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Systemic Risk Analysis on 
Reconstructed Economic and 
Financial Networks
Giulio Cimini1, Tiziano Squartini1, Diego Garlaschelli2 & Andrea Gabrielli1,3

We address a fundamental problem that is systematically encountered when modeling real-world 
complex systems of societal relevance: the limitedness of the information available. In the case of 
economic and financial networks, privacy issues severely limit the information that can be accessed 
and, as a consequence, the possibility of correctly estimating the resilience of these systems to 
events such as financial shocks, crises and cascade failures. Here we present an innovative method 
to reconstruct the structure of such partially-accessible systems, based on the knowledge of intrinsic 
node-specific properties and of the number of connections of only a limited subset of nodes. This 
information is used to calibrate an inference procedure based on fundamental concepts derived from 
statistical physics, which allows to generate ensembles of directed weighted networks intended to 
represent the real system—so that the real network properties can be estimated as their average 
values within the ensemble. We test the method both on synthetic and empirical networks, focusing 
on the properties that are commonly used to measure systemic risk. Indeed, the method shows a 
remarkable robustness with respect to the limitedness of the information available, thus representing 
a valuable tool for gaining insights on privacy-protected economic and financial systems.

The estimation of the structural properties of a complex network when the available information on the 
system is incomplete represents an unsolved challenge1,2, yet it brings to many important applications. 
The most typical case is that of financial networks, whose nodes represent financial institutions and links 
stand for financial ties (e.g., loans or derivative contracts)—the latter indicating dependencies among the 
institutions themselves, allowing for the propagation of financial distress across the network. The resil-
ience of the system to the default or the distress of one or more institutions considerably depends on the 
topology of the whole network3–5; however, because of confidentiality issues, the information on mutual 
exposures that regulators are able to collect is very limited6. Systemic risk analysis has been typically pur-
sued by reconstructing the unknown links of the network using maximum entropy approaches7–9. These 
methods are also known as “dense reconstruction” techniques because they assume that the network is 
fully connected—an hypothesis that represents their strongest limitation. In fact, not only real networks 
show a largely heterogeneous distribution of the connectivity, but such a dense reconstruction was shown 
to lead to systemic risk underestimation2,9. More refined techniques like “sparse reconstruction” algo-
rithms2 allow to obtain a network with arbitrary density, however they still underestimate systemic risk 
because of the homogeneity principle used to assign link weights. A more recent approach10,11, which 
builds on even earlier results12, instead uses the limited topological information on the network to gen-
erate an ensemble of graphs using the configuration model (CM)13—where, however, the Lagrange mul-
tipliers that define it are replaced by fitnesses, i.e. known intrinsic node-specific features14. The average 
values of the observables computed on the CM-induced ensemble are then used as estimates for the real 
network properties. The latter approach overcomes the heterogeneity issue described above, yet it only 
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allows to reconstruct systems in which each tie is undirected and unweighted—thus limiting the analysis 
to unrealistic and oversimplified configurations. Indeed, link directionality has been shown to play an 
important role in contagion processes and percolation analysis over these and other systems15,16 by, e.g., 
speeding up or confining the infection with respect to the undirected case. Since real economic and 
financial networks are, by their nature, directed, links directionality has to be taken into account when 
assessing their robustness to shock and crashes. Moreover, the connection weights between the entities 
of these systems often assume heterogeneous values, which in turn strongly affect the way such entities 
react to the default or distress of their interacting partners4. A recent study17 has shown that, in order 
to satisfactorily reconstruct weighted networks, the procedure described above10,11 cannot be extended 
naively by enforcing the corresponding weighted information, otherwise the reconstructed network is 
unrealistically dense18. Rather, one should employ a nontrivial combination of weighted and binary prop-
erties17. However, while this approach is feasible when such properties can be empirically accessed17,19, 
it cannot be used when the system is privacy-protected (as in interbank and other financial networks).

In order to achieve a realistic and faithful reconstruction of economic and financial networks, here 
we develop an improved procedure that allows to reconstruct links directionality, and at the same time 
we implement an effective and self-consistent prescription to assign link weights. Our method can thus 
be employed specifically for systemic risk estimation, by assessing those network properties that have 
been shown to play a crucial role in contagion processes and in the propagation of distress over a net-
worked system: the k-core structure20, the percolation threshold21, the mean shortest path length22 and 
the DebtRank4. In particular, we perform an extensive analysis in order to quantify the accuracy of our 
method with respect to the size of the subset of nodes for which the topological information is avail-
able. Validation of the method is carried out on benchmark synthetic networks generated through a 
fitness-induced CM, as well as on two representative empirical systems, namely the International Trade 
Network or World Trade Web (WTW)23 and the Electronic Market for Interbank Deposits (E-mid)24. In 
both cases, we have full information on these systems and we can thus unambiguously assess the accu-
racy of the method in reconstructing them.

