work randomization method.

A. The International Trade Network

We use yearly bilateral data on exports and imports
from the United Nations Commodity Trade Database
(UN COMTRADE) [44] from year 1992 to 2002. We
have chosen this database because, despite its relatively
short time interval (11 years), it contains trade data be-
tween countries disaggregated across commodity cate-
gories. This allows us to perform our analyses both at the
aggregate level (total trade flows) and at the commodity-
specific level, e.g. investigating whether local properties
are sufficient to explain higher-order ones in commodity-
specific networks of trade.

In order to perform a temporal analysis and allow com-
parisons across different years, we restrict ourselves to a
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balanced panel of N = 162 countries that are present in
the data throughout the time interval considered. As to
the level of disaggregation, we choose the classification
of trade values into C = 97 possible commodities listed
according to the Harmonized System 1996 (HS1996) [45].
Accordingly, for a given year t we consider the trade value
ecij(t) corresponding to exports of the particular commod-
ity c (c = 1, . . . C). Since, for every commodity, exports
from country i to country j are reported twice (by both
the importer and the exporter) and the two figures do not
always match, we follow Ref. [13] and only employ the
flow as reported by the importer. Besides commodity-
specific data, we also compute the total value e0ij(t) of
exports from country i to country j as the sum over the
exports of all C = 97 commodity classes:

e0ij(t) ≡
C∑
c=1

ecij(t) (1)

The particular aggregation procedure described above,
which coincides with the one performed in Ref. [13], al-
lows us to compare our analysis of the C commodity-
specific networks with a (C + 1)-th aggregate network,
avoiding possible inconsistencies between aggregated and
disaggregated trade data. We stress that the resulting ag-
gregated network data are in general different from those
used in other analyses [3, 4, 12] of the same network.
Nonetheless, as we show below, when we analyze net-
work properties that have also been studied in previous
studies of aggregate trade, we find perfect agreement.

The quantities {ecij(t)} (where c = 0, . . . C) defined
above are the fundamental data that allow us to obtain
different possible representations of the trade network, as
well as the corresponding randomized counterparts (see
below for the units of measure we adopted). When we
regard the ITN as a weighted directed network, we define
the weight of the link from country i to country j in year
t for commodity c as

wcij(t) ≡ becij(t)e c = 0, . . . C (2)

where bxe ∈ N denotes the nearest integer to the non-
negative real number x. When we adopt a weighted
but undirected (symmetrized) description, we define the
weight of the link between countries i and j in year t for
commodity c as

wcij(t) ≡ wcji(t) ≡
⌊
ecij(t) + ecji(t)

2

⌉
c = 0, . . . C (3)

Therefore, in both the directed and undirected case,
wcij(t) is an integer quantity. Since in both cases we shall
be interested in tracking the temporal evolution of most
quantities, we also define rescaled weights (relative to the
total yearly trade flow) as follows:

w̃cij(t) ≡
wcij(t)

wctot(t)
c = 0, . . . C (4)

where in the directed case wcij(t) is given by Eq. (2)
and wctot(t) ≡

∑
i

∑
j 6=i w

c
ij(t) (the double sum runs

over all N(N − 1) ordered pairs of vertices), while
in the undirected case wcij(t) is given by Eq. (3) and
wctot(t) ≡

∑
i

∑
j<i w

c
ij(t) (the double sum runs over

all the N(N − 1)/2 unordered pairs). In such a way,
trend effects are washed away and we obtain adimen-
sional weights that are automatically deflated, allowing
consistent comparisons across different years and differ-
ent commodities.

In the binary representations of the network, we draw a
link from i to j whenever the corresponding weight wcij is
strictly positive. If Θ(x) denotes the step function (equal
to 1 if x > 0 and 0 otherwise), the adjacency matrix of the
binary projection of the network in year t for commodity
c is

acij(t) ≡ Θ[wcij(t)] c = 0, . . . C (5)

where wcij(t) is given either by Eq. (2) or by Eq. (3),
depending on whether one is interested in a directed or
undirected binary projection of the network respectively.

For each of the C + 1 commodity categories, we
can consider four network representations (binary undi-
rected, binary directed, weighted undirected, weighted
directed). When reporting our results, we will first
describe the aggregated networks (c = 0) and then
the disaggregated (commodity-specific) ones. In par-
ticular, among the 97 commodity classes, we will fo-
cus on the 14 particularly relevant commodities identi-
fied in Ref. [13], which are reported in table I. These
14 commodities include the 10 most traded commodi-
ties (c = 84, 85, 27, 87, 90, 39, 29, 30, 72, 71 according to
the HS1996) in terms of total trade value (following the
ranking in year 2003 [13]), plus 4 classes (c = 10, 52, 9, 93
according to the HS1996) which are less traded but more
relevant in economic terms. Taken together, the 10 most
traded commodities account for 56% of total world trade
in 2003; moreover, they also feature the largest values
of trade value per link (also shown in the table). The
14 commodities considered account together for 57% of
world trade in 2003. As an intermediate level of aggrega-
tion, we shall also consider the networks formed by the
sum of these 14 commodities. The original data {ecij(t)}
are available in current U.S. dollars (USD) for all com-
modities; however, due to the different trade volumes
involved, we use different units of measure for different
levels of aggregation [46].

B. Controlling for local properties

As we mentioned, our main interest in the present work
is assessing whether higher-order properties of the ITN
can be simply traced back to local properties, which are
the main focus of traditional macroeconomic analyses of
international trade. Such standard country-specific prop-
erties include: total exports, total imports, total trade
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HS Code Commodity Value (USD) Value per link (USD) % of aggregate trade
84 Nuclear reactors, boilers, machinery and

mechanical appliances; parts thereof
5.67× 1011 6.17× 107 11.37%

85 Electric machinery, equipment and parts;
sound equipment; television equipment

5.58× 1011 6.37× 107 11.18%

27 Mineral fuels, mineral oils & products of
their distillation; bitumin substances; min-
eral wax

4.45× 1011 9.91× 107 8.92%

87 Vehicles, (not railway, tramway, rolling
stock); parts and accessories

3.09× 1011 4.76× 107 6.19%

90 Optical, photographic, cinematographic,
measuring, checking, precision, medical or
surgical instruments/apparatus; parts &
accessories

1.78× 1011 2.48× 107 3.58%

39 Plastics and articles thereof. 1.71× 1011 2.33× 107 3.44%
29 Organic chemicals 1.67× 1011 3.29× 107 3.35%
30 Pharmaceutical products 1.4× 1011 2.59× 107 2.81%
72 Iron and steel 1.35× 1011 2.77× 107 2.70%
71 Pearls, precious stones, metals, coins, etc 1.01× 1011 2.41× 107 2.02%
10 Cereals 3.63× 1010 1.28× 107 0.73%
52 Cotton, including yarn and woven fabric

thereof
3.29× 1010 6.96× 106 0.66%

9 Coffee, tea, mate & spices 1.28× 1010 2.56× 106 0.26%
93 Arms and ammunition, parts and acces-

sories thereof
4.31× 109 2.46× 106 0.09%

ALL Aggregate (all 97 commodities) 4.99× 1012 3.54× 108 100.00%

TABLE I: The 14 most relevant commodity classes (plus aggregate trade) in year 2003 and the corresponding total trade value
(USD), trade value per link (USD), and share of world aggregate trade. From Ref. [13].

(sum of total exports and total imports), trade openness
(ratio of total trade to GDP), the number of countries
whom a country exports to and imports from, the total
number of trade partners (irrespective of whether they
are importers or exporters, or both). All these quan-
tities can be simply obtained as local sums over direct
interactions (countries one step apart) in a suitable rep-
resentation of the network.

