
TAPAs: a Tool for the Analysis of Process Algebras

Francesco Calzolai, Rocco De Nicola, Michele Loreti, and Francesco Tiezzi

Dipartimento di Sistemi e Informatica, Università degli Studi di Firenze

Viale Morgagni 65, 50134 Firenze, Italia
{calzolai,denicola,loreti,tiezzi}@dsi.unifi.it

Abstract. Process Algebras are formalisms for modelling concurrent systems
that permit mathematical reasoning with respect to a set of desired properties.
TAPAs is a tool that can be used to support the use of process algebras to spec-
ify and analyze concurrent systems. It does not aim at guaranteeing high perfor-
mances, but has been developed as a support to teaching. Systems are described
as process algebras terms that are then mapped to Labelled Transition Systems
(LTSs). Properties are verified either by checking equivalence of concrete and
abstract systems descriptions, or by model checking temporal formulae over the
obtained LTS. A key feature of TAPAs, that makes it particularly suitable for
teaching, is that it maintains a consistent double representation of each system
both as a term and as a graph. Another useful didactical feature is the exhibition
of counterexamples in case equivalences are not verified or the proposed formulae
are not satisfied.

Key words: Concurrency, property verification, process algebras, bisimulation,
behavioural equivalences, modal logics.

1 Introduction

Process algebras are a set of mathematically rigorous languages with well defined se-
mantics that permit describing and verifying properties of concurrent communicating
systems. They can be seen as mathematical models of processes, regarded as agents that
act and interact continuously with other similar agents and with their common environ-
ment. The agents may be real-word objects (even people), or they may be artefacts,
embodied perhaps in computer hardware or software systems.

Process algebras provide a number of constructors for system descriptions and
are equipped with an operational semantics that describes systems evolution. More-
over, they often come equipped with observational mechanisms that permit identifying
(through behavioural equivalences) those systems that cannot be taken apart by external
observations. In some cases, process algebras have also complete axiomatizations, that
capture the relevant identifications.

There has been a huge amount of research work on process algebras carried out
during the last 25 years that started with the introduction of CCS [18, 19], CSP [6]
and ACP [4]. In spite of the many conceptual similarities, these process algebras have
been developed starting from quite different viewpoints and have given rise to differ-
ent approaches: CCS relies on an observational bisimulation-based theory starting from

an operational viewpoint. CSP was motivated as the theoretical version of a practical
language for concurrency and is still based on an operational intuition which, how-
ever, is interpreted w.r.t. a more abstract theory of decorated traces. ACP started from
a completely different viewpoint and provided a purely mathematical algebraic view of
concurrent systems: ACP processes are the solutions of systems of equations (axioms)
over the signature of the considered algebra; operational semantics and bisimulation
(in this case a different notion of bisimulation - branching bisimulation - is considered)
are seen as just one of the possible models over which the algebra can be defined and
the axioms can be applied. At first, the different algebras have been developed com-
pletely separately. Slowly, however, their strict relationships have been understood and
appreciated, nevertheless in university courses they have been taught separately. Thus
we have seen many books on CCS [19], CSP [15, 22, 23], ACP [3, 11], Lotos [5] but not
a book just on Process Algebras aiming at showing the underlying vision of the general
approach. We feel that it is time to aim at teaching the general theory of Process Al-
gebras and seeing the different languages as specific instances of the general approach.
The tool we describe in this paper aims at supporting such courses.

The main ingredients of a specific process algebra are:

1. A minimal set of well thought operators capturing the relevant aspect of systems
behavior and the way systems are composed.

2. A transition system associated with the algebra via structural operational semantics
to describe the evolution of all systems that can be built from the operators.

3. An equivalence notion that permits abstracting from irrelevant details of systems
descriptions.

Often process algebras come also equipped with:

4. Abstract structures that are compositionally associated with terms to provide deno-
tational semantics.

5. A set of laws (axioms) that characterize behavioural equivalences to obtain a so
called algebraic semantics.

Verification of concurrent system within the process algebraic approach is per-
formed either by resorting to behavioural equivalences for proving conformance of pro-
cesses to specifications that are expressed within the notation of the same algebra or by
checking that processes enjoy properties described by some temporal logic’s formu-
lae [16, 7].