Previous approaches
Before explaining our method in detail, let us introduce some notation and recall previous results that 
we build upon. We will deal with weighted directed networks, i.e., graphs composed by a set V of nodes 
(with = )V N  and described by a weighted directed adjacency matrix—whose generic element →wi j 
represents the weight of the connection that runs from node i to node j. The incoming total weight or 
in-strength for a generic node i is then defined by = ∑ ∈ →s wi

in
j V j i, whereas, its outgoing total weight or 

out-strength reads = ∑ ∈ →s wi
out

j V i j. It is also convenient to introduce the binary directed adjacency 
matrix that describes the binary topology: = Θ→ →a w[ ]i j i j  (Θ  is the Heaviside step function: Θ =a[ ] 1 
for a >  0 and Θ =a[ ] 0 otherwise). This allows to define node i’s number of incoming connections or 
in-degree = ∑ ∈ →k ai

in
j V j i and number of outgoing connections or out-degree = ∑ ∈ →k ai

out
j V i j. Finally, 

the binary undirected adjacency matrix—whose elements are obtained as ≡ = Θ + 
→ →a a w wij ji i j j i

—is used to define the number of incident connections or undirected degree of node i: 
= ∑ ≡ ∑∈ ∈k a ai j V ij j V ji.
In what follows, we are going to suppose that we only have partial information about the network: 

rather than knowing all the entries of the weighted adjacency matrix, we assume to know only local, 
node-specific information. In general, this information can be either topological (e.g., the degrees of 
nodes18) or non-topological (e.g., the economic size of nodes12). Before describing our specific imple-
mentation, we recall some important results that have been found previously using both schemes. At a 
binary network level, it has been shown that the topology of economic networks (including the ones we 
consider in this paper) can be accurately reconstructed from the knowledge of node degrees only18,25,26. 
Alternatively, since node degrees often turn out to be in an approximately monotonic (but highly non-
linear) relationship with some intrinsic economic property of nodes (like the GDP of countries in the 
WTW12 or the portfolio volume in case of shareholding networks27), a good binary network reconstruc-
tion can be also achieved starting from the knowledge of such intrinsic node properties, rather than 
from node degrees themselves. The earliest and most clearcut illustration of this nontrivial result has 
been provided for the WTW12,28, where it was shown that the observed topology can be reproduced from 
the knowledge of the GDP of all countries, plus the total number of links. This result, which supports 
the hypotheses of the fitness model14, was later shown to remain valid even if one assumes to know the 
degrees of only a small subset of the nodes10,29 (a framework known as bootstrap that we use also below), 
and if the analysis is extended to other financial systems such as interbank networks. The robustness of 
the reconstruction under bootstrap for interbank networks is very important for concrete applications, 
since knowing even only the total number of interbank connections is practically impossible, while 
knowing the degree of a few banks is in many cases easier30. Using the above technique, the level of 
systemic risk associated with the binary structure of a financial network can be estimated fairly well10,29.

On the other hand, at a weighted network level the situation is much more complicated, and still 
unsolved at present. If one attempts to reconstruct the network starting from the strengths of nodes (the 
most direct proxy for nodes size) and without adjusting manually the network density31–33, the result 
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is—depending on the methodology adopted—either a very dense network18, or a completely connected 
one6. Indeed, in the latter case the link weights are assigned according to the so-called “gravity model” as:

= , ( )→
∼w

s s

W 1i j
i
out

j
in

where = ∑ = ∑ ≡ ∑, ∈ → ∈ ∈W w s si j V i j i V i
out

j V j
in is the total observed weight6. The above formula shows 

that the reconstructed in-strength and out-strength of each node i, which are given by ∑ ∈ →
∼wj V j i and 

∑ ∈ →
∼wj V i j respectively, coincide with the observed quantities si

in and si
out as desired. However, it also 

highlights that the reconstructed network is fully connected, a limitation that can be understood as the 
result of the fact that, in absence of purely topological information, the known total weight is redistrib-
uted over many more (all, in fact) pairs of nodes than those actually connected in the real network17. As 
we have mentioned in the Introduction, in the case of interbank networks this results in a very poor 
estimation of systemic risk.