For instance, the number of trade partners of country i
is simply the number of neighbors of node i in the binary
undirected projection, i.e. the degree

ki ≡
∑
j 6=i

aij (6)

In the above equation and in what follows, we drop the
dependence of topological quantities on the particular
year t for simplicity. We also drop the superscript c speci-
fying a particular commodity, as all the formulas hold for
any c. This means that, if the aggregated network of total
trade is considered, then aij and wij represent the aggre-
gate quantities a0ij and w0

ij , where the commodity c = 0
formally represents the sum over all commodities, as in
Eq. (1). Otherwise, if the commodity-specific network
involving only the trade of the particular commodity c
(with c > 0) is considered, then aij and wij represent the
values acij and wcij for that commodity.

The number of countries whom a country exports to
and imports from are simply the two directed analogues

(the out-degree kouti and the in-degree kini respectively)
of the above quantity in the binary directed description:

kouti ≡
∑
j 6=i

aij (7)

kini ≡
∑
j 6=i

aji (8)

Similarly, as evident from Eq. (3), country i’s total
trade coincides with twice the sum of weights reaching
node i in the weighted undirected representation, i.e. the
strength

si ≡
∑
j 6=i

wij (9)

Finally, total exports (imports) of country i are simply
the sum of out-going (in-coming) weights in the weighted
directed representation of the ITN. These quantities are
known as the out-strength souti and in-strength sini of node
i:

souti ≡
∑
j 6=i

wij (10)

sini ≡
∑
j 6=i

wji (11)

Another country-specific property which is widely used
as an explanatory variable of trade patterns is the GDP
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or the per capita GDP (i.e. the ratio of GDP to popula-
tion). This property is sometimes used to rescale trade
values, as in the case of trade openness which is defined
as a country’s ratio of total trade to GDP. Unlike the
quantities discussed above, the GDP is not a topological
entity. Nonetheless, it is empirically observed to be pos-
itively (and strongly) correlated with the degree [3] and
with node strength [12] (we will comment more on this in
Section III). Therefore, even if this is not the main aim
of the present work, one should be aware that assessing
the role of local topological properties also indirectly im-
plies, to a large extent, assessing the role of the GDP of
countries.

C. Rewiring the ITN

We showed that, in a network language, the standard
country-specific properties used to characterize world
trade translate into simple local topological properties of
the ITN. This naturally implies that, in our analysis, it is
important to consider a null model of the ITN where such
properties are enforced as constraints, and the topology
is otherwise maximally random. Different methods that
produce randomized ensembles of networks with given
constraints exist [22, 24–33]. As we mentioned, we aim
at studying many topological properties of several differ-
ent representations and temporal snapshots of the ITN.
Therefore, we need a fast method that can deal with
many networks in a relatively short time, and treat bi-
nary, weighted, directed and undirected graphs in a con-
sistent fashion. To this end, we employ the maximum-
likelihood method introduced in ref. [22], which provides
the expectation values (over the randomized ensemble) of
the desired topological properties analytically, in contrast
with alternative methods [31, 32] which require to explic-
itly generate many randomized variants of the real net-
work computationally. Moreover, the method is density-
independent and works for both sparse and dense net-
works. By contrast, other (analytical or computational)
approaches are density-dependent and not optimized for
dense networks: the Chung-Lu (analytical) approach [33]
works only for sparse networks, and the Maslov-Sneppen
(computational) algorithm [31, 32] becomes too time con-
suming for dense networks. Since the ITN is an unusu-
ally dense network, the maximum-likelihood method is
the natural choice that allows us to perform a detailed
analysis, covering all possible representations across sev-
eral years, which would otherwise require an impressive
amount of time.

In the Appendix we describe the maximum-likelihood
method in some detail, in particular its application to
the topological properties of interest for the present case
study. Given any topological property X, the method
provides the average value 〈X〉 of X across the ensem-
ble of random graphs with the same average (across the
ensemble itself) constraints as the real network. For sim-
plicity, in this and in the companion paper we sometimes

denote 〈X〉 as a randomized property, and its value as the
randomized value of X, even if technically no randomiza-
tion process has been required (all the results have been
obtained analytically). Similarly, we imagine the graph
ensemble as a rewired version of the original network,
even if no rewiring has taken place explicitly.

III. THE ITN AS A BINARY UNDIRECTED
NETWORK

As we mentioned in Section II A, in its binary rep-
resentation the ITN is defined as a graph whose edges
report the presence of trade relationships among world
countries, irrespective of the intensity of these relation-
ships. The binary representation of the ITN can be either
undirected or directed, depending on whether one is in-
terested in specifying the orientation of trade flows. In
both cases, the complete information about the topology
of the network is encoded in the adjacency matrix A,
whose entries {aij} are defined as in Eq. (5).

In the simplest case, the presence of at least one of
the two possible trade relationships between any two
countries i and j (either from i to j or from j to i)
is represented as one undirected edge between nodes i
and j. Therefore aij = aji and A is a symmetric ma-
trix. In this binary undirected description, as shown in
Eq. (6), the local constraints {Ca} are the degrees of
all vertices, i.e. the degree sequence {ki}. Therefore, the
maximum-likelihood randomization method [22] (see Ap-
pendix) works by specifying the constraints {Ca} ≡ {ki}
and allows us to write down the probability of any graph
G in the grandcanonical ensemble, which is uniquely
specified by its generic adjacency matrix A. As sum-
marized in Appendix B, this allows us to easily obtain
the expectation value 〈X〉, formally defined in Eq. (A7),
of any property X across the ensemble of binary undi-
rected graphs whose expected degree sequence is equal to
the empirical one. Note that, among the possible prop-
erties, the degree of vertices plays a special role, as its
expectation value 〈ki〉 is exactly equal to the empirical
value ki, as required by the method. Therefore the values
{ki} are useful control parameters and can be efficiently
used as independent variables in terms of which other
properties X can be visualized.

For the sake of simplicity, in Sections III A and III B we
first report the results of this analysis on a single snap-
shot of the commodity-aggregated network (the last year
in our temporal window, i.e. 2002). Then, we discuss
the robustness of our results through time by tracking
them backwards in Section III C. We finally consider the
disaggregated analysis of commodity-specific networks in
Section III D.
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FIG. 1: (Color online) Average nearest neighbor degree knn
i

versus degree ki in the 2002 snapshot of the real binary undi-
rected ITN (red points), and corresponding average over the
maximum-entropy ensemble with specified degrees (blue solid
curve).

A. Average nearest neighbor degree

We start with the analysis of the aggregated version of
the ITN, representing the trade of all commodities (c = 0
in our notation). In the following formulas, the matrix
A therefore denotes the aggregate matrix A0, where we
drop the superscript for brevity. As a first quantity, we
consider the average nearest neighbor degree (ANND) of
vertex i, defined as

knni ≡
∑
j 6=i aijkj

ki
=

∑
j 6=i
∑
k 6=j aijajk∑
j 6=i aij

(12)

and measuring the average number of partners of the
neighbors of a given node i. The above quantity in-
volves indirect interactions of length two, as evidenced
from the presence of terms of the type aijajk in the def-
inition. Whether these 2-paths are a simple outcome of
the concatenation of two independent edges can be in-
spected by considering the correlation structure of the
network, and in particular by plotting knni versus ki. The
result is shown in Fig. 1. We observe a decreasing trend,
confirming what already found in previous studies em-
ploying different datasets [2, 4, 12]. This means that
countries trading with highly connected countries have a
few trade partners, whereas countries trading with poorly
connected countries have many trade partners. This cor-
relation profile, known as disassortativity, might signal
an interesting pattern in the trade network. However, if
we compare this trend with the one followed by the corre-
sponding randomized quantity 〈knni 〉 (see Appendix B for
its expression), we find that the two behaviors coincide.
This is an important effect of structural constraints in a
dense network [34]: contrary to what naively expected
[35], even in a network where links are drawn randomly
between vertices with given heterogeneous degrees, the
ANND is not constant. This means that the degree se-
quence constrains the correlation structure, and that it is

0 50 100 150
0.0

0.2

0.4

0.6

0.8

1.0

k

c,
Xc\

FIG. 2: (Color online) Clustering coefficient ci versus degree
ki in the 2002 snapshot of the real binary undirected ITN
(red points), and corresponding average over the maximum-
entropy ensemble with specified degrees (blue solid curve).

impossible to have a flat profile (knni independent of ki)
unless one forces the system to display it by introducing
additional mechanisms (hence additional correlations of
opposite sign).