In the former case two descriptions of a given system, one very detailed and close
to the actual concurrent implementation, the other more abstract describing the abstract
tree of relevant actions the system has to perform are provided and tested for equiva-
lence.

In the latter case, concurrent systems are specified as terms of a process description
language while properties are specified as temporal logic formulae. Labelled Transition
Systems are associated with terms via a set of structural operational semantics rules
and model checking is used to determine whether the transition systems associated with
those terms enjoy the property specified by the given formulae.

In both approaches Labelled Transition Systems (LTSs) play a crucial role; they
consist of a set of states, a set of transition labels and a transition relation. States corre-
spond to the configurations systems can reach. Labels describe the actions systems can
perform to interact with the environment. Transition relation describes systems evolu-
tion as determined by the execution of specific actions. Temporal logic formulae are a
mix of logical operators and modal operators. The former are the usual boolean oper-
ators, while the latter are those that permit reasoning about systems evolution in time
and to deal with the dynamic aspects of LTSs.

LTSs are also the central ingredient of TAPAs, the software tool that we have im-
plemented to support teaching of process algebras. Indeed, the main components of
TAPAs are those permitting to minimize LTSs, to test their equivalence and to model
check their satisfaction of temporal formulae. By relying on a sophisticated graphical
user interface TAPAs permits:

– Understanding the meaning of the different process algebras operators by showing
how these operators can be used to compose terms and the changes they induce on
the composed transition systems.

– Appreciating the close correspondence between terms and processes by consis-
tently updating terms when the graphical representation of Labelled Transition Sys-
tems is changed and redrawing process graphs when terms are modified.

– Evaluating the different behavioural equivalences by having them on a single plat-
form and checking the different equivalences by simply pushing different buttons.

– Studying model checking via a user friendly tool that, in case of failures, provides
appropriate counterexamples that help debugging the specification.

The rest of the paper is organized as follows. In Section 2, we provide an overview
of the front-end of TAPAs and show how it can be used for specifying behaviours of
concurrent systems. In Section 3, we describe the components that can be used for
verifying systems behaviours. In Section 4, we consider a more elaborate case study
dealing with mutual exclusion algorithm. The final section contain a few concluding
remarks and gives a brief account of related tools.

2 Textual and graphical representation of processes

TAPAs1 (Tool for the Analysis of Process Algebras [1]) is a graphical tool, developed
in JAVA, which aims at simplifying the specification and the analysis of concurrent sys-
tems described by means of Process Algebras. This tool has been used for supporting
teaching Theory of Concurrency in a course of the Computer Science curriculum at
‘Università degli Studi di Firenze’. TAPAs architecture is outlined in Figure 1. It con-
sists of five components: an editor, a runtime environment, a model checker, an equiva-
lence checker and a minimizer. TAPAs editor permits specifying concurrent systems as
terms of a process algebra: terms can be inserted into the system by using either a textual
representation or a graphical notation. The runtime-environment permits generating the

1 TAPAs is a free software; it can be redistributed and/or modified under the terms of the GNU
General Public License as published by the Free Software Foundation.

Minimizer

LTS
Equivalence

checker

Model
checker

μ- calculus

ACTL

CTL

HML

CCS CSP

CCSP (CCS+CSP)

ACP

Fig. 1. TAPAs Architecture.

Labelled Transition System corresponding to a given specification. Model checker and
equivalence checker can be used for analyzing system behaviours. The former permits
verifying whether a specification satisfies a logic formula of modal µ−calculus [16], the
latter permits verifying whether two implementations of the same system are equivalent
or not. Finally, the minimizer permits reducing the size of Labelled Transition Systems
with large number of states while preserving the intended behaviour.

In TAPAs concurrent systems are described by means of processes, which are non-
deterministic descriptions of system behaviours, and process systems, which are ob-
tained by process compositions. Notably, processes can be defined in terms of other
processes or other process systems. Processes and process systems are composed by
means of the operators of a given process algebra. For instance, in the case of CCS, a
process system can be obtained by parallel composition with binary synchronization,
relabelling and restriction of processes, while in case of CSP a process system can be
also obtained by using parallel composition with multi-party synchronization, internal
and external choice operators and hiding.