Recently it has been shown that, in order to satisfactorily reconstruct a weighted network, one should 
simultaneously specify both node strengths and node degrees17. This results in an accurate reconstruc-
tion, however requires the knowledge of a lot of information. How to relax this requirement in an effec-
tive manner is an open question at the moment. For the WTW, a recent study19 has shown that, as in 
the purely binary case12, it is possible to reproduce both the topology and the weighted structure of the 
network by replacing the knowledge of the degree and strength sequence with that of the total number 
of links and total link weight respectively, plus the knowledge of the GDP of all countries. While pow-
erful, this simplification is generally not feasible for financial networks34. In particular, for real interbank 
networks the full strength sequences (i.e., total loans and liabilities) are typically publicly available—thus 
there is no need to assume that it is unknown, whereas, the total number of links is not (since, as we 
have already mentioned, it is feasible to collect information on the connectivity for only a subset of 
nodes). The aim of this paper is to introduce a reconstruction method that is appropriate for directed 
and weighted financial networks, and that allows to estimate systemic risk to a high level of accuracy.

Method
In accordance with the above discussion, in this paper we are going to adopt a bootstrap-like scenario 
and assume incomplete information about the topology of a given network G0. In particular, we suppose 
to know the in-degree and out-degree sequences 

∈k{ }i
in

i I  and 
∈k{ }i

out
i I  only for a subset ⊂I V  of all 

nodes (where = < )I n N . Moreover, we suppose to know a pair of properties χ
∈

{ }i i V
 and ψ ∈{ }i i V  for 

all the nodes—that will be our fitnesses. These fitnesses should be thought of as intrinsic economic prop-
erties that are responsible for the inward (in-degree) and outward (out-degree) connectivity of nodes (see 
points I and II below); in this respect, it is quite straightforward (and actually very common2,6–9,17,18,31–33) 
to associate them with the nodes in- and out- strengths, respectively—but in general other proxies can 
be used. Given these ingredients, our network reconstruction method invokes a two-step statistical pro-
cedure (in which connection probabilities are estimated first, and link weights later) in order to find the 
most probable estimate for the value ( )X G0  of a given property X computed on the network G0, com-
patible with the constraints given by the aforementioned information we have on G0.

First, we aim at reconstructing the binary topology of the network. To this end, we build on two 
important hypotheses.

I) The binary topology of G0 is drawn from an ensemble Ω  induced by a directed CM25—meaning 
that Ω  is a set of binary directed networks that are maximally random, except for the ensemble averages 
(i.e., expected values) of the in- and out- degrees 

Ω ∈
{ }ki

in
i V

 and 
Ω ∈

{ }ki
out

i V
 that are constrained to 

the observed values 
∈k{ }i

in
i V  and 

∈k{ }i
out

i V , respectively13. The directed CM prescribes that the probability 
distribution over Ω  is defined via a set of Lagrange multipliers , ∈x y{ }i i i V  (two for each node), whose 
values can be adjusted in order to satisfy the equivalence ≡

Ω
k ki

in
i
in and ≡

Ω
k ki

out
i
out, ∀ ∈i V25. The 

values of xi and yi are thus induced by the in- and out- degree of node i, respectively, and the ensemble 
probability for a directed connection between any two nodes i and j reads13:

≡ =
+

,
( )→ →

Ω
p a

x y

x y1 2i j i j
j i

j i

where →ai j is a particular realization of the reconstructed link, having expected value over the ensemble 
equal to 

→pi j
: =→a 1i j  with probability 

→pi j
, and =→a 0i j  otherwise. Eq. (2) thus shows that xi (yi) 

quantifies the ability of node i to receive incoming (form outgoing) connections.
II) The fitnesses χ

∈
{ }i i V

 and ψ ∈{ }i i V  are assumed to be linearly correlated, respectively, to the 
in-degree-induced and out-degree-induced Lagrange multipliers 

∈x{ }i i V  and 
∈

y{ }i i V
 through universal 

(unknown) parameters α and β: αχ≡xi i and β ψ≡yi i, ∀ ∈i V . Therefore eq. (2) becomes:
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αχ β ψ

αχ β ψ

χ ψ

χ ψ
=

+
=

+
,

( )
→p

z

z1 1 3
i j

j i

j i

j i

j i

where we have defined αβ≡z . Such an hypothesis is inspired by the fitness model14, which assumes 
the network topology to be determined by intrinsic properties associated to each node of the network. 
We recall that this approach has been already used in the past to model several economic and financial 
networks12,24, possibly within the CM framework assuming a connection between fitnesses and Lagrange 
multipliers27.

These two hypotheses allow us to build the optimal CM ensemble Ω  induced by the fitnesses χ
∈

{ }i i V
 

and ψ ∈{ }i i V , that is compatible with the binary constraints on G0—given by the knowledge of 
∈k{ }i

in
i I  and 

∈k{ }i
out

i I . Indeed, because of the limited available information, finding the CM of the real system13 is 
impossible, and we thus have to impose it by assigning ad hoc values to the Lagrange multipliers—
whence the name “fitness-induced” CM (FiCM). In practice, since we know the fitness values χ ψ,

∈{ }i i i V
, 

in order to determine unambiguously Ω  we have to find the most likely value of the proportionality 
constant z that defines Ω  according to eq. (3). This can be done using the partial knowledge of the degree 
sequences to estimate the appropriate value of z through a maximum-likelihood argument12, i.e., by 
comparing, for the nodes in the set I, the average number of incoming and outgoing connections in the 
ensemble Ω  with their in-degrees and out-degrees observed in G0:

∑ ∑
 + 

 = + .
( )∈

Ω Ω
∈

k k k k[ ]
4i I

i
in

i
out

i I
i
in

i
out

In the above expression, = ∑Ω (≠ ) →k pi
in

j i j i
 and = ∑Ω (≠ ) →k pi

out
j i i j

 contain the unknown param-
eter z through eq. (3), and since χ ψ,

∈{ }i i i V
 and , ∈k k{ }i

in
i
out

i I  are known, eq. (4) defines an algebraic 
equation in z, whose solution allows to build the FiCM ensemble—even with the knowledge of the in- 
and out- degree of just a single node.

We now turn to reconstructing the weighted topology of G0. A key ingredient of our approach will 
be the following consideration. As already mentioned, eq. (1) ensures that the reconstructed in- and 
out-strengths of all nodes are equal to the observed ones only when the reconstructed network is fully 
connected. However, if the topology is more complex (hence determined by a nontrivial probability 

→pi j
 

that node i connects to node j), then in order to reproduce the observed strengths eq. (1) has to be 
modified as follows:

= ,
( )

→
→

→
∼

w
s s

W p
a

5
i j

i
out

j
in

i j
i j

This prescription ensures that the expected value of the reconstructed in-strength and out-strength of 
node i are

∑ ∑

∑ ∑

= = ≡

= = ≡
( )

Ω
∈

→

Ω →
→

Ω
∈

→

Ω →
→

∼

∼

∼

∼

s w
s
W

s

p
a s

s w
s
W

s

p
a s

and

6

i
in

j V
j i

i
in

j

j
out

j i
j i i

in

i
out

j V
i j

i
out

j

j
in

i j
i j i

out

as desired: eq. (5) ensures that the observed in- and out-strength sequences are correctly replicated by 
the method, irrespectively of whether the topology (as predicted by the set )→ , ∈

p{ }i j i j V
 is reproduced. For 

instance, if =→p 1i j
 ∀ , ∈i j V  we recover the standard eq. (1)6–9, whereas, if λ= −→p 1i j

 ∀ , ∈i j V  
we recover a variant of the sparse reconstruction method2. Our purpose here is ensuring that 

→pi j
 cor-

rectly reconstructs the degree sequence, and hence both the binary and weighted topology of the 
network.

We formalize the above discussion as follows. In the most general case (i.e., for generic node fit-
nesses), in order to obtain a weighted topology we place ∀ ,i j a weight →

∼wi j on the directed link from i 
to j according to the following prescription:

( )
χ ψ

χ ψ= ≡ + ,
( )

→
→

→
−

→
∼

 w
W p

a
W

z a1

7
i j

j i

i j
i j j i i j

1
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where the last equality comes from eq. (3). In this expression, the normalization W represents the 
expected induced total weight of the network, defined as the geometric mean of the sum of the fitnesses: 

χ ψ= (∑ )(∑ )W i i i i . Indeed, this definition is consistent with ≡ ∑ 〈 〉→ Ω
∼W wij i j , where 

χ ψ χ ψ〈 〉 = ( )〈 〉 /( ) = ( )/→ Ω → Ω →
∼

w a W p Wi j j i i j i j j i . This procedure assures that the expected values of a 
node i’s total in- and out-strengths are directly proportional to χi and ψi, respectively and ∀ ∈i V . Now, 
using the natural interpretation of fitnesses as the empirical nodes strengths observed in G0 χ( = si i

in and 
ψ = si i

out, ∀ ∈ )i V , brings to the situation described in the previous paragraph: χ ψ= ∑ ≡ ∑∈ ∈W i V i i V i, 
≡

Ω
s si

in
i
in and ≡

Ω
s si

out
i
out. We stress again that in this way we successfully preserve, on average, the 

strength sequences of the real network G0 (and thus its total weight), as shown in Fig. 1. In other words, 
our network reconstruction method is based on a null model constraining the in-degree and out-degree 
sequence of a subset of nodes, together with the in-strength and out-strength sequence of the whole set 
of nodes. The final result is that the appropriate modification of the standard gravity model of eq. (1) is, 
as for eq. (5), the “degree-corrected gravity model”:

=
+

. ( )→

−

→
∼

w
z s s

W
a 8i j

i
out

j
in

i j

1

With respect to eq. (1), eq. (8) has two important differences. On one hand, only the links that are 
actually created are assigned a non-zero weight; on the other hand, with respect to eq. (1) there is an 
extra offset z−1 which depends (through )→ , ∈

p{ }i j i j V
 on the observed density, and whose role is precisely 

that of redistributing the “missing” weight (required to reconstruct the desired in- and out-strengths) 
from the disconnected pairs of nodes to the connected ones. Remarkably, these modifications also allow 
to obtain much better estimates of higher order weighted network properties, as compared to the stand-
ard gravity approach (Fig. 2).

Finally, once the FiCM ensemble Ω  is determined and link weights are placed, statistical mechanics 
of networks prescribes that the value ( )X G0  of property X computed on G0 typically varies in the range 

σ±
Ω

ΩX X , where 
Ω

X  and σΩX  are respectively average and standard deviation of X estimated over Ω 13. 
We can thus use 

Ω
X  as a good estimation for ( )X G0 .

Summing up, the algorithm works as follows. Given a network G0, two fitness values χ and ψ for each 
of the N nodes, and the in-degrees and out-degrees only for a subset I of = <I n N  nodes:

•	 We compute the sum of the in-degrees and out-degrees of the nodes in I, and use it to obtain the 
value of z by solving eq. (4);
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Figure 1.  Reconstruction of the strength sequences. Scatter plots of node in-strengths sin and out-strengths 
sout observed for the real network G0 and their ensemble averages obtained from eq. (8). Upper panels (a,b) 
refer to WTW, lower panels (c,d) to E-mid.
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•	 Using such z, we generate the FiCM ensemble Ω  by placing a directed link from any node i to any 
node j with probability 

→pi j
 of eq. (3), and assigning it with the corresponding weight →

∼wi j of eq. 
(7)—provided its existence;

•	 We compute the estimate of ( )X G0  as σ±
Ω

ΩX X  in the FiCM ensemble, typically numerically (i.e., 
by measuring it on networks drawn from Ω ).

Empirical Dataset.  In order to test our network reconstruction method, we use two representative 
empirical systems of economic and financial nature. The first one is the international trade network of 
the World Trade Web (WTW)23, i.e., the network whose nodes are the countries and links represent trade 
volumes between them: thus, →wi j is the monetary flux from country i to country j (the “amount” of the 
export from j to i). The second one is the (E-mid) Electronic Market for Interbank Deposits24: in this 
case, the nodes are banks and a link →wi j from bank i to bank j represents the amount of the loan that 
i granted to j.

In the following analysis we will use and show results for WTW trade volume data of year 2000, and 
E-mid aggregated transaction data of year 1999 (both temporal snapshots correspond to the largest size 
of the network). Analyses for other annual snapshots are reported in the Supplementary Information, 
and bring to comparable results. In the light of the above observations, we will use as fitnesses χi ψ( )i  
the real node in-strength = ∑ ∈ →s wi

in
j V j i (out-strength = ∑ )∈ →s wi

out
j V i j , i.e., the total import (export) 

volumes of countries for WTW, and with the total liquidity borrowed (lent) by banks for E-mid. Note 
that the goodness of any choice for the fitness values must be first validated according to hypothesis II 
of our method (as discussed in the first part of section Results).

Topological Properties.  As stated in the Introduction, we will test our network reconstruction 
method focusing on the network properties (each playing the role of X in the discussion of section 
Methods) which are commonly regarded as the most significant for describing the network resilience to 
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Figure 2.  Reconstruction of two higher order properties of directed weighted networks: the average 
nearest neighbor strength anns [panels (a,c)] and the weighted clustering coefficient c(w) [panels (b,d)] 
(refer to37 for their formal definition). Scatter plots of these quantities observed for the real network G0 
and their ensemble averages obtained from the degree-corrected gravity model of eq. (8) (red circles) or 
from the standard gravity model of eq. (1) (green asterisks). Upper panels (a,b) refer to WTW, lower panels 
(c,d) to E-mid. Remarkably, our degree-corrected gravity allows to obtain fairly accurate estimates for the 
anns, whereas, the standard gravity model completely fails in this respect as the resulting reconstructed 
network is fully connected. The degree-corrected gravity model outperforms the standard gravity model also 
in the reconstruction of c(w). In this latter case, note that ( )c w  systematically overestimates the real c(w), 
because in the definition of this quantity the number of reciprocal links plays an important role, yet it is 
slightly underestimated by the method (see Figs 5 and 6, and refer to the discussion in26).



www.nature.com/scientificreports/

7Scientific Reports | 5:15758 | DOI: 10.1038/srep15758

systemic shocks and crashes. We first consider two properties defined for undirected networks (in order 
to reconstruct these properties, we use the undirected version of the method10):

•	 Degree of the main core kmain and size of the main core Smain, where a k-core is defined as the “largest 
connected subgraph whose nodes all have at least k connections” (within this subgraph), and the 
main core is the k-core with the highest possible degree (kmain)35. The main core is relevant to our 
analysis as it consists of the most influential spreaders (of, e.g., an infection or a shock) in a network20.

•	 Size of the giant component SGC at the bond percolation threshold =
−⁎p k 1 (k is the mean degree of 

the network), where bond percolation is the process of occupying each link of the network with 
probability p, and p* is the critical value of p at which a percolation cluster containing a finite fraction 
of all nodes first occurs21. Note that the percolation threshold at =

−⁎p k 1 (that we take as reference 
value) is a feature proper of homogeneous graphs in the infinite volume limit, whereas, for scale-free 
networks in the same limit it is →⁎p 0. Note also that a bond percolation process can be mapped 
into a SIR model with infection rate β and uniform infection time τ. In fact, by defining the trasmis-
sibility = − τβ−T e1  as the probability that the infection will be transmitted from an infected node 
to at least a susceptible neighbor before recovery takes place, the set of nodes reached by a SIR epi-
demic outbreak originated from a single node is statistically equivalent to the cluster of the bond 
percolation problem (with ≡ )p T  the initial node belongs to36.

 We then move to properties defined for directed graphs:

•	 Link reciprocity r, measuring the tendency of node pairs to form mutual connections. It is defined 
as the ratio between the number of bidirected links and the total number of network connections: 
( ) ( )= ∑ / ∑→ → →r a a aij i j j i ij i j . Reciprocity is considered a sensible parameter for systemic risk, giving 

a measure of direct mutual exposure among nodes.
•	 Average shortest path length λ22, where the shortest path length λ →i j from node i to node j is the 

minimum number of links required to connect i to j (following link directions), and 
( )λ λ= ( − )/ ∑ ≠ →

−N N 1 i j i j
1  (the harmonic mean is commonly used to avoid problems caused by 

pairs of nodes that are not reachable from one to another, and for which λ diverges). This quantity 
measures the number of steps that are required, on average, for a signal or a shock to propagate 
between any two nodes of the network.

•	 The Group DebtRank DR4, a measure of the total economic value in the network that is potentially 
affected by a distress on all nodes amounting to <Φ<0 1, with Φ = 1 meaning default. In a nutshell, 
DR is based on computing the recursive impact (i.e., the reverberation on the network) of the initial 
distress, and is defined as:

∑ ν= ( − )
( )

⁎DR h h
9i

i i i
0

where ⁎hi  is the final amount of distress on i ( = Φ)hi
0  and ν i is the relative economic value of i. We 

refer to the original paper4 for the details on how to compute DR, recalling here that DR builds upon the 
detailed information on individual link weights in the network.

Results
Test of FiCM modeling.  When testing our network reconstruction procedure it is important to keep 
in mind that the method is subject to three different kind of errors. The first one comes from hypothesis 
I that the real network G0 can be properly described by a CM, whose Lagrange multipliers are obtained 
by constraining the whole in-degree and out-degree sequences13. The second one derives instead from 
hypothesis II that the node fitnesses χ ψ, ∈{ }i V  are proportional to the CM’s Lagrange multipliers , ∈x y{ }i V , 
i.e., from imposing a FiCM. Finally, the third one is due to the limited information available for calibrat-
ing the FiCM and obtain the true value of z—namely, the partial knowledge of the in-degree and out-de-
gree sequences. Note however that the first source of mistakes cannot be controlled for in our context, 
as finding the CM that describes the data requires the knowledge of the whole in-degree and out-degree 
sequences (which is not accessible for our case studies). This is exactly why we have to make hypothesis 
II and impose a FiCM by assigning ad hoc values to the Lagrange multipliers. In this section we thus 
concentrate on the second source of errors.

Indeed, real networks are not perfect realizations of the FiCM and can only be approximated by it12. 
In order to assess qualitatively how well this FiCM describes the real network G0, one can compare the 
observed in-degrees and out-degrees of G0 with their averages 

Ω
ki

in  and 
Ω

ki
out  computed on the FiCM 

ensemble Ω . Figure 3 shows such comparison when the average degrees are obtained through eq. (3) for 
a fully informed FiCM, i.e., with the value of z computed via eq. (4) using the knowledge of in- and 
out-degrees for all nodes. We indeed observe a remarkable agreement between these quantities for our 
empirical networks: the real degrees are scattered around the functional form of their expected values. 
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The amount of deviations from perfect correlation (which would correspond to an actual realization of 
the FiCM) gives an indication of how well our model describes the real network. Note that the validity 
of hypothesis II can be evaluated also in the case of partial information by performing such comparison 
on the subset I of nodes whose topological properties are available.