B. Clustering coefficient

A similar result is found for the behavior of the clus-
tering coefficient ci, representing the fraction of pairs of
neighbors of vertex i which are also neighbors of each
other:

ci ≡
∑
j 6=i
∑
k 6=i,j aijajkaki

ki(ki − 1)

=

∑
j 6=i
∑
k 6=i,j aijajkaki∑

j 6=i
∑
k 6=i,j aijaik

(13)

The clustering coefficient is a measure of the fraction of
potential triangles attached to i that are actually real-
ized. This means that indirect interactions of length
three, corresponding to products of the type aijajkaki
entering Eq. (13), now come into play. Again, we find a
decreasing trend of ci as a function of ki (see Fig. 2). This
means that trade partners of highly connected countries
are poorly interconnected, whereas partners of poorly
connected countries are highly interconnected. However,
if this trend is compared with the one displayed by the
randomized quantity 〈ci〉 (see Appendix B), we again find
a very close agreement. This signals that in the ITN also
the profile of the clustering coefficient is completely ex-
plained by the constraint on the degree sequence, and
does not imply the presence of meaningful indirect inter-
actions on top of a concatenation of direct interactions
alone.

The above results show that the patterns observed in
the binary undirected description of the ITN do not re-
quire, besides the fact that different countries have spe-
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cific numbers of trade partners, the presence of higher-
order mechanisms as an additional explanation. On the
other hand, the fact that the degrees alone are enough to
explain higher-order network properties means that the
degree sequence is an important structural pattern in its
own. This highlights the importance of reproducing the
observed degree sequence in models of trade. We will
comment more about this point later on.

C. Evolution of binary undirected properties

We now check the robustness of the previous results
through time. This amounts to perform the same anal-
ysis on each of the 11 years in our time window rang-
ing from 1992 to 2002. For each of these snapshots, we
specify the degree sequence and evaluate the maximally
random ensemble of binary undirected graphs. We then
compare each observed property X with the correspond-
ing average 〈X〉 (repeating the procedure described in
Appendix B) over the null model for that specific year.
We systematically find the same results described above
for each and every snapshot. For visual purposes, rather
than replicating the same plots shown above for all the
years considered, we choose a more compact description
of the observed patterns and portray its temporal evolu-
tion in a simple way. As we now show, this also provides
us with a characterization of various temporal trends dis-
played by each topological property, conveying more in-
formation than a fixed-year description of the trade sys-
tem.

We first consider the average nearest neighbor degree.
For a given year, we focus on the two lists of vertex-
specific values {knni } and {〈knni 〉} for the real and ran-
domized network respectively. We compute the average
(mknn and m〈knn〉) and the associated 95% confidence in-
terval of both lists and plot them together as in Fig. 3a.
We repeat this for all years and obtain a plot which in-
forms us about the temporal evolution of the ANND in
the real and randomized network separately. We find
that the average value of the empirical ANND has been
increasing steadily during the time period considered.
However, the same is true for its randomized value, which
is always consistent with the real one within the confi-
dence intervals. This means that the null model com-
pletely reproduces the temporal trend of degree-degree
correlations.

In principle, the increase of the ANND could be sim-
ply due to an overall increase in link density. To fur-
ther study this possibility, we have compared the yearly
growth rate (Xt/Xt−1 − 1) of the average ANND and of
the link density in the period considered. We found two
regimes: initially (from 1993 to 1997) the density has
a larger (but decreasing) growth rate than the ANND,
while from 1998 to 2002 onwards the two rates converge.
Therefore it is useful to keep in mind that the evolution
of the average ANND, as well as that of other average
properties we consider below, is in general not merely

reflecting the evolution of the overall link density.
In Fig. 3b we also plot the temporal evolution of the

standard deviations sknn and s〈knn〉 (with associated 95%
confidence intervals) of the two lists of values {knni } and
{〈knni 〉}. We find that the variance of the empirical aver-
age nearest neighbor degree has been decreasing in time,
but once more this behavior is completely reproduced by
the null model and therefore fully explained by the evo-
lution of the degree sequence alone. Moreover, in Fig. 3c
we show the Pearson (product-moment) correlation co-
efficient rknn,k (with 95% confidence interval) between
{knni } and {ki}, and similarly the correlation coefficient
r〈knn〉,k between the randomized quantities {〈knni 〉} and
{ki} (recall that {〈ki〉} = {ki} by construction). This in-
forms us in a compact way about the evolution of the de-
pendence of the ANND on the degree, i.e. of the change
in the structure of the scatter plot we showed previously
in Fig. 1. We find that the disassortative character of
the scatter plot results in a correlation coefficient close
to −1, which has remained remarkably stable in time
across the interval considered, and always very close to
the randomized value.

The complete accordance between the real and ran-
domized ANND in each and every snapshot is confirmed
by Fig. 3d, where we show the correlation coefficient
rknn,〈knn〉 (with 95% confidence interval) between the em-
pirical ANND, {knni }, and the randomized one, {〈knni 〉}.
We observe an approximately constant value close to 1,
signaling perfect correlation between the two quantities.
This exhaustively explains the accordance between the
real and randomized ANND for all vertices, while the
other three panels of Fig. 3 also inform about various
overall temporal trends of the ANND, as we discussed.

In Fig. 4 we show the same analysis for the values {ci}
and {〈ci〉} of the clustering coefficient. In this case we
observe an almost constant trend of the average cluster-
ing coefficient (Fig. 4a), a decreasing standard deviation
(Fig. 4b), and a stable strong anticorrelation between
clustering and degree (Fig. 4c). Again, we find that the
real and randomized values are always consistent with
each other, so that the evolution of the empirical values
is fully reproduced by the null model. This is confirmed
by Fig. 4d, which shows that the correlation between
{ci} and {〈ci〉} is always very close to 1. As for the
ANND, these results clearly indicate that the real and
randomized values of the clustering coefficient of all ver-
tices are always in perfect agreement, and that the tem-
poral trends displayed by this quantity are completely
explained by the evolution of the degree sequence.

D. Commodity-specific binary undirected networks

We complete our analysis of the ITN as a binary undi-
rected network by studying whether the picture changes
when one considers, rather than the network aggregat-
ing the trade of all types of commodities, the individual
networks formed by imports and exports of single com-
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FIG. 3: (Color online) Temporal evolution of the properties
of the nearest neighbor degree knn

i in the 1992-2002 snapshots
of the real binary undirected ITN and of the corresponding
maximum-entropy null model with specified degrees. a) av-
erage of knn

i across all vertices (red: real data; blue: null
model, indistinguishable from real data). b) standard devi-
ation of knn

i across all vertices (red: real data; blue: null
model, indistinguishable from real data). c) correlation co-
efficient between knn

i and ki (red, upper symbols: real data;
blue, lower symbols: null model). d) correlation coefficient
between knn

i and 〈knn
i 〉. The 95% confidence intervals of all

quantities are represented as vertical bars.

modities. To this end, we focus on the disaggregated
data described in Section II A and we repeat the analysis
reported above, by identifying the matrix A with various
disaggregated matrices Ac (with c > 0).

We find that the results obtained in our aggregated
study also hold for individual commodities. For brevity,
we only report the scatter plots of the average near-
est neighbor degree (Fig. 5) and clustering coefficient
(Fig. 6) for the 2002 snapshots of 6 commodity-specific
networks. The 6 commodities are chosen among the top
14 reported in Table I. In particular, we select the two
least traded commodities in the set (c = 93, 9), two inter-
mediate ones (c = 39, 90), the most traded one (c = 84),
plus the network formed by combining all the top 14
commodities, i.e. an intermediate level of aggregation
between single commodities and the completely aggre-
gated data (c = 0), which we already considered in the
previous analysis (Figs. 1 and 2). With the addition of
the latter, the results shown span 7 different cases or-
dered by increasing trade intensity and level of commod-
ity aggregation. Similar results hold also for the other
commodities not shown.

If we compare Fig. 5 with Fig. 1, we see that the
trend displayed by ANND in the aggregated network is
preserved, even if with a slightly increasing scatter, as
sparser and less disaggregated commodity classes are con-
sidered. Importantly, the accordance between real and
randomized values is also preserved. The same is true
for the clustering coefficient, cf. Fig. 6 and its compari-
son with Fig. 2. These results indicate that the degree se-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

1990 1992 1994 1996 1998 2000 2002
0.60

0.65

0.70

0.75

0.80

0.85

year

m
c,

m
Xc\

a

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

1990 1992 1994 1996 1998 2000 2002
0.00

0.05

0.10

0.15

0.20

year

s c
,s

Xc\

b

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

1990 1992 1994 1996 1998 2000 2002

-1.00

-0.98

-0.96

-0.94

-0.92

-0.90

year

r c
,k

,r
Xc\

,k

c
-

-
-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

1990 1992 1994 1996 1998 2000 2002
0.90

0.92

0.94

0.96

0.98

1.00

year

r c
,Xc

\

d

FIG. 4: (Color online) Temporal evolution of the proper-
ties of the clustering coefficient ci in the 1992-2002 snapshots
of the real binary undirected ITN and of the corresponding
maximum-entropy null model with specified degrees. a) aver-
age of ci across all vertices (red: real data; blue: null model,
indistinguishable from real data). b) standard deviation of ci
across all vertices (red: real data; blue: null model, indistin-
guishable from real data). c) correlation coefficient between
ci and ki (red, upper symbols: real data; blue, lower symbols:
null model). d) correlation coefficient between ci and 〈ci〉.
The 95% confidence intervals of all quantities are represented
as vertical bars.

quence maintains its complete informativeness across dif-
ferent levels of commodity resolution, and irrespective of
the corresponding intensity of trade. Thus, remarkably,
the knowledge of the number of trade partners involv-
ing only a specific commodity still allows to reproduce
the properties of the corresponding commodity-specific
network.

As a summary of our binary undirected analysis we
conclude that, in order to explain the evolution of the
ANND and clustering of the ITN, it is unnecessary to
invoke additional mechanisms besides those accounting
for the evolution of the degree sequence alone. Since
the ANND and clustering already probe the effects of in-
direct interactions of length two and three respectively,
and since higher-order correlations involving longer topo-
logical paths are built on these lower-level ones, the null
model we considered here is very likely to fully reproduce
the properties of the ITN at all orders. In other words,
we found that in the binary undirected representation
of the ITN the degree sequence is maximally informa-
tive, as its knowledge allows to predict the higher-order
topological properties of the network that we have ex-
plored in this and in the companion paper. An inter-
esting question is whether the degree sequence is also
able to reproduce other higher-order network properties,
such as path lengths, node centrality, etc.. Whereas this
study does not explicitly address this question, we argue
that the answer will be positive in the light of the very
nature of the ITN. Its high density indeed implies that
path lengths are almost never larger than 3. As a con-
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FIG. 5: (Color online) Average nearest neighbor degree knn
i

versus degree ki in the 2002 snapshots of the commodity-
specific (disaggregated) versions of the real binary undi-
rected ITN (red points), and corresponding average over the
maximum-entropy ensemble with specified degrees (blue solid
curves). a) commodity 93; b) commodity 09; c) commodity
39; d) commodity 90; e) commodity 84; f) aggregation of the
top 14 commodities (see Table I for details). From a) to f),
the intensity of trade and level of aggregation increases.

sequence, network properties of order larger than 3 are
typically well proxied by local properties. An example is
the extremely high correlation between country centrality
(measured e.g. in terms of betweenness centrality) and
node degree, typically found in previous studies. The ro-
bustness of this result across several years and different
commodity classes strengthens our previous discussion
about the importance of including the degree sequence
among the focuses of theories and models of trade, which
are instead currently oriented mainly at reproducing the
weighted structure, rather than the topology of the ITN.

IV. THE ITN AS A BINARY DIRECTED
NETWORK

We now consider the binary directed description of the
ITN, with an interest in understanding whether the in-
troduction of directionality changes the picture we have
described so far. In the directed binary case, a graph G
is completely specified by its adjacency matrix A which
is in general not symmetric, and whose entries are aij = 1
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FIG. 6: (Color online) Clustering coefficient ci versus degree
ki in the 2002 snapshots of the commodity-specific (disaggre-
gated) versions of the real binary undirected ITN (red points),
and corresponding average over the maximum-entropy ensem-
ble with specified degrees (blue solid curves). a) commodity
93; b) commodity 09; c) commodity 39; d) commodity 90;
e) commodity 84; f) aggregation of the top 14 commodities
(see Table I for details). From a) to f), the intensity of trade
and level of aggregation increases.

if a directed link from vertex i to vertex j is there, and
aij = 0 otherwise. The local constraints {Ca} are now
the two sets of out-degrees and in-degrees of all vertices
defined in Eqs.(7) and (8), i.e. the out-degree sequence
{kouti } and the in-degree sequence {kini }. In Appendix C
we show how the randomization method enables in this
case to obtain the expectation value 〈X〉 of a property X
across the maximally random ensemble of binary directed
graphs with in-degree and out-degree sequences equal to
the observed ones. When inspecting the properties of
the ITN and its randomized variants, the useful indepen-
dent variables are now the values {kouti } and {kini } (or
combinations of them), since they are the special quanti-
ties X whose expected value 〈X〉 coincides with the ob-
served one by construction. Again, we first consider the
2002 snapshot of the completely aggregated ITN (Sec-
tions IV A and IV B), then track the temporal evolution
of the results backwards (Section IV C), and finally per-
form a disaggregated analysis in Section IV D.
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A. Directed average nearest neighbor degrees

We start with the analysis of the binary directed trade
network aggregated over all commodities (c = 0). There-
fore, in the following formulas, we set A ≡ A0. The
average nearest neighbor degree of a vertex in a directed
graph can be generalized in four ways from its undirected
analogue. We thus obtain the quantities

k
in/in
i ≡

∑
j 6=i ajik

in
j

kini
=

∑
j 6=i
∑
k 6=j ajiakj∑
j 6=i aji

(14)

k
in/out
i ≡

∑
j 6=i ajik

out
j

kini
=

∑
j 6=i
∑
k 6=j ajiajk∑
j 6=i aji

(15)

k
out/in
i ≡

∑
j 6=i aijk

in
j

kouti

=

∑
j 6=i
∑
k 6=j aijakj∑
j 6=i aij

(16)

k
out/out
i ≡

∑
j 6=i aijk

out
j

kouti

=

∑
j 6=i
∑
k 6=j aijajk∑
j 6=i aij

(17)

In the above expressions, indirect interactions due to
the concatenation of pairs of edges are taken into ac-
count according to their directionality, as clear from the
presence of products of the type aijakl. A fifth possibil-
ity is an aggregated measure based on the total degree
ktoti ≡ kini + kouti of vertices:

k
tot/tot
i ≡

∑
j 6=i(aij + aji)k

tot
j

ktoti
(18)

The latter is a useful one to start with, as it provides a
simpler analogue to the undirected quantity knni we have
already studied. At the same time, it must be noted that
the two quantities are not trivially related since the total

directed properties ktoti and k
tot/tot
i carry more informa-

tion than the corresponding undirected ones ki and knni ,
the difference being the local reciprocity structure of the
network [20]. To see this, note that ktoti = ki + k↔i ,
where k↔i ≡

∑
j 6=i aijaji (if aij is the adjacency ma-

trix of the directed network) is the reciprocated degree
of vertex i, defined as the number of bidirectional links
reaching i [20, 36, 37]. This quantity represents the num-
ber of trade partners, acting simultaneously as importers
and exporters, of country i. Therefore, studying total
directed quantities also allows to assess whether the reci-
procity structure of the directed network changes the
results obtained in the undirected case (similar consid-
erations apply to the directed clustering coefficients we
introduce below).