TAPAs editor permits defining processes and process systems by using both graph-
ical and textual representations. A process is graphically represented by a graph whose
edges are labeled with the actions it can perform. The same process can be represented
(textually) by a term of a specific process algebra. A user can always change the pro-
cess representation: TAPAs guarantees the synchronization between the graph and the
corresponding term. TAPAs does not rely on specific process algebra to be used for the
systems specification. Currently, we are using CCSP2 a process algebra obtained from
CCS by incorporating some operators of CSP. However, thanks to the modular imple-
mentation of TAPAs, other process algebras can be easily added. Specifically, adding a
new process algebra to TAPAs requires developing two JAVA packages: one for mod-

2 Although the name is borrowed from [21] our variant is slightly different from the one consid-
ered by Olderog (op. cit.) and the one proposed by van Glabbeek and Vaandrager [24] due to
the different mix of operators.

Fig. 2. Processes Bill and Ben.

elling the operational semantics of the operators and the other for defining the graphical
representation of the operators.

Figure 2 shows two TAPAs processes that are the graphical representations corre-
sponding to the following CCSP processes:

process Bill:

X1 = play?.Bill[X2]

X2 = meet?.nil

end

process Ben:

X1 = work?.Ben[X2]

X2 = meet!.nil

end

Process Bill can perform an input on channel play and continue with an input on
meet, while process Ben can perform first an input on work and then an output on
meet.

Process systems, like processes, are represented both graphically and textually. In
the first case, a system is represented by a box containing a set of elements. The process
system corresponding to the parallel composition of the processes Bill and Ben is
shown on the left hand side of Figure 3. To guarantee synchronization between Bill
and Ben, channel meet is restricted. This is represented graphically by a black barrier
around parallel composition. The textual representation of BillBen process system is
the following:

system BillBen:

restrict {meet} in

Bill[X1] | Ben[X1]

end

end

The LTS generated by the runtime component, corresponding to the above process
system is reported on the right hand side of Figure 3. To help the user to analyze the
generated graph, TAPAs provides visualization algorithms for drawing LTSs; new algo-
rithms for drawing graphs can be easily plugged into TAPAs. When a LTS is generated
starting from a system process, TAPAs will check satisfaction of the syntactic condi-

Fig. 3. Process system BillBen and the corresponding LTS.

tions that guarantee finiteness of the generated graph. When finiteness is not guaranteed,
a warning message is displayed.

2.1 Textual specification of terms

The TAPAs runtime environment takes as input a textual specification, written in some
process algebra, and generates the corresponding LTS, which can be used by the other
components for model and equivalence checking. Currently, the only process algebra
that can be used to specify concurrent systems with TAPAs is CCSP. Its set of operators
is not intended to be minimal. Redundancy is tolerated for making it easier to specify
systems specifications while keeping them understandable. In this section, we present
the syntax and the operational semantics of the CCSP terms accepted by the runtime
environment.

Basic elements of CCSP processes, as in most process calculi, are actions. Intu-
itively, actions represent atomic computational steps, that can be internal or external.
All internal actions are rendered as the silent action tau, while external actions are in-
put/output operations on channels (i.e. communication ports), and represent potential
interactions with the external environment.

CCSP syntax. The syntax of a CCSP module is given in Table 1; there we have used∑
i∈I ACT i

j .PROC i
j for ACT 1

j .PROC 1
j + · · · + ACT n

j .PROC n
j if I = {1, . . . , n}.

The set of names N = PN ∪ XN ∪ CN ∪ SN contains (non-empty finite) sequences
of alphanumeric characters (including the symbol) where:

– P ranges over the set of process names PN ,
– X ranges over the set of state names XN ,
– c ranges over the set of channel names CN ,
– S range over the set of system names SN .

Table 1. CCSP syntax.

M ::= PROC DEC | SYS DEC | M M (Module)

PROC DEC ::= process P : (Process dec.)
X1 =
∑

i∈I1
ACT i

1 .PROC i
1

· · ·

Xn =
∑

j∈In ACT j
n .PROC j

n
end

ACT ::= tau | c! | c? (Action)

PROC ::= nil | P[X] | S (Process)

SYS DEC ::= system S : COMP end (System dec.)