In the following, in order to have a quantitative global assessments of the errors caused by hypoth-
esis II, we will test our network reconstruction method both on real networks and on benchmark syn-
thetic networks numerically generated with the fully informed FiCM through eq. (3). In the latter case, 
the errors made by the method will be due only to the limited information available about the degree 
sequences. It is then interesting to check whether such generated synthetic networks are equivalent to 
the real networks in term of systemic risk. Figure 4 shows that bond percolation properties, shortest path 
length distribution and DebtRank values of synthetic networks are in excellent agreement with those of 
their real counterparts (the correlation coefficients between real and synthetic curves are all above 0.99). 
FiCM thus proves itself to be a proper framework for modeling our empirical networks.

Test against limited information.  In this section we finally proceed to the key testing of the method 
against the third (and more relevant) source of errors: the limitedness of the information available on the 
degree sequences for calibrating the FiCM. In order to obtain a quantitative estimation of the method’s 
effectiveness in reconstructing a topological property X of a given a network G0 (which can be either the 
real one or its synthetic version), we implement a procedure consisting in the following operative steps:

•	 Choose a value of n <  N (the number of nodes for which the in- and out- degrees are known).
•	 Build a set of M =  100 subsets α α=I{ }M

1 of n nodes picked at random from G0.
•	 For each subset Iα, use the degree sequences from G0 to evaluate z from eq. (4), and name such value 

zα.
•	 Build the ensemble Ω( )αz  using the linking probabilities from eq. (3): generate m =  100 networks 

from Ω (zα), and compute the average value Xα of property X on this ensemble.
•	 Compute the relative root mean square error (rRMSE) of property X over the subsets α α=I{ }M

1:

∑ρ = ≡




 ( )

−




 ( )α

α

=

X rRMSE
M

X
X G

[ ] 1 1
10

X

M

1 0

2

where ( )X G0  is the value of X measured on G0.
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Figure 3.  Qualitative assessment for the FiCM description of the real network G0. Scatter plots of node 
fitnesses χ ψ,{ } versus real node in- and out-degrees ,k k{ }in out  of G0 (red circles) and their ensemble 
averages computed via the FiCM (blue asterisks). Upper panels (a,b) refer to WTW, lower panels (c,d) to 
E-mid.
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We then study how the rRMSE for the various network properties we consider varies as a function of 
the size n of the subset of nodes used to calibrate the FiCM (i.e., for which in- and out- degree informa-
tion is available). Results are shown in Figs 5 and 6. We observe that in most of the cases there is a rapid 
decrease of the relative error as the number of nodes n used to reconstruct the topology increases. For 
instance, generally the error drops to half of the starting rRMSE (for n =  1) at n/N =  5%, and to one 
quarter for / = %n N 10 —a value that is rather close to that of the final error made at ≡n N . This is an 
indication of the goodness of the estimation provided by our method. As expected, the rRMSE is higher 
for real networks than for synthetic networks, and the difference between the two curves gives a quan-
titative estimation of the error made in modeling real networks with the FiCM. The fact that such a 
difference is higher for E-mid than for WTW is directly related to a slightly better correlation between 
real and expected degrees observed in the latter case (Fig. 3). Note that the various rRMSE for synthetic 
networks do not necessarily tend to zero, because the generated synthetic configuration might be highly 
improbable—in some cases, the synthetic network can be even more atypical than the real one. We thus 
indicate with error bars the range of performance of our method for different choices of synthetic G0.

Generally, SGC, λ, kmain and Smain are the properties which are reconstructed better: for instance, with 
the knowledge of only 10% of the nodes, all the relative errors become smaller than 10%, and they 
decrease for increasing n. The rRMSE for r and DR show instead a behavior almost flat in n. The fact that 
the rRMSE for r computed for real networks remains steadily high is probably due to the fact that rec-
iprocity is hardly reproduced by a directed CM, and is better suited as additional imposed constraint26. 
The rRMSE for DR is instead remarkably small for real networks (with values around 0.5%), and we 
can thus conclude that our method is efficient in estimating DR also when the available information is 
minimal. This is particularly relevant to our analysis, since we are estimating DR at its peak (i.e., at its 
maximum, and thus mostly fluctuating, value), where the details of the weighted topology play a funda-
mental role in the process of risk propagation. Besides, and more importantly, the value of DR for the real 
network is computed using the original weighted topology, whereas, the computation of DR in the recon-
structed network builds on link weights obtained by the degree-corrected gravity prescription of eq. (7).

In conclusion, the outcome of this analysis is that our network reconstruction method is able to esti-
mate the network properties related to systemic risk with good approximation, by using the information 
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Figure 4.  Properties of real and synthetic networks. Left plots (a,d): dependence of the size of the giant 
component SGC on the occupation probability p (the vertical dotted line indicates p*). Central plots (b,e): 
probability distribution of the directed shortest path length λ. Right plots (c,f): dependence of DR on the 
initial distress Φ . Top panels (a–c) refer to WTW, bottom panels (d–f) to E-mid. Correlation coefficient 
values c between real and synthetic curves: (a) c =  0.999, (b) c =  0.999, (c) c =  0.994, (d) c =  0.999, (e) 
c =  0.989, (f) c =  0.998.
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main core Smain, (c) size of the giant component SGC at the bond percolation threshold =
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Figure 6.  rRMSE of various topological properties versus n for the reconstructed G0 of the E-mid (both 
the real network and its synthetic version). rRMSE for: (a) degree of the main core kmain, (b) size of the 
main core Smain, (c) size of the giant component SGC at the bond percolation threshold =

−⁎p k 1, (d) link 
reciprocity r, (e) mean shortest path length λ, (f) maximum value of the group DebtRank DRmax.
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on the number of connections of a relatively small fraction of nodes—as long as the fitnesses of all nodes 
is known.

Discussion
In this paper we studied a novel method that allows to reconstruct a directed weighted network and 
estimate its topological properties by using only partial information about its connection patterns, as 
well as two additional intrinsic properties (interpreted as fitnesses) associated to each node. Tests on 
empirical networks as well as on synthetic networks generated through a fitness-induced configuration 
model reveal that the method is highly valuable for overcoming the lack of topological information that 
often hinders the estimation of systemic risk in economic and financial systems. Indeed, the information 
exploited by the method is minimal but is (or should be) publicly available for these kind of systems.

Our work originates from the study of Garlaschelli and Loffredo12 and of Musmeci et al.10. The lat-
ter in particular represented a first attempt in tackling the problem of network reconstruction from 
partial information within the framework of fitness-induced configuration models. Here however we 
make fundamental improvements to the method, the key advance being that of extending it to directed 
weighted networks (the most general class of networks). In the present form, the method is then suited 
to reconstruct high-order network properties related to systemic risk, a task of primary practical impor-
tance the method was conceived to address—that was however beyond the reach of its original version. 
Besides, the validation of the fitness-induced configuration model approach to model real networks, as 
well as the reconstruction of benchmark synthetic networks generated as fitness-based counterparts of 
the empirical networks, are both novel ingredients that allow to assess quantitatively the accuracy of the 
method. Last but not least, the extensive analysis of different temporal snapshots of the real networks 
we provide in the Supplementary Information allows to strengthen considerably the effectiveness and 
robustness of our method.

We remark that the method we are proposing here, by reproducing both the binary and weighted 
topology of the network, represent a substantial step forward in the field of network reconstruction. In 
fact, most of the previous works6–9,25 focused on reproducing the strengths of the real network to the det-
riment of connection patterns, whereas, only recently it has been realized that a successful reconstruction 
procedure must resort also on topological constraints2,10. Here we are proposing a method that allows to 
always reproduce the strengths, but also to tune the network topology through appropriate connection 
probabilities. In this respect, the use of probabilities derived from degree constraints represent the most 
general case, which include as specific instances both the dense reconstruction6–9 and the sparse recon-
struction2 techniques.

Note that one should not be much surprised that the knowledge of a small number of nodes allows 
to precisely estimate a wide range of network properties, because the method assumes the additional 
knowledge of the fitness parameters for all the nodes. Besides, the effectiveness of the method strongly 
depends on the accuracy of the fitness model used to calibrate the CM in order to fit the empirical data-
set. In the case of WTW and E-mid, the fitness model well describes how links are established across 
nodes, and our method is thus effective in reconstructing the network properties. Finally, we remark that 
the issue of having limited information on the system under investigation, while being typical for social, 
economic and financial systems (that are privacy-protected), is very relevant also for biological systems 
such as ecological networks, metabolic networks and functional brain networks—where, due to observa-
tional limitations and high experimental costs for collecting data, detailed topological information about 
connections is often missing. Notably, our method can be used to reconstruct any network representing 
a set of (directed and weighted) dependencies among the constituents of a complex system, and we thus 
believe it will find wide applicability in the field of complex networks and statistical physics of networks.
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