In Fig. 7 we plot k
tot/tot
i as a function of ktoti for the

2002 snapshot of the binary directed ITN. The trend
shown does not differ substantially from its undirected
counterpart we observed in Fig. 1. In particular, we ob-
tain a similar disassortative character of the correlation
profile. Importantly, we find again a good agreement
between the empirical quantity and its expected value

〈ktot/toti 〉 under the null model (obtained as in Appendix

C). In Fig. 8 we show a more refined analysis by consider-
ing all the four directed versions of the ANND defined in
Eqs.(14)-(17), as well as their expected values under the
null model (see Appendix C). We immediately see that all
quantities still display a disassortative trend, with some
differences in the ranges of observed values. Again, all
the four empirical behaviors are in striking accordance
with the null model, as the randomized curves (obtained
as in Appendix C) show. This means that both the de-
creasing trends and the ranges of values displayed by all
quantities are well reproduced by a collection of random
graphs with the same average in-degrees and out-degrees
as the real network.

B. Directed clustering coefficients

We now consider the directed counterparts of the clus-
tering coefficient defined in Eq. (13). Again, there are
four possible generalizations depending on whether the
directed triangles involved are of the inward, outward,
cyclic or middleman type [38]:

cini ≡
∑
j 6=i
∑
k 6=i,j akiajiajk

kini (kini − 1)
(19)

couti ≡
∑
j 6=i
∑
k 6=i,j aikajkaij

kouti (kouti − 1)
(20)

ccyci ≡
∑
j 6=i
∑
k 6=i,j aijajkaki

kini k
out
i − k↔i

(21)

cmidi ≡
∑
j 6=i
∑
k 6=i,j aikajiajk

kini k
out
i − k↔i

(22)

The directed clustering coefficients are determined by in-
direct interactions of length 3 according to their direc-
tionality, appearing as products of the type aijaklamn in
the above formulas. At the same time, since they always
focus on three vertices only, they capture the local occur-
rence of particular network motifs [39] of order 3. A fifth
aggregated measure, based on all possible directions, is

ctoti ≡
∑
j 6=i
∑
k 6=i,j(aij + aji)(ajk + akj)(aki + aik)

2
[
ktoti (ktoti − 1)− 2k↔i

]
(23)

As for k
tot/tot
i , the latter definition is a good starting

point for a comparison with the undirected case. In Fig. 9
we show ctoti and 〈ctoti 〉 (see Appendix C) as a function
ktoti for our usual snapshot. We see no fundamental dif-
ference with respect to Fig. 2. Again, the randomized
quantity does not deviate significantly from the empiri-
cal one.

We now turn to the four directed clustering coefficients
defined in Eqs.(19)-(22). We show these quantities in
Fig. 10 as functions of different combinations of kini and
kouti , depending on the particular definition. As for the
directed ANND, we observe some variability in the range
of observed clustering values. However, all the quantities
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FIG. 7: (Color online) Total average nearest neighbor de-

gree k
tot/tot
i versus total degree ktot

i in the 2002 snapshot of
the real binary directed ITN (red points), and corresponding
average over the maximum-entropy ensemble with specified
out-degrees and in-degrees (blue solid curve).

are again in accordance with the expected ones under the
null model (see Appendix C).

C. Evolution of binary directed properties

We now track the temporal evolution of the above re-
sults by performing, for each year in our time window,
an analysis similar to that reported in sec.III C for the
undirected case.

We start by showing the evolution of the total aver-

age nearest neighbor degree k
tot/tot
i in the four panels of
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FIG. 8: (Color online) Directed average nearest neighbor de-
grees versus vertex degrees in the 2002 snapshot of the real
binary directed ITN (red points), and corresponding aver-
ages over the maximum-entropy ensemble with specified out-

degrees and in-degrees (blue solid curves). a) k
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i versus
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FIG. 9: (Color online) Total clustering coefficient ctoti versus
total degree ktot

i in the 2002 snapshot of the real binary di-
rected ITN (red points), and corresponding average over the
maximum-entropy ensemble with specified out-degrees and
in-degrees (blue solid curve).

Fig. 11, where we plot the same properties considered
previously for the undirected ANND in Fig. 3. We find
that the temporal evolution of the average (Fig. 11a) and

standard deviation (Fig. 11b) of k
tot/tot
i is essentially the

same as that of the undirected knni , apart from differences
in the range of values. Similarly, the correlation coeffi-

cients between k
tot/tot
i and ktoti (Fig. 11c), 〈ktot/toti 〉 and

〈ktoti 〉 = ktoti (Fig. 11c), k
tot/tot
i and 〈ktot/toti 〉 (Fig. 11d)

mimic their undirected counterparts, confirming that the

perfect accordance between k
tot/tot
i and 〈ktot/toti 〉 is stable

over time, and that the disassortative trend of k
tot/tot
i as

a function of ktoti (Fig. 7) is always completely explained
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FIG. 10: (Color online) Directed clustering coefficients ver-
sus vertex degrees in the 2002 snapshot of the real binary di-
rected ITN (red points), and corresponding averages over the
maximum-entropy ensemble with specified out-degrees and
in-degrees (blue solid curves). a) cini versus kin

i . b) couti ver-
sus kout

i . c) ccyci versus kin
i · kout

i . d) cmid
i versus kin

i · kout
i .
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FIG. 11: (Color online) Temporal evolution of the properties

of the total average nearest neighbor degree k
tot/tot
i in the

1992-2002 snapshots of the real binary directed ITN and of
the corresponding null model with specified out-degrees and

in-degrees. a) average of k
tot/tot
i across all vertices (red: real

data; blue: null model, indistinguishable from real data). b)

standard deviation of k
tot/tot
i across all vertices (red: real

data; blue: null model, overlapping with real data). c) cor-

relation coefficient between k
tot/tot
i and ktot

i (red: real data;
blue: null model, overlapping with real data). d) correlation

coefficient between k
tot/tot
i and 〈ktot/tot

i 〉. The 95% confidence
intervals of all quantities are represented as vertical bars.

by the null model.

We now consider the four directed variants k
in/in
i ,

k
in/out
i , k

out/in
i , k

out/out
i . For brevity, for these quan-

tities we only show the evolution of the average values,
which are reported in Fig. 12. We find that the overall
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FIG. 12: (Color online) Averages and their 95% confidence
intervals (across all vertices) of the directed average nearest
neighbor degrees in the 1992-2002 snapshots of the real binary
directed ITN (red), and corresponding averages over the null
model with specified out-degrees and in-degrees (blue, indis-

tinguishable from real data). a) average of k
in/in
i ; b) average

of k
in/out
i ; c) average of k

out/in
i ; d) average of k

out/out
i .

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

1990 1992 1994 1996 1998 2000 2002
0.3

0.4

0.5

0.6

0.7

0.8

year

m
cto

t ,
m

Xcto
t \

a

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

1990 1992 1994 1996 1998 2000 2002
0.00

0.05

0.10

0.15

0.20

0.25

year

s c
to

t ,
s X

cto
t \

b

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

1990 1992 1994 1996 1998 2000 2002
-1.00

-0.98

-0.96

-0.94

-0.92

-0.90

year

r c
to

t ,k
to

t ,
r X

cto
t \,k

to
t

c
-
-
-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

1990 1992 1994 1996 1998 2000 2002
0.90

0.92

0.94

0.96

0.98

1.00

year

r c
to

t ,Xc
to

t \

d

FIG. 13: (Color online) Temporal evolution of the properties
of the total clustering coefficient ctoti in the 1992-2002 snap-
shots of the real binary directed ITN and of the corresponding
null model with specified out-degrees and in-degrees. a) av-
erage of ctoti across all vertices (red: real data; blue: null
model, indistinguishable from real data). b) standard de-
viation of ctoti across all vertices (red: real data; blue: null
model, indistinguishable from real data). c) correlation coef-
ficient between ctoti and ktot

i (red, upper symbols: real data;
blue, lower symbols: null model). d) correlation coefficient
between ctoti and 〈ctoti 〉. The 95% confidence intervals of all
quantities are represented as vertical bars.

behavior previously reported for the average of k
tot/tot
i

(Fig. 11a) is not reflected in the individual trends of
the four directed versions of the ANND. In particular,

the averages of k
in/in
i (Fig. 12a), k

in/out
i (Fig. 12b) and

k
out/out
i (Fig. 12d) increase over a downward-shifted but

wider range of values than that of k
tot/tot
i , whereas the
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FIG. 14: (Color online) Averages and their 95% confidence
intervals (across all vertices) of the directed clustering coeffi-
cients in the 1992-2002 snapshots of the real binary directed
ITN (red), and corresponding averages over the null model
with specified out-degrees and in-degrees (blue, indistinguish-
able from real data). a) cini ; b) couti ; c) ccyci ; d) cmid

i .
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FIG. 15: (Color online) Total average nearest neighbor de-

gree k
tot/tot
i versus total degree ktot

i in the 2002 snapshots
of the commodity-specific (disaggregated) versions of the real
binary directed ITN (red points), and corresponding aver-
age over the maximum-entropy ensemble with specified out-
degrees and in-degrees (blue solid curves). a) commodity 93;
b) commodity 09; c) commodity 39; d) commodity 90; e)
commodity 84; f) aggregation of the top 14 commodities (see
Table I for details). From a) to f), the intensity of trade and
level of aggregation increases.

average of k
out/in
i (Fig. 12c) is almost constant in time.

The moderately increasing average of k
tot/tot
i is therefore

the overall result of a combination of different trends
followed by the underlying directed quantities, some of
these trends being strongly increasing and some being
almost constant. Therefore we find the important result
that there is a substantial loss of information in passing
from the inherently directed quantities to the undirected
or symmetrized ones. Still, when we compare the empir-
ical trends of the directed quantities with the random-
ized ones, we find an almost perfect agreement. This
implies that even the finer structure of directed correla-
tion profiles, as well as their evolution, is reproduced in
great detail by controlling for the local directed topolog-
ical properties alone.

The same analysis is shown for the total clustering co-
efficient ctoti in Fig. 13, and for the four directed vari-
ants cini , couti , ccyci , cmidi in Fig. 14. Again, we find
that the four temporal trends involving the overall quan-
tity ctoti (Fig. 13) replicate what we have found for its
undirected counterpart ci (shown previously in Fig. 4).
When we consider the four inherently directed quantities
(Fig. 14), we find that the averages of cini (Fig. 14a) and
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FIG. 16: (Color online) Total clustering coefficient ctoti

versus total degree ktot
i in the 2002 snapshots of the

commodity-specific (disaggregated) versions of the real binary
directed ITN (red points), and corresponding average over the
maximum-entropy ensemble with specified our-degrees and
in-degrees (blue solid curves). a) commodity 93; b) com-
modity 09; c) commodity 39; d) commodity 90; e) commod-
ity 84; f) aggregation of the top 14 commodities (see Table I
for details). From a) to f), the intensity of trade and level of
aggregation increases.

ccyci (Fig. 14c) display an increasing trend, whereas the
average of cmidi (Fig. 14d) is constant and that of couti

(Fig. 14b) is even decreasing. When aggregated, these
different trends give rise to the constant behavior of the
average ctoti , which is therefore not representative of the
four underlying directed quantities. This also means that,
similarly to what we found for the ANND, there is a sub-
stantial loss of information in passing from the directed
to the undirected description of the binary ITN. However,
even the fine-level differences among the directed cluster-
ing patterns are still completely reproduced by the null
model.

D. Commodity-specific binary directed networks

We now study the binary directed ITN when disag-
gregated (commodity-specific) representations are con-
sidered. We repeat the analysis described above by set-
ting A ≡ Ac with c > 0. For brevity, we report our
analysis of the 6 commodities described in Section III D
and selected from the top 14 categories listed in table I
(again, we found similar results for all commodities). To-
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gether with the aggregated binary directed ITN already
described, these commodity classes form a set of 7 differ-
ent cases ordered by increasing trade intensity and level
of commodity aggregation.

In Figs. 15 and 16 we show the behavior of the total av-
erage nearest neighbor degree and total clustering coeffi-
cient for the 2002 snapshots of the 6 selected commodity-
specific networks. When compared with Figs. 7 and 9,
the plots confirm what we have found in Section III D
for the binary undirected case. In particular, the be-
havior displayed by the ANND and clustering in the
commodity-specific networks becomes less and less noisy
as more intensely traded commodities, and higher levels
of aggregation, are considered. Accordingly, the agree-
ment between real and randomized networks increases,
but the accordance is already remarkable in commodity-
specific networks, even the sparsest and least aggregated
ones. These results confirm that, irrespective of the level
of commodity resolution and trade volume, the directed
degree sequences completely characterize the topology of
the binary directed representations of the ITN.

V. CONCLUSIONS

All the above results clearly imply that, in the undi-
rected as well as the directed case, for all the years con-
sidered, and across different commodity classes, the dis-
assortativity and clustering profiles observed in the real
binary ITN arise as natural outcomes rather than gen-
uine correlations, once the local topological properties are
fixed to their observed values. Therefore we can conclude
that the higher-order patterns observed in all the binary
representations of the ITN, as well as their temporal
evolution, are completely explained by local constraints
alone. This means that the (undirected/directed) degree
sequence of the ITN is maximally informative, since its
knowledge systematically conveys a full picture of the
binary topology of the network. These results have im-
portant consequences for economic models of trade. In
particular, they suggest that the ITN topology should
become one of the main focuses of international-trade
theories. While most of the literature concerned with
modeling international trade has focused on the problem
of reproducing the magnitude of nonzero trade volumes
(the most important example being gravity models [40]),
much less emphasis has been put on correctly replicating
the binary topology of the ITN, i.e. understanding the
determinants of the process governing the creation of a
link. However, our results clearly show that the purely
topological structural properties (and in particular the
degree sequence) of the ITN carry a significant amount
of information.

A first step in reproducing the ITN topology is the
model in Ref. [3], where the probability pij of a trade
relationship between two countries i and j was modeled
as a function of the GDP values of the countries them-
selves, and all the topological properties of the network

were successfully replicated. Interestingly, the form of
that function coincides with the connection probability
of the null model considered here, shown in Appendix B
in Eq. (B3), where the role of the Lagrange multiplier xi
associated with ki is played by the GDP of country i. In-
deed, an approximately monotonic relationship between
GDP and degree has been observed [3], providing a con-
nection between these two results. From another perspec-
tive, the above remark also means that the accordance
between the real ITN as a binary undirected network and
its randomized counterpart is replicated under an alter-
native null model, that controls for the empirical values
of the GDP rather than for the degree sequence. The im-
portance of reproducing the binary topology of trade is
reinforced by the analysis of the ITN as a weighted net-
work with local constraints, as we show in the following
paper [21].
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Appendix A: The randomization method

Given a real network with N vertices, there are vari-
ous ways to generate a family of randomized variants of
it [22, 24–33]. The most popular one is the local rewiring
algorithm proposed by Maslov and Sneppen [31, 32]. In
this method, one starts with the real network and gener-
ates a series of randomized graphs by iterating a funda-
mental rewiring step that preserves the desired proper-
ties. In the binary undirected case, where one wants to
preserve the degree of every vertex, the steps are as fol-
lows: choose two edges, say (i, j) and (k, l); rewire these
connections by swapping the end-point vertices and pro-
ducing two new candidate edges, say (i, l) and (k, j); if
these two new edges are not already present, accept them
and delete the initial ones. After many iterations, this
procedure generates a randomized variant of the origi-
nal network, and by repeating this exercise a sufficiently
large number of times, many randomized variants are ob-
tained. By construction, all these variants have exactly
the same degree sequence as the real-world network, but
are otherwise random. In the directed and/or weighted
case, extensions of the rewiring steps defined above can
be introduced, even if with some caution [5, 41]. Maslov
and Sneppen’s method allows one to check whether the
enforced properties are partially responsible for the topo-
logical organization of the network. For instance, one can
measure the degree correlations, or the clustering coeffi-
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cient, across the randomized graphs and compare them
with the empirical values measured on the real network.
This method has been applied to various networks, in-
cluding the Internet and protein networks [31, 32]. Differ-
ent webs have been found to be affected in very different
ways by local constraints, making the problem interesting
and not solvable a priori.

The main drawback of the local rewiring algorithm is
its computational requirements. Since the method is en-
tirely computational, and analytical expressions for its
results are not available, one needs to explicitly gener-
ate several randomized graphs, measure the properties
of interest on each of them (and store their values), and
finally perform an average. This average is an approxi-
mation for the actual expectation value over the entire
set of allowed graphs. In order to have a good approxima-
tion, one needs to generate a large number M of network
variants. Thus, the time required to analyze the impact
of local constraints on any structural property is M times
the time required to measure that property on the orig-
inal network, plus the time required to perform many
rewiring steps producing each of the M randomized net-
works. The number of rewiring steps required to obtain a
single randomized network is O(L) where L is the num-
ber of links [22, 31, 32], and O(L) = O(N) for sparse
networks while O(L) = O(N2) for dense networks [47].
Thus, if the time required to measure a given topologi-
cal property on the original network is O(Nτ ), the time
required to measure the randomized value of the same
property is O(M · L) + O(M ·Nτ ), which is O(M ·Nτ )
as soon as τ ≥ 2.

A recently proposed alternative method, which is re-
markably faster due to its analytical character, is based
on the maximum-likelihood estimation of maximum-
entropy models of graphs [22]. In this method, one first
specifies the desired set of local constraints {Ca}. Sec-
ond, one writes down the analytical expression for the
probability P (G) that, subject to the constraints {Ca},
maximizes the entropy

S ≡ −
∑
G

P (G) lnP (G) (A1)

where G denotes a particular graph in the ensemble,
and P (G) is the probability of occurrence of that graph.
This probability defines the ensemble featuring the de-
sired properties, and being maximally random otherwise.
Depending on the particular description adopted, the
graphs G can be either binary or weighted, and either di-
rected or undirected. Accordingly, the sum in Eq. (A1),
and in similar expressions shown later on, runs over all
graphs of the type specified. The formal solution to the
entropy maximization problem can be written in terms of
the so-called Hamiltonian H(G), representing the energy
(or cost) associated to a given graph G. The Hamilto-
nian is defined as a linear combination of the specified
constraints {Ca}:

H(G) ≡
∑
a

θaCa(G) (A2)

where {θa} are free parameters, acting as Lagrange multi-
pliers controlling the expected values {〈Ca〉} of the con-
straints across the ensemble. The notation Ca(G) de-
notes the particular value of the quantity Ca when the
latter is measured on the graph G. In terms of H(G), the
maximum-entropy graph probability P (G) can be shown
to be

P (G) =
e−H(G)

Z
(A3)

where the normalizing quantity Z is the partition func-
tion, defined as

Z ≡
∑
G

e−H(G) (A4)

Third, one maximizes the likelihood P (G∗) to obtain the
particular graph G∗, which is the real-world network that
one wants to randomize. This steps fixes the values of
the Lagrange multipliers that finally allow to obtain the
numerical values of the expected topological properties
averaged over the randomized ensemble of graphs. The
particular values of the parameters {θa} that enforce the
local constraints, as observed on the particular real net-
work G∗, are found by maximizing the log-likelihood

λ ≡ lnP (G∗) = −H(G∗)− lnZ (A5)

to obtain the real network G∗. It can be shown [18] that
this is equivalent to the requirement that the ensemble
average 〈Ca〉 of each constraint Ca equals the empirical
value measured on the real network:

〈Ca〉 = Ca(G∗) ∀a (A6)

Note that we generally adopted a simplified notation by
writing C∗a (or even only Ca) instead of Ca(G∗) for the
empirically observed values of the constraints (see for in-
stance Sections II A and II B). Once the parameter values
are found, they are inserted into the formal expressions
yielding the expected value

〈X〉 ≡
∑
G

X(G)P (G) (A7)

of any (higher-order) property of interest X. The quan-
tity 〈X〉 represents the average value of the property X
across the ensemble of random graphs with the same av-
erage (across the ensemble itself) constraints as the real
network. In what follows we provide a detailed account of
the expressions for the randomized properties appearing
in our analysis.

Technically, while the local rewiring algorithm gen-
erates a microcanonical ensemble of graphs, contain-
ing only those graphs for which the value of each con-
straint Ca is exactly equal to the observed value Ca(G∗),
the maximum-likelihood method generates an expanded
grandcanonical ensemble where all possible graphs with
N vertices are present, but where the ensemble aver-
age of each constraint Ca is equal to the observed value
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Ca(G∗). One can show that the microcanonical approach
converges to the grandcanonical one as the number of
microcanonical randomization steps increases [22]. How-
ever, the maximum-likelihood one is significantly faster.
Importantly, enforcing only local constraints implies that
P (G) factorizes as a simple product over pairs of vertices.
This has the nice consequence that the expression for 〈X〉
is generally only as complicated as that for X. In other
words, after the preliminary maximum-likelihood estima-
tion of the parameters {θa}, in this method the time re-
quired to obtain the exact expectation value of an O(Nτ )
property across the entire randomized graph ensemble is
the same as that required to measure the same property
on the original real network, i.e. still O(Nτ ). Therefore,
as compared to the local rewiring algorithm, which re-
quires a timeO(M ·Nτ ), the maximum-likelihood method
is O(M) times faster, for arbitrarily large M .

Appendix B: Binary undirected properties

In the binary undirected case, each graph G is com-
pletely specified by its (symmetric) Boolean adjacency
matrix A. The randomization method described above
proceeds by

1. specifying the degree sequence as the constraint:
{Ca} = {ki}. The Hamiltonian therefore reads

H(A) =
∑
i

θiki(A) =
∑
i

∑
j<i

(θi + θj)aij (B1)

and one can show [42] that this allows to write the
graph probability as

P (A) =
∏
i

∏
j<i

p
aij
ij (1− pij)1−aij (B2)

where

pij =
xixj

1 + xixj
(B3)

(with xi ≡ e−θi) is the probability that a link
exists between vertices i and j in the maximum-
entropy ensemble of binary undirected graphs, sub-
ject to specifying a given degree sequence as the
constraint;

2. solving the maximum-likelihood equations, by set-
ting the parameters {xi} to the values that maxi-
mize the likelihood P (A∗) to obtain the real net-
work A∗ [18, 22]. These values can be found as the
solution to the following set of N coupled nonlinear
equations [18]:

〈ki〉 =
∑
j 6=i

xixj
1 + xixj

= ki(A
∗) ∀i (B4)

where {ki(A∗)} is the empirical degree sequence of
the real network A∗. For a detailed analysis about

solving such system see [43] (for a discussion about
the existence of solutions) and [22] (for a discussion
about the convergence of the algorithm). In princi-
ple, dimensionality and memory problems can arise
when N is too large (luckily, this is not the case of
the ITN considered here). In such a case, the sys-
tem can be re-written with a lower number of equa-
tion to solve. In fact, the hidden variables of the
vertices with the same degree have the same value.
So, one can straightforwardly solve the system only
for them [18];

3. computing the probability coefficients pij , by insert-
ing the values {xi} into eq. (B3) which allows to
easily compute the expectation value 〈X〉 of any
topological property X analytically, without gen-
erating the randomized networks explicitly [22].
With this choice, eq. (B3) yields the exact value
of the connection probability in the ensemble of
randomized networks with the same average de-
gree sequence as the empirical one. Note that pij is
the probability of a link between vertex i and ver-
tex j in the grandcanonical ensemble (which is di-
rectly obtained analytically), and not the frequency
of such a link in the corresponding microcanonical
ensemble (which would require the explicit genera-
tion of artificially rewired networks). In ref.[22], it
was shown that the microcanonical frequency con-
verges to pij asymptotically as the number of ran-
domization steps in the microcanonical algorithm
increases. Equation (B4) shows that, by construc-
tion, the degrees of all vertices are special local
quantities whose expected and empirical values are
exactly equal: 〈ki〉 = ki. It follows that the pij
coefficients can be calculated by using any of the
networks in the corresponding microcanonical en-
semble with constrained degree sequence: the ex-
pected values of the high-order properties will be
the same;

4. computing the expectation values of higher-order
topological properties, as in Table II. The expres-
sions are derived exploiting the fact that 〈aij〉 =
pij , and that different pairs of vertices are statisti-
cally independent, which implies 〈aijakl〉 = pijpkl
if (i − j) and (k − l) are distinct pairs of vertices,
whereas 〈aijakl〉 = 〈a2ij〉 = 〈aij〉 = pij if (i − j)
and (k − l) are the same pair of vertices. Also, the
expected value of the ratio of two quantities is ap-
proximated with the ratio of the expected values:
〈n/d〉 ≈ 〈n〉/〈d〉.

Appendix C: Binary directed properties

In the binary directed case, the above results can be
generalized as follows. Each graph G is completely spec-
ified by its Boolean adjacency matrix A, which now is
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Empirical undirected properties Expected undirected properties
aij 〈aij〉 = pij =

xixj

1+xixj

ki =
∑

j 6=i aij 〈ki〉 =
∑

j 6=i pij

knn
i =

∑
j 6=i aijkj

ki
〈knn

i 〉 =
∑

j 6=i pijkj

〈ki〉

ci =
∑

j 6=i

∑
k 6=i,j aijajkaki∑

j 6=i

∑
k 6=i,j aijaik

〈ci〉 =
∑

j 6=i

∑
k 6=i,j pijpjkpki∑

j 6=i

∑
k 6=i,j pijpik

Empirical directed properties Expected directed properties
aij 〈aij〉 = pij =

xiyj
1+xiyj

kin
i =

∑
j 6=i aji 〈kin

i 〉 =
∑

j 6=i pji
kout
i =

∑
j 6=i aij 〈kout

i 〉 =
∑

j 6=i pij
ktot
i = kin

i + kout
i 〈ktot

i 〉 = 〈kin
i 〉+ 〈kout

i 〉 = ktot
i

k↔i =
∑

j 6=i aijaji 〈k↔i 〉 =
∑

j 6=i pijpji

k
in/in
i =

∑
j 6=i ajik

in
j

kin
i

〈kin/in
i 〉 =

∑
j 6=i pjik

in
j

〈kin
i 〉

k
in/out
i =

∑
j 6=i ajik

out
j

kin
i

〈kin/out
i 〉 =

∑
j 6=i pjik

out
j

〈kin
i 〉

k
out/in
i =

∑
j 6=i aijk

in
j

kout
i

〈kout/in
i 〉 =

∑
j 6=i pijk

in
j

〈kout
i 〉

k
out/out
i =

∑
j 6=i aijk

out
j

kout
i

〈kout/out
i 〉 =

∑
j 6=i pijk

out
j

〈kout
i 〉

k
tot/tot
i =

∑
j 6=i(aij+aji)k

tot
j

ktot
i

〈ktot/tot
i 〉 =

∑
j 6=i(pij+pji)k

tot
j

〈ktot
i 〉

cini =
∑

j 6=i

∑
k 6=i,j ajkajiaki

kin
i (kin

i −1)
〈cini 〉 =

∑
j 6=i

∑
k 6=i,j pjkpjipki∑

j 6=i

∑
k 6=i,j pjipki

couti =
∑

j 6=i

∑
k 6=i,j aikaijajk

kout
i (kout

i −1)
〈couti 〉 =

∑
j 6=i

∑
k 6=i,j pikpijpjk∑

j 6=i

∑
k 6=i,j pijpik

ccyci =
∑

j 6=i

∑
k 6=i,j aijajkaki

kin
i kout

i −k↔
i

〈ccyci 〉 =
∑

j 6=i

∑
k 6=i,j pijpjkpki

〈kin
i 〉〈k

out
i 〉−

∑
j 6=i pijpji

cmid
i =

∑
j 6=i

∑
k 6=i,j aikajkaji

kin
i kout

i −k↔
i

〈cmid
i 〉 =

∑
j 6=i

∑
k 6=i,j pikpjkpji

kin
i kout

i −
∑

j 6=i pijpji

ctoti =
∑

j 6=i

∑
k 6=i,j(aij+aji)(ajk+akj)(aki+aik)

2
[
ktot
i (ktot

i −1)−2k↔
i

] 〈ctoti 〉 =
∑

j 6=i

∑
k 6=i,j(pij+pji)(pjk+pkj)(pki+pik)

2
[∑

j 6=i

∑
k 6=i,j(pjipki+pijpik)+2(kin

i kout
i )−2

∑
j 6=i pijpji

]
TABLE II: Expressions for the empirical and expected properties in the binary (undirected and directed) representations of
the network.

in general not symmetric. The maximum-likelihood ran-
domization method [22] proceeds in this case by

1. specifying both the in-degree and the out-degree se-
quences as the constraints: {Ca} = {kini , kouti }.
The Hamiltonian takes the form

H(A) =
∑
i

[
θini k

in
i (A) + θouti kouti (A)

]
=
∑
i

∑
j 6=i

(θini + θoutj )aij (C1)

The above choice leads to the graph probability [22]

P (A) =
∏
i

∏
j 6=i

p
aij
ij (1− pij)1−aij (C2)

where

pij =
xiyj

1 + xiyj
(C3)

(with xi ≡ e−θ
out
i and yi ≡ e−θ

in
i ) is the probabil-

ity that a link exists from vertex i to vertex j in
the maximum-entropy ensemble of binary directed
graphs with specified in- and out-degree sequences;

2. solving the maximum-likelihood equations, by set-
ting the parameters {xi} and {yi} to the values

that maximize the likelihood P (A∗) to obtain the
real network A∗ [18, 22]. These values can be found
as the solution to the following set of 2N coupled
nonlinear equations [18]:

〈kouti 〉 =
∑
j 6=i

xiyj
1 + xiyj

= kouti (A∗) ∀i (C4)

〈kini 〉 =
∑
j 6=i

xjyi
1 + xjyi

= kini (A∗) ∀i (C5)

where {kini (A∗)} and {kouti (A∗)} are the empirical
degree sequences of the real network A∗. Again,
for a detailed analysis about solving such system
see [22, 43];

3. computing the probability coefficients pij , by insert-
ing the values {xi} and {yi} into Eq. (C3) which
allows to easily compute the expectation value 〈X〉
of any topological property X analytically, with-
out generating the randomized networks explicitly
[22]. So Eq. (C3) yields the exact value of the con-
nection probability in the ensemble of randomized
directed graphs with the same average degree se-
quences as the empirical ones and Eqs. (C4)-(C5)
show that, by construction, the in-degrees and out-
degrees of all vertices are special local quantities
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whose expected and empirical values are exactly
equal: 〈kini 〉 = kini and 〈kouti 〉 = kouti . It follows
that the pij coefficients can be calculated by using
any of the networks in the corresponding micro-
canonical ensemble with constrained in-degree and
out-degree sequences: the expected values of the
high-order properties will be the same;

4. computing the expectation values of the higher-
order topological properties, as in Table II, by using
the same prescription as in the undirected case plus
the additional care that now (i− j) and (j − i) are
different (and statistically independent) directed
pairs of vertices. Therefore 〈aijaji〉 = pijpji.
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J. Kurths, Phys. Rev. E 77, 016106 (2008).
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