COMP ::= C | C 1 (+) C 2 | C 1 [] C 2 | C 1 | C 2 (Components)

C ::= PROC (Component)
| sync on CS in C 1 | C 2 end

| rename [F] in COMP end
| restrict CS in COMP end

CS ::= * | {c1 , . . . , cn} (Channel set)

F ::= c/c’ | F , F (Renaming fun.)

A CCSP module is a sequence of process declaration and system declarations. Pro-
cesses are defined by “state name =

∑
i∈I action. process”, where an action can be the

silent action tau (where tau < CN), an output c! or an input c? on a channel c, while
a process can be the empty process nil (which cannot perform any actions), a reference
P[X] to the state X of the process P or a reference to a system S. Systems are defined as
the composition via parallel operator (i.e. |), external and internal choice operators (i.e.
[] and (+) respectively) of elements called components . These can be processes or the
result of applying an operation (multi-synchronization operation sync, renaming op-
eration rename, restriction operation restrict) processes. The multi-synchronization
construct is inspired by the parallel operator of CSP and allows parallel components to
synchronize on any channel of the specified set when all of them can perform the same
action. Renaming and restriction are the standard CCS operators; the former permits
changing channel names, while the latter is used for delimiting their scope. For multi-
synchronization and restriction operations, we use the wildcard symbol * to indicate
CN , i.e. the set of all channel names.

CCSP operational semantics. CCSP operational semantics is defined only for well-
formed modules, i.e. modules where all used states, processes and systems have cor-
responding declarations. Moreover, it is assumed that states and systems names are
distinct, well-formedness check can be statically performed. CCSP semantics is pro-
vided relatively to a module M that contains the necessary definitions. It is described

Table 2. CCSP operational semantics w.r.t. module M.

(Pre f)
(process P : . . . Xi =

∑
j∈I ACT j

i .PROC j
i . . . end) ∈ M

(k ∈ I)

P[X i]
ACT k

i
−−−−−→ PROC k

i

(S re f)
(system S : COMP end) ∈ M COMP

µ
−−→ COMP′

S
µ
−−→ COMP′

(Broad1)
C 1

µ
−−→ C′ µ < act(CS)

sync on CS in C 1 | C 2 end
µ
−−→ sync on CS in C′ | C 2 end

(Broad2)
C 2

µ
−−→ C′ µ < act(CS)

sync on CS in C 1 | C 2 end
µ
−−→ sync on CS in C 1 | C′ end

(Broad3)
C 1

α
−−→ C ′1 C 2

α
−−→ C ′2 α ∈ act(CS)

sync on CS in C 1 | C 2 end
α
−−→ sync on CS in C ′1 | C ′2 end

(Ren)
COMP

µ
−−→ COMP′

rename [F] in COMP end
F(µ)
−−−−→ rename [F] in COMP′ end

(Res)
COMP

µ
−−→ COMP′ µ < act(CS)

restrict CS in COMP end
µ
−−→ restrict CS in COMP′ end

(S ync)
C 1

α
−−→ C ′1 C 2

ᾱ
−−→ C ′2

C 1 | C 2
tau
−−−→ C ′1 | C ′2

(Inter1)
C 1

µ
−−→ C ′1

C 1 | C 2
µ
−−→ C ′1 | C 2

(Inter2)
C 2

µ
−−→ C ′2

C 1 | C 2
µ
−−→ C 1 | C ′2

(Int. choice1) C 1(+) C 2
tau
−−−→ C 1 (Int. choice2) C 1(+) C 2

tau
−−−→ C 2

(Ext. choice1)
C 1

α
−−→ C′

C 1[] C 2
α
−−→ C′

(Ext. choice2)
C 2

α
−−→ C′

C 1[] C 2
α
−−→ C′

(Ext. choice3)
C 1

tau
−−−→ C′

C 1[] C 2
tau
−−−→ C′[] C 2

(Ext. choice4)
C 2

tau
−−−→ C′

C 1[] C 2
tau
−−−→ C 1[] C′

as a labelled transition relation
µ
−−→ over components induced by the rules in Table 2,

where µ is generated by the following grammar:

µ ::= tau | α α ::= c! | c?

The meaning of labels is the following: tau represents internal computational steps,
while c! and c? denote execution of output and input actions on channel c, respectively.
An input and output on the same channel are called complementary labels. We will
use ᾱ to denote the complement of α (i.e. c! = c? and c? = c!), and act(CS) to
denote the set of actions corresponding to the channels of CS (i.e. tau < act(CS),
while c!, c? ∈ act(CS) if either c ∈ CS or CS = ∗).

Rule (Pre f) states that process P[X] evolves by performing one of the actions that P
can execute from state X; the actual choice is nondeterministic. A system name evolves
according to the actions of the body of the corresponding declaration, rule (S re f). Rules
for renaming, restriction, parallel composition, internal and external choice are stan-
dard (see [18] and [6]). Finally, rules (Broad1) and (Broad2) permit the interleaving of
the actions of parallel components when actions outside the specified channel set are
performed, rule (Broad3) allows multiple synchronization of processes on one of the
synchronization channels.

2.2 Graphical specification of terms
In this section, we present the graphical formalism used for defining processes and
prosess systems. TAPAs editor provides two separate kind of windows that can be used
to draw processes and process systems (see Figure 4).

Fig. 4. A TAPAs screenshot.

Generally, the graphical representation of processes is independent from a specific
process algebra, except for the labels corresponding to the actions of the algebras. A

process is rendered as a graph; its edges describe the performed actions and their effect,
while its nodes represent systems configurations. We have four kinds of nodes:

1. Terminal: identify a terminal state (e.g. the empty process nil) and are represented
as a red circle with a black dot.

2. State Reference: identify states defined within the considered process, and are
represented as a red circle. Only this kind of nodes can have outgoing edges.

3. Process Reference: identify states defined in another processes, and are repre-
sented as a red box.

4. System Reference: identify systems, and are represented as a white box.

Figure 5 shows the graphical representation of the process below, if P1 is a process
and Sys is a system.

process P2:

start = a?.nil + b?.P2[X1] + c?.P1[X] + d?.Sys

X1 = e!.nil

end

Fig. 5. Graphical representation of TAPAs nodes.

Process systems are graphically represented via nested boxes; each box represents
either one of the system operators or a reference to a process or to a process system.
For the sake of clarity, each system operator has a specific graphical box.

Figure 6 reports the graphical representation of the following process system:

restrict {a,b} in

R[Z] [] P[X]

end

|

sync on {a,c} in

Q[Y] | Sys

end

The outermost enclosing box represents the top level operator that, in this case, is paral-
lel composition while its arguments are drawn as inner boxes. There are two inner com-
ponents, one is a restriction the other is a multi-synchronization. Restriction is rendered

Fig. 6. Graphical representation of a process system.

as a box surrounded by a black barrier and contains an external choice between pro-
cesses R[Z] and P[X]. Multi-synchronization is rendered as a box with a yellow frame
that contains process Q[Y] and system Sys. When a box is selected, other parameters
of the corresponding operator, such as restricted names, are shown in a separate table.

3 Verification of process properties

The LTS generated by the runtime environment can be used by the other TAPAs compo-
nents to analyze the corresponding concurrent systems. The analysis can be performed
either by an equivalence checker or by a model checker.

The TAPAs Equivalences Checker permits verifying different kind of equivalences
between pairs of systems. It is worth noting that, if other process algebras (e.g. value-
passing CCS, ACP, . . .) were to be added to TAPAs, their integrations with the equiva-
lence checker would be seamless.

Currently, TAPAs permits checking two kinds of equivalences:

1. Bisimulations based equivalences (strong, weak and branching) [19, 26];
2. Decorated trace equivalences (weak and strong variants of trace completed trace,

divergence sensitive trace, must, testing) [14, 9].

Decorated trace equivalences have been implemented by combining a set of flags,
which enable or disable checking specific properties (see Figure 7 left side). Flags, and
their meanings, are the following:

– WEAK: weak equivalences;
– CONV: convergence sensitive equivalences;
– FINL: equivalences sensitive to final states;
– ACPT: equivalences sensitive to acceptance sets;
– HIST: equivalences that consider past divergences as catastrophic;
– CUTC: equivalences that ignore all behaviours after divergent nodes.

Fig. 7. Equivalence and Model Checker panels.

As an example, weak trace equivalence is obtained by enabling only the WEAK flag,
the completed trace equivalence is obtained by enabling the FINL flag, and the weak
completed trace is obtained by enabling the WEAK and the FINL flags.

Whenever an equivalence check turns out to be unsuccessful, TAPAs provides coun-
terexamples, i.e. evidences that the analyzed systems do behave differently. Hennessy-
Milner Logic [13] formulae that capture a property satisfied only by one of the two
in-equivalent processes are exhibited.

Equivalence checker algorithms are also used for implementing a LTSs Minimizer.
This module allows users to minimize LTSs with large number of states while preserv-
ing strong, weak or branching bisimulation.

TAPAs can be used to analyze concurrent systems also by verifying satisfaction
of properties, expressed as logical formulae. This task can be achieved by using the
Model Checker that implements a Local Model Checking Algorithm [27], and permits
verifying satisfaction of modal logic formulae by system processes (Figure 7 right side).

For efficiency reasons, the model checker takes as input only µ-calculus formulae
[16]. However, TAPAs can be easily extended to accept also formulae from other log-
ics like, for instance, ACTL (Action Computation Tree Logic [10]) that turns out to
be more user friendly. Formulae of the new logics will have to be translated in equiv-
alent µ-calculus ones and their verifications will be performed on the outcome of the
translation.

4 The study of a mutual exclusion algorithm

In this section we present the mutual exclusion problem, one of the simpler examples
that are used for supporting concurrency theory courses.

Mutual exclusion algorithms are used in concurrent programming to avoid that
pieces of code, called critical sections, simultaneously access a common resource, such

Fig. 8. Process P1.

as a shared variable. We consider Peterson’s algorithm, that allows two processes to
share a single-use resource without conflicts. The two processes, P1 and P2, are defined
by the following symmetrical pieces of pseudocode:

P1 P2

while true do { while true do {
<noncritical section> <noncritical section>
B1 = true; B2 = true;
K = 2; K = 1;
while (B2 and K==2) do skip; while (B1 and K==1) do skip;
<critical section> <critical section>
B1 = false; B2 = false;

} }

The two processes communicate by means of three shared variables, B1, B2 and K.
The first two are boolean variables and are true when the corresponding process wants
to enter the critical section. The last variable contains the identifier of the process (i.e. 1
or 2) whose turn it is. The algorithm guarantees mutual exclusion: P1 and P2 can never
be in their critical sections at the same time.

The three variables can be easily modelled in TAPAs as two-states processes, where
each state represents a value that the variable can assume. Similarly, processes P1 and
P2 can be modelled as TAPAs processes. Since the two processes are symmetric, Fig-
ure 8 shows only one of them (i.e. P1). The complete process system, reported in Fig-
ure 9, is obtained by putting the five processes in parallel and by restricting the syn-

Fig. 9. The process system Sys.

chronization channels; it has the following textual representation:

system Sys:

restrict { ktest1, kset2, ktest2, b1setFalse, b1testFalse,

kset1, b2testFalse, b2testTrue, b1testTrue,

b1setTrue, b2setTrue, b2setFalse } in

B1[true] | B2[true] | K[1] | P1[X] | P2[X]

end

end

Sys can interact with the external environment only by means of channels enter1,
enter2, exit1 and exit2, that represent entering and exiting of the two processes
from the critical sections.

Generally, after showing this example, we ask to students to try to find an alter-
native solution of the mutual exclusion problem. For instance we could ask to provide
an alternative formalization that does not rely on shared variables. A possible solution
is that based on the multi-synchronization operator. The algorithm that uses the multi-
synchronization operator is reported in Figure 10.

There, enter1 and enter2 are synchronization channels; therefore the two pro-
cesses P1 and P2 have to perform the same actions; if enter1! is the performed action,
then P1 can enter its critical section and P2 must wait until P1 exits; if enter2! is the
performed action, then P2 can enter its critical section and P1 must wait until P2 exits.
This simple example is useful for showing that different primitives (multicast messages
or singlecast messages) permit developing different solutions.

Using TAPAs students can verify properties of the systems. By means of the equiv-
alence checker, equivalence of the system’s implementation and the mutual exclusion
specification reported in Figure 11 can be tested. Process Spec models the cyclical be-
haviour of entering and exiting of P1 and P2 (without distinction between them) from
their critical sections. In this way it is specified that they can never be in the critical sec-
tions at the same time: two consecutive actions enter! cannot be performed. Notably,

process P1:

X -> enter1!.P1[X2] + enter2!.P1[X3]

X2 -> tau.P1[X4]

X3 -> exit2!.P1[X]

X4 -> exit1!.P1[X]

end

process P2:

X -> enter2!.P2[X2]

+ enter1!.P2[X3]

X2 -> tau.P2[X4]

X3 -> exit1!.P2[X]

X4 -> exit2!.P2[X]

end

system BroadSys:

sync on {enter1, enter2, exit1, exit2} in

P1[X] | P2[X]

end

end

Fig. 10. The CCSP representation of the Mutual exclusion algorithm using broadcast.

at this level of abstraction it is not necessary to identify the actual process that is using
its critical section. Thus, before executing the test, Sys and BroadSys must be slightly
modified as follows:

rename [enter/enter1, enter/enter2, exit/exit1, exit/exit2] in

Sys/BroadSys

end

The processes we have just modified and Spec are weakly bisimilar. However, due to
busy-waiting, Sys is not testing equivalent to Spec, because Sys can diverge while
BroadSys cannot.

The behaviour of the systems specified so far can also be verified through the TAPAs
model checker. For instance, it can can be verified that the implementations of Peter-
son’s algorithm and the one based on multi-synchronization enjoy the following rele-
vant properties specified in µ-calculus [16]:

– deadlock-freedom: in each state, the system can perform at least one action

νX.〈−〉true ∧ [−]X

– livelock-freedom: the system cannot reach a state where it can perform only infinite
sequences of internal actions;

¬µX.〈−〉X ∨ νY.[−τ]false ∧ 〈τ〉true ∧ [τ]Y

– starvation-freedom: if a process wants to enter its critical section, eventually it suc-
ceeds.

µX.[−]X ∨ 〈enter i!〉true

At the end of the academic course we assign to students a case study and they
have to specify and verify it using TAPAs. We have noticed that, at first, students try to
specify all the features of the system, even those redundant and not necessary. Often,

Fig. 11. Mutual exclusion specification.

after experiencing problems related to the state space explosion they understand the
need of abstract description. Thus, they reduce the number of the states by simplifying
the system omitting the unnecessary aspects, to capture only the interesting behaviour
of the analized system. In some case they also use the minimization facility to reduce
the size of the components before actually composing them to obtain systems..

5 Conclusions and Related Work

We have introduced TAPAs, a tool for the specification and the analysis of concurrent
systems. TAPAs has been designed to support teaching concurrency and one of its dis-
tinguishing feature is the independence from specific process algebras and logics, that
is guaranteed by its generic graphical formalism. TAPAs assigns a central role to La-
belled Transition Systems. By considering the LTS associated to the different terms
students can appreciate similarities and differences between the operators. Moreover,
by studying the effect of some of the most important equivalences over LTS, students
can appreciate their impact on specific calculi and gain insight into the nature of their
nature.

By comparing the lectures where TAPAs was used as teaching support with the
‘classical’ ones, we have noticed that the students got significantly more interested in
the subject. The students that have developed simple (but realistic) case studies using
TAPAs, have shown a deeper understanding of process algebras, behavioural equiva-
lences and model checking. In spite of its didactical nature, TAPAs has also been used
to deal with more complex systems and we plan to use it to gently expose researchers
from industry to the use of formal methods.

In the last years many other tools were developed, but, generally, they are not in-
tended to support teaching: some tools have not a graphical user interface, others do not
support the process algebras commonly used in the academic courses (CCS, CSP) and
just few tools allow the graphical specification.

One of the most used tool for teaching concurrency, that follows a process alge-
braic approach, is LTSA [17]. It permits generating LTS starting from a term written in
a simple process algebra (named FSP), but it does not allows a direct graphical spec-
ification of terms. LTSA allows the verification of systems properties by reachability
analysis based on formulae of a Linear Time Temporal logic (named Fluent LTL), and
it generates traces leading to failures whenever the specified property is not satisfied.
Differently from TAPAs, LTSA does not provide an equivalence checker.

Another well-known tool for process algebras is CADP [12]: it offers a wide set
of functionalities, ranging from step-by-step simulation to massively parallel model-
checking, but it does not allow the graphical specification and the systems descriptions
have to be written in LOTOS [25] that is not a widely used process algebra.

CWB [20] and CWB-NC [2] are very efficient tools that permit specifying and ver-
ifying properties of concurrent systems. These tools support many process algebras and
can be used for checking many behavioural equivalences. However, both CWB and
CWB-NC do not provide a graphical interface that can be used for describing con-
current systems. Clearly, this can make difficult to use tools in academic course for
introducing theory of concurrency.

As a future work, we plan also to continue the development by adding modules to
deal with other process algebras, such as value-passing CCS [19] and LOTOS, and with
other logics. Moreover, we will add other analysis tools, such as a simulator that allows
“animating” the system showing the possible interactions between its components. We
plan also to improve the TAPAs back-end in order to support systems with a larger state
space. Moreover we plan to enrich TAPAs along the lines of PAC [8] to permit users to
define their own operators and to generate the LTS associates to terms containing these
new operators.

Acknowledgements. We would like to thank Fabio Collini, Massimiliano Gori, Ste-
fano Guerrini and Guzman Tierno for having contributed with their master theses to the
development of key parts of the software at the basis of TAPAs.

References

1. TAPAs: a Tool for the Analysis of Process Algebras. http://rap.dsi.unifi.it/tapas.
2. R. Alur and T. Henzinger. The NCSU Concurrency Workbench. In Proceedings of

Computer-Aided Verification (CAV ’96), volume 1102 of Lecture Notes in Computer Sci-
ence, pages 394–397. Springer–Verlag, 1996.

3. J.C.M. Baeten and W.P. Weijland. Process algebra, volume 18 of Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 1990.

4. J.A. Bergstra and J.W. Klop. Process algebra for synchronous communication. Information
and Control, 60(1-3):109–137, 1984.

5. H. Bowman and R. Gomez. Concurrency Theory: Calculi an Automata for Modelling Un-
timed and Timed Concurrent Systems. Springer–Verlag, 2006.

6. S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of communicating sequential
processes. J. ACM, 31(3):560–599, 1984.

7. E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization skeletons us-
ing branching-time temporal logic. In Proceedings of Logic of Programs, pages 52–71.
Springer–Verlag, 1982.

8. R. Cleaveland, E. Madelaine, and S. Sims. A front-end generator for verification tools. In
Proceedings of the Int. Workshop on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’95), volume 1019, pages 153–173. Springer–Verlag, 1995.

9. R. De Nicola and M. Hennessy. Testing equivalences for processes. Theor. Comput. Sci.,
34:83–133, 1984.

10. R. De Nicola and F.W. Vaandrager. Action versus state based logics for transition systems. In
Proceedings of the Ecole de Printemps on Semantics of Concurrency, volume 469 of Lecture
Notes in Computer Science, pages 407–419. Springer–Verlag, 1990.

11. W. Fokkink. Introduction to Process Algebra. Springer–Verlag, 2000.
12. H. Garavel, F. Lang, and R. Mateescu. An overview of CADP 2001. In European Association

for Software Science and Technology (EASST), volume 4 of Newsletter, pages 13–24, 2002.
13. M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency. J. ACM,

32(1):137–161, 1985.
14. C.A.R. Hoare. A Model for Communicating Sequential Processes. In On the Construction

of Programs, pages 229–254. Cambridge University Press, 1980.
15. C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
16. D. Kozen. Results on the propositional µ-calculus. Theor. Comput. Sci., 27:333–354, 1983.
17. J. Magee and J. Kramer. Concurrency: State Models and Java Programs. John Wiley and

Sons Inc, 2006.
18. R. Milner. A Calculus of Communicating Systems., volume 92 of Lecture Notes in Computer

Science. Springer–Verlag, 1980.
19. R. Milner. Communication and concurrency. Prentice-Hall, Inc., Upper Saddle River, NJ,

USA, 1989.
20. F. Moller and P. Stevens. Edinburgh Concurrency Workbench user manual. Available from
http://homepages.inf.ed.ac.uk/perdita/cwb/.

21. Ernst-Rüdiger Olderog. Operational Petri net semantics for CCSP. In Proceedings of Eu-
ropean Workshop on Applications and Theory of Petri Nets, volume 266, pages 196–223.
Springer–Verlag, 1987.

22. A.W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, 1997.
23. S.A. Schneider. