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Abstract—In the economic literature, geographic distances are
considered fundamental factors to be included in any theoretical
model whose aim is the quantification of the trade between coun-
tries. Quantitatively, distances enter into the so-called gravity
models that successfully predict the weight of non-zero trade
flows. However, it has been recently shown that gravity models
fail to reproduce the binary topology of the World Trade Web.
In this paper a different approach is presented: the formalism of
exponential random graphs is used and the distances are treated
as constraints, to be imposed on a previously chosen ensemble
of graphs. Then, the information encoded in the geographical
distances is used to explain the binary structure of the World
Trade Web, by testing it on the degree-degree correlations and
the reciprocity structure. This leads to the definition of a novel
null model that combines spatial and non-spatial effects. The
effectiveness of spatial constraints is compared to that of non-
spatial ones by means of the Akaike Information Criterion and
the Bayesian Information Criterion. Even if it is commonly
believed that the World Trade Web is strongly dependent on
the distances, what emerges from our analysis is that distances
do not play a crucial role in shaping the World Trade Web binary
structure and that the information encoded into the reciprocity
is far more useful in explaining the observed patterns.

I. INTRODUCTION

We usually consider networks only from the topological
point of view, with the adiacency matrix encoding all the
necessary information about the connections between nodes.
However, many networks are also embedded into a metric
space and vertices have positions described by metric coor-
dinates. In these networks, distances are naturally induced
between nodes and geometric proximity represent a novel kind
of connectedness to be defined for the vertices. An interesting
goal becomes quantifying the influence that geometric dis-
tances have on the purely topological connections. A clear
example is provided by geographic distances.

The role of distances in shaping the World Trade Web
(WTW), i.e. the network of import-export trade relationships
among all world countries, enters, in the economic literature,
only into the definition of the class of models called gravity
models [1l], [2]. The latter, mimicking the equation of the
gravitational potential, predict an intensity of trade between
two countries, ¢ and j, which (in the simplest case) is directly
proportional to their Gross Domestic Products (GDPs) and
inversely proportional to their geographical distance. So the
fundamental ingredients in the economic recipe are the GDPs
of the involved countries and the geographic distances between
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them, disfavouring distant countries to establish intense trading
relationships.

Even if gravity models have been proved to be valid to pre-
dict the weighted structure of the WTW [3]], three limitations
of this approach consist 1) in the exclusively weighted nature
of the predicted network, 2) in the trivial topological structure
it induces, 3) in the lack of a reciprocity structure of trade-
flows between the same nodes that cannot be predictable. In
fact, gravity models cannot predict zero trade between any
two countries (exactly as the gravity force between any two
bodies cannot be zero), thus creating a trivially, fully connected
World Trade Web. Moreover, by using only the aforementioned
quantities, even if asymmetric flows can be induced (by means
of additional parameters: usually exponents), a “reciprocal
flow” cannot be defined between countries, thus failing to
reproduce the strong observed reciprocity [4], [5], [6], [7]
of trade-exchanges. Variations of the gravity models have
been defined so far (the so-called zero-inflated gravity models
[3]) to overcome the first two problems and to be able also
to predict the existence of a link (and not only its weight,
once its existence has been observed). However, the prediction
thus obtained does not seem to be good at all [3], with the
consequence that all the topological structure has be known in
advance, to succesfully reproduce the observed weights.

In this paper we overcome these limitations, by using a
different approach: the exponential random graph formalism.
In this theoretical framework, geographic distances are con-
sidered as given, exactly as in the previous case, but are used
to calculate the probability according to which any two nodes
establish a directed connection (a trading relationship, seen
as export or import): the only additional information comes
from some kind of chosen topological constraint. Moreover,
this framework allows us to compare the effectiveness of the
distances in explaining the observed patterns with respect
to other well known quantities, as the degree sequence and
the reciprocity: what turns out is that distances do not add
significantly more information to what already predicted by the
degree sequence alone which, in turn, is known to be related
to the GDPs of the world countries [8]], [9].

The results presented in what follows are about the WTW
as considered in its binary, directed representation (BDN, in
what follows) as obtained by the database in [[10]. Following
[L1]], our aim is to disentangle spatial and non-spatial effects



in the real WTW. To this end, our approach is the comparison
of the observed WTW with the prediction of various null
models that control either for purely topological effects or
for a combination of topological and spatial effects. Finally
we introduce a way to quantitatively assess the significance
of the information gained by adding geographic distances to
non-spatial models of trade.

II. NULL MODELS

The method we use to introduce null models of the World
Trade Web implements a recently proposed procedure [9],
[12], developed inside the exponential random graph theoreti-
cal famework [13], [[14], [15]. The method is composed by two
main steps: the first one is the maximization of the Shannon
entropy over a previously chosen set of graphs, G

- > P(G)In PG (1)
Geg
under a number of imposed constraints [12], [16], [L7],
generically indicated as
Y P(G)=1, ) P(G)ma(G) = (ma), Ya  (2)

Geg Geg

(note the generality of the formalism, above: G can be a
directed, undirected, binary or weighted network). We can
immediately choose the set G as the grandcanonical ensemble
of BDNs, i.e. the collection of networks with the same number
of nodes of the observed one (say N) and a number of
links, L, varying from zero to the maximum (i.e. N(N — 1)).
This prescription leads to the exponential distribution over the
previously chosen ensemble

P(G|f) = —Z0 3)

whose coefficients are functions of the Hamiltonian,
H(G, §) = Yo 0ama(G), which is the linear combination of
the chosen constraints. The normalization constant, Z (5) =
ZGG H(G, 9) is the partition function [12], [[15]], [L7].

The second step prescribes how to numerically evaluate the
unknown Lagrange multipliers. Given a real network, G*, Let
us consider the log-likelihood function In £(f) = In P(G*|6)
and maximize it with respect to the unknown parameters [9]],
[12]. In other words, we have to find the value 0% of the
multipliers satisfying the system

dln L(A)
— = 4
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or, that is the same,

Ta(G") = (7a)(6%) = (ma)", Y a Q)

i.e. a list of equations imposing the value of the expected
parameters to be equal to the observed one [9], [12]. Note
that the term “expected”, here, refers to the weighted average

taken on the grandcanonical ensemble, the weights being the
probability coefficients defined above.

So, once the unknown parameters have been found, it is pos-
sibile to evaluate the expected value of any other topological
quantity of interest, X:

=> X(@)

Geg

P(G|§"). (6)

Because of the difficulty to analytically calculate the ex-
pected value of the quantities commonly used in complex
networks theory, it is often necessary to rest upon the linear
approximation method: (X)* ~ X ((G)*).

This is a very general prescription, valid for binary,
weighted, undirected or directed networks: since the WTW
has been considered in its binary, directed representation,
the generic adjacency matrix G will be indicated, from now
on, with the usual letter A; so, (A)* indicates the expected
adjacency matrix, whose elements are (a;;)* = pij-

The next four subsections will be devoted to the explanation
of the null models considered in the present analysis.

A. Directed Configuration Model (DCM)

The DCM is one of the most used null models in the
complex networks literature [15]. The reason why we choose
it as our baseline model is that the DCM has been shown
to reproduce remarkably well several properties of the WTW,
including degree correlations and clustering coefficients [18].
The DCM Hamiltonian is the following:
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the linearity of the constraints (the in-degree and out-degree
sequences) in the adjacency matrix elements implies that the
probability coefficient for the generic network, A, factorizes
as a product over the directed pairs of nodes
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having defined p;; = 1+1 Yi_  after having posed z; = e~ %1,

y; = e Pi. The likelihood function is
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and the maximum of the likelihood prescription becomes
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Once the unknown variables are numerically determined,
the expected value of any adjacency matrix entry becomes
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and can be used to calculate the expected value of any other
topological quantity of interest.

B. Directed Configuration Model with Distances (DDCM)

This model is one of the two main novelties that we intro-
duce in the present paper. The DDCM Hamiltonian consists
of the DCM Hamiltonian with one constraint more: a global
quantity taking into account the information carried by the
geographic distances, i.e.

N N N
H(A, ) = > (ak™ +Bk™) +v> Y aydy =
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The information about the geographical distances is con-
densed in a global index, fixing the total sum of the con-
nected vertices’ distances. The reason why we introduce this
model is that, according to recent results [11], the spatial
effects measured by the quantity Wi = >, > () ai;di; =
2o 2j(>i(aij + aji)dij, even if weak, are not reproduced
by the DCM. The DDCM reproduces those effects by con-
struction, and we wil later introduce a way to quantify the
corresponding information gain. Note that the Hamiltonian is
again linear in the adjacency matrix entries: so, the probabil-
ity of a given configuration factorizes again as the product
P(A|f) = [T Iz p?;j(l — pij) %4, but with a different
p;; coefficient:

d; i
N = YR
{ais) = pi = 1+ @y 2% (12)
(and where the Lagrange multipliers have been reabsorbed into
the hidden variables defintion: z; = e~ %, y; = e %, Vi, 2z =

e~ 7). The likelihood function is

InLppcy = Z (kf“t Inz; + kﬁ’b lnyi) + Wit Inz +
N N
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and the maximization of the likelihood function leads to the
following system to be solved

wiy; (z7)"
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where every index runs from 1 to V. Once the previous system
has been solved, we can use the pjj in to evaluate the
expected value of all the topological quantities of interest. Note
that, by posing v =0 (z = 1), we recover the usual DCM.

C. Reciprocal Configuration Model (RCM)

The third null model we consider is the Reciprocal Con-
figuration Model (RCM) [12]. This model was defined to
take into account the topological information encoded into the
reciprocity structure of the observed network [S], [6]. It was
shown that the RCM succeeds in reproducing almost perfectly
all the triadic motifs of the WTW [7], which are instead not
reproduced by the DCM. The RCM will therefore compete
with the DDCM in improving the fit to the real network. The
Hamiltonian of the RCM is the following

N
H(A, 0) = (cuk;” + Bik{ + k) (15)

i=1
and, unlike the previous two ones, it is not linear in the
adjacency matrix entries. In fact, the imposed constraints are
the three degree sequences, respectively defined as: the non-
reciprocated out-degree sequence, where k;l_’ =5 (4 ai_j’ =
Zj(#) a;;(1—a;;), the non-reciprocated in-degree sequence,
where k7 = >0 af = Dk ai(l — ag), the re-
ciprocated degree sequence, where k7 = (D) ail =
> (i) QigQji- All the above sequences are defined in terms
of non-linear combinations of the a;;s [12], [S], [6], [Z].
Nevertheless, the model is analitically solvable, the likelihood
function is

InLrey = (k7w + k7 Iny; + k7 Inz) +
N

N
- Z Z In(1 + z;y; + x;y; + 2;2;)(16)
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and the maximization of the likelihood function leads to the
following system to be solved:
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where, now, we have three different probability coefficients:
(pi;)*> (pi;)* (pi})*, respectively the generic addendum of
the three equations above.

D. Global Reciprocity Model (GRM)

This model is a simplified version of the RCM [19], where
the reciprocity structure of the network is condensed in a
general quantity, i.e. the total number of reciprocated links:
Lo =%k = Do 2j(i) @ig@yi- 1t can be ol?tained from
the RCM by posing 7v; = a; + 3; + 0. The constraints become:
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and the maximization of the likelihood function leads to the
following system to be solved:
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The GRM can be also considered as an enriched version
of the DCM, to which the information about the global
reciprocity has been added.

III. STATISTICAL VALIDATION

We have a list of four null models to calculate the expected
value of the topological quantities of interest. The second main
novelty we introduce in this paper is the identification of a
statistically correct procedure to compare these null models
and to choose the most effective, among them.

A. Likelihood ratio

A first attempt could be that of comparing the likelihood
values in their stationary points: the higher the value, the
better the model to describe the considered network. A more
quantitative way of testing the effectivness of two competing
null models (say NM; and N M) is the calculation of their
likelihood ratio, simply defined as

In L, (6)
In L, (0)

where the symbols §; and é} indicate the two different sets of
Lagrange multipliers. However, the likelihood ratio test suffers
from three severe limitations [20].

The first one lies in the fact that the null models have to
be nested: the ¢-hypotesis has to be a special case of the j-
hypotesis. Even if the DCM and the DDCM are nested and
also the GRM and the DCM are nested as well, the RCM and
the DDCM are not nested.

The second reason lies in the number of parameters. In
fact, as the number of parameters rises, the agreement between
the model and the observed network increases, too. So, even
considering nested models, we could arbitrarily improve the
i-hypotesis by simply adding more and more constraints. The
drawback of this procedure is the risk of overfitting.

The third reason lies in the number of models that can be
tested: only two alternative hypoteses can be compared. We
could only compare the effectiveness of two models at a time,
ignoring the others and not carrying out a global comparison
to choose from the whole set of models.

LRNwM, NM; = (20)

So, we need a criterion to choose among more than two
competing null models, possibly not nested, and which dis-
counts the number of parameters used to define them.

B. Akaike Information Criterion (AIC)

Indeed, the Akaike Information Criterion suits our needs
for selecting among several models [21]], [22]], [23] by simply
prescribing to calculate the following quantity

—

AIC’;K\UW1 = 2KNMi - 21n£(9*)N]\/[i (21)

i.e. the difference between (twice) the number of parameters
of the null model ¢, NM;, and (twice) its log-likelihood,
evaluated in its maximum for every considered null model.
For the four considered cases, we have: Kpcy = 2N,
KDDC]\/I =2N + 1, KG’RM =2N + 1, KRCJW = 3N. Then,
the recipe prescribes to choose the null model with the lowest
AIC.

C. Akaike weights

AIC simply tell us which model is the best, among those
considered in the set. However, to quantify the improvement
in choosing the best model with respect to the others, the so
called Akaike weights can also be computed, defined as

_ANM,
2
Wil = ——— (22)
ZT’Zl G_T

where Any, = AICK,, — min{AIC;}fL,, being R the
total number of considered null models. The models with
substantial support should have A < 2, the models with less
support should have 4 < A < 7 and models with A > 10

have essentially no support [22], [23].

The Akaike weights can be interpreted as the probability
that the considered model is, in fact, the best one. Confidence
intervals can also be built, reducing the number of models
which could be considered as valid candidates [22]], [23]], [24],
[25].

D. Bayesian Information Criterion (BIC)

Exactly as for the AIC, another quantity can be calculated
and used to define the weights of the considered models: the
Bayesian Information Criterion. The only difference lies in
the term to be discounted from the maximized likelihood:

BIC;HVL; EKNMi 1nn—21n£(5*)NA1i; (23)

the first addendum accounts not only for the number of
parameters, I, but also for the cardinality of the sample, n. In
our case, n = N (N — 1), because we are considering directed
matrices. The BIC weights are defined analogously:

B
ANM;

2

BIC _ €
WNM,; =

— (24)
Zf:l e

where AR, = BICjx,, —min{BIC;}, being R the
total number of considered null models. Criteria to interpret



the BIC weights similar to those stated above hold. It is
commonly said the AIC favours the model with the highest
number of parameters and that BIC, on the other hand, could
be more restrictive, favouring one of the models with less
parameters [22[], [23]. Since the discussion is still topical, we
have presented and compared both.

IV. DEGREE-DEGREE CORRELATIONS, RECIPROCITY,
FILLING

In order to integrate our analysis with previous results in the
literature, we will also study the performance of the various
models in reproducing some specific structural properties.
We consider the in-degree correlations and the out-degree
correlations defined as

n out
i/ in Zj(géi) a;ik} kgut/outzzj(;si) aijk;

= =7y 9 =F) YT p
(3 k:n ’ 7 k.l()ut ’ ( 5)
the reciprocity r [26] and the filling f [11]:
Le ot — M
r=—"—, f= M (26)
L maxr — min
where
L
maz =Y df and d* = (di, da...dy(n-1)) (27)

i=1
with the pairs of distances ordered in decreasing order, d; =
d2 >d3=ds>... > dyn-1), and

L
min = Zdj and d' = (dnv=1)--- d2, di)
i=1

(28)

with the pairs of distances ordered in increasing order. The
filling was recently introduced to measure the tendency of a
network to fill the euclidean space where it is embedded [11].
This goal is accomplished by measuring how the geographic
distances are distributed over the topological links.

Different methods were chosen to compare the effectiveness
of the four null models in explaining the three quantities above.
For the degree-degree correlations, the scatter plots of the
observed and the expected k"™’ and k*"/*"" are shown.

For the reciprocity and the filling a different quantity was
defined, to incorporate in a single index the observed and the
expected values under the chosen null model (N M) [6], [L1]:

r—{r)num f={f)nm
PNM = Ty ONM = T Fhnar’ (29)
where, e.g.
NM, NM
(Y nar = Zz Zj(;ﬁi) P Pji (30)

D) i Py
and p/\™ indicates that the choice of a particular null model
N M is nothing more than the choice of the corresponding

probability coefficients for the adjacency matrix entries. Note
also that both p and ¢ are normalized between 1 and —1.
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Fig. 1. Observed (red) and expected (colored) k:"/ " ovs k;" for the five
decades 1950, 1960, 1970, 1980, 1990. The colored trends represent: the DCM
(blue), the DDCM (green), the RCM (orange) and the GRM (violet).

V. RESULTS AND DISCUSSION

A. Degree-degree correlations

The degree-degree correlations are analysed by comparing

the observed values of kzn/ ™ and k; ut/out \yith their expected

values under the four, considered null models. The results



are shown in fig. 2] As a general consideration, the four null
models qualitatively perform in approximately the same way,
as the superposition of the four colored trends shows.

However, by carefully looking at the quantitative differences
we find out that the expected trends under the DCM are
improved by all the remaining three models which preserve
the DCM statistics but also add one, or more, contraints.

In fact, they become less smooth, by following the irregu-
larities of the observed, scattered points. In this respect, the
RCM seems to perform best, by showing the larger deviations
from the DCM trend: on the other side, the DDCM and the
GRM, by both adding one parameter to the DCM constraints,
are very similar to each other.

From a temporal perspective, the 1950 and the 1960 (first
and second row in fig. J) are the sparsest network with the
most scattered trends, showing the least agreement between
the observations and the expectations.

B. Reciprocity and filling

By the definition of p and ¢, it is clear that both |p| < 1 and
|¢| < 1. In fact, the denominator is the normalization constant
not contributing to the sign of the quantity itself. So the sign
of p and ¢ is decided only by the relative magnitude between
the observed values, r and f, and their expectation: a positive
sign indicates a stronger than expected tendency to reciprocate
or to fill the embedding space. On the other hand, a negative
sign indicates a weaker than expected tendency to reciprocate
or to fill the embedding space.

Let us consider the reciprocity. From fig. [3| and table [[] is
clear that the DCM and the DDCM perform almost the same
in exaplining the observed reciprocity: the positive sign of
p indicates the tendency of the network to reciprocate more
than expected (both under the DCM and the DDCM) but the
addition of the information about the geographic distances
improves the agreement between the observed r and the
expected r, signalled by a lower value of the corresponding
p. Note that both the RCM and the GRM incorporate the
information encoded into the reciprocity: so, by definition,
preM = pGrM = 0.

Now, let us consider the filling. In this case, the DCM,
the GRM and the RCM perform the same, indicating the
tendency of the network to fill the embedding space less than
expected (in fact, the sign is negative). However, in this case
the addition of the infomation about the (global or local)
reciprocity structure does not seem to add anything more to
what predicted by the directed degree sequences alone. In this
case, the model incorporating the information carried by the
filling is the DDCM, for which ¢ppcasr = 0 by definition.

C. AIC and BIC criteria

The previous subsections have shown semi-quantitative at-
tempts to test the effectiveness of the four null models in
explaining the observed patterns. The above results appear
to qualitatively confirm that the strongest factor shaping the
WTW topology is the degree sequence [18]], but small im-
provements can be made either by adding spatial factors [[11]]
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Fig. 2. Observed (red) and expected (colored) kfut/ out s kf“t for the
five decades 1950, 1960, 1970, 1980, 1990. The colored trends represent: the
DCM (blue), the DDCM (green), the RCM (orange) and the GRM (violet).

or reciprocity effects [7]]. In order to quantify how “small” the
improvements are, and whether are statistically significant, we
use the criteria introduced in sections III B. and III D. Table
I shows the AIC and the BIC values for the null models
considered so far. Apart from 1950, AIC favours the RCM for
all the years, the model with the highest number of parameters
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Fig. 3. Observed reciprocity, r (red), ppcns (blue) and pppoas (green).
By definition, prcrv = pgrMm = 0.

TABLE I
r AND p FOR THE FOUR NULL MODELS.

[Year [ r [ ppcMm | pDDCM | PRCM | PGRM |
1950 | 0.83 0.43 0.39 0 0
1960 | 0.84 0.50 0.48 0 0
1970 | 0.85 0.53 0.50 0 0
1980 | 0.86 0.52 0.49 0 0
1990 | 0.89 0.54 0.50 0 0

which specifies the local reciprocity structure of the observed
network. This is compatible both with the trends showed in
the scatter plots and with the value of prcas which, being
zero, provides the best prediction for the expected value of r.
For the filling prediction, the RCM and the GRM perform the
same.

BIC, on the other side, always favours the GRM, the model
which adds to the DCM only the global information about the
reciprocity. This is compatible both with the value of pgras
and with the filling prediction: we already commented the
small difference in the predicted values of the degree-degree
correlations under the RCM and the GRM.

So, by looking only at the AIC and BIC values we are
left with two possible models to choose between: RCM and
GRM. Let us calculate the weights, as shown in table[[V] Apart
from 1950, AIC weights always favour the RCM, which is the
model with the highest probability to be the most correct. For
the year 1950, the RCM and the GRM compete and should
be both retained [22], [23]]. On the other side, BIC weights
always favour the GRM which seems to be accurate enough
to give the best prediction.

With respect to the DCM, the DDCM (i.e. the DCM with
the addition of the geographic distances) is actually better, as
signalled by a lower value of AIC and BIC. Since the degree
sequences are known to be positively correlated to the world
countries GDPs, this means that by considering the distances
in addition to the GDPs improves the prediction of the model.

What about the GRM? As the DDCM, also the GRM adds
only one parameter to the DCM: in fact, they have the same
number of parameters, i.e. 2N + 1. However, in the DDCM it
is sufficient to introduce the parameter z to consider the whole
matrix of geographic distances that, in turn, affect every single
probability connection p;;. On the contrary, in the GRM the
parameter z only introduces one quantity, L, and remains the
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Fig. 4. Observed filling, f (red), ppcar (blue), prons (orange), oG rs
(purple). By definition, pppc s = 0.

TABLE II
f AND ¢ FOR THE FOUR NULL MODELS.

[Year [ T [ épcMm | 9pDCM | PrCM | PerRM |
1950 | 0.40 —0.13 0 —0.13 —0.13
1960 0.40 —0.11 0 —0.11 —0.11
1970 | 0.39 —0.15 0 —0.15 —0.15
1980 | 0.42 —0.16 0 —0.16 —0.16
1990 0.41 —0.14 0 —0.14 —0.14

TABLE III

AIC AND BIC FOR THE CONSIDERED NULL MODELS (ROUNDED TO THE
NEAREST INTEGER).

Year [ AICDCM [ AICDDCM [ AICRCM [ AICGRM l

1950 ~ 5172 ~ 4796 ~ 4646 ~ 4645
1960 ~ 9840 ~ 9360 ~ 8576 ~ 8593
1970 ~ 16816 ~ 15818 ~ 14218 ~ 14406
1980 ~ 20539 ~ 19135 ~ 17435 ~ 17680
1990 ~ 20496 ~ 19170 ~ 17165 ~ 17492
l Year [ BICDCM [ BICDDCM [ BICRCM [ BICGRM l
1950 ~ 5594 ~ 5221 ~ 5280 ~ 5070
1960 ~ 10471 ~ 9994 ~ 9523 ~ 9227
1970 ~ 17640 ~ 16645 ~ 15454 ~ 15233
1980 ~ 21523 ~ 20122 ~ 18911 ~ 18667
1990 ~ 21537 ~ 20215 ~ 18727 ~ 18537

same for every pair of nodes. On the basis of this apparent
convenience, we could be tempted to choose the DDCM as
the best between the two, but this is not supported by the two
criteria which confirm the GRM as the best model between
them (and, eventually, among all). This remains valid also for
the year 1950, even if BIC indicates DDCM as a preferable
model with respect to RCM: anyway, GRM outperforms both.
This indicates that in order to have a good prediction of
the WTW in 1950, the whole, local reciprocity structure is
redundant: the global information about the distances could
be a better choice. But the best choice is represented by the
global information about the reciprocity structure.

So, given the DCM constraints (the in-degree and out-degree
sequences), the next best choice to impose an additive con-
straint does not involve the distances between countries but the
global reciprocity structure of the trade-exchanges network.
In other words, given the GDPs of the world countries, a
better choice than the common one would be the definition
of a gravity model incorporating the information about the
reciprocal trade-exchanges.



VI. CONCLUSION

In this paper we have considered four null models to
analyse five decades of the World Trade Web, represented as
binary, directed networks. The adopted approach was different
from that of the gravity-models (or the zero-inflated gravity
models, created to manage binary networks), making use of
the exponential random graph formalism. We have therefore
rephrased the problem of distances by suitably defining struc-
tural constraints in term of the adjacency matrix elements.

Starting from the DCM Hamiltonian we have considered
more, and different, topological quantities to test the effec-
tiveness of the geographic distances in explaining the binary
structure of the WTW and to compare them with the other
types of chosen constraints.

The geographic distances were introduced by means of a
global index and added to the DCM, but we found only a
slight improvement of the latter. In the same way, another
global index was introduced to consider the global reciprocity
structure of the network. What emerges from the statistical
criteria used to indentify the best model is that, actually,
two models compete and (unless considering the multimodel
averaging inference alternative [22], [23]]) should both be
retained: the RCM and the GRM (the first one already
performed successfully in the motifs analysis of the WTW
[7]). In the same way, if we calculate the AIC and the BIC
weights between the DDCM and the GRM (having the same
number of parameters but exploiting different information: all
the distances or only the total number of reciprocal links), the
latter always performs better than the former (with probability
1).

It should be noted that, in principle, geography effects might
already be present in the degree sequence, so that controlling
for the latter automatically controls (at least partially) for the
distances. Therefore, the correct way to interpret our results
should be that the role of geography, if present, is almost
entirely encoded within the degree sequence, so the additional
explicit inclusion of distance constraint does not improve the
modeling significantly. However, we do not expect distances to
be significantly encoded into the (reciprocated or not) degree
sequence, for various reasons. First of all, the degrees of
countries are known to be depend strongly on the GDP [§]]. The
latter varies over many orders of magnitude, while distances
vary only within a narrow range. Secondly, degrees are local
(vertex-specific) properties, whereas distances are pairwise
(edge-specific) properties. By preserving only the degrees,
the DCM breaks the possible original associations between
connectivity and distances, but still reproduces the WTW well.
Finally, as clear from @ the inclusion of distances in the
DDCM does not introduce a probabilistic dependence between
a link and its reciprocal one, a dependence which is instead
produced by the inclusion of reciprocity in the RCM and
GRM. Therefore, we do not expect distance effects to be
encoded in the reciprocated degree sequences as well, because
the strong reciprocity of the latter could not be explained by
the DDCM, and not even by gravity models.

TABLE IV
AIC WEIGHTS AND BIC WEIGHTS FOR THE CONSIDERED NULL MODELS.

0 0 3 6
1960 0 0 1 0
1970 0 0 1 0
1980 0 0 1 0
1990 0 0 1 0
1950 0 0 0 1
1960 0 0 0 1
1970 0 0 0 1
1980 0 0 0 1
1990 0 0 0 1

Our result conclusively show that although spatial effects
are indeed present in the WTW topology they are entirely
dominated by the non-spatial effects determined by the reci-
procity. This suggests to prefer the reciprocity structure of
the network (local, with the RCM, or global, with the GRM)
to the geographic distances, in order to obtain more precise
predictions about the trade-exchanges. This, in turn, implies
that the information coming from the GDPs, in a gravity model
framework, should be sustained by some other economic
indicator about the reciprocal trade activity of the involved
countries.
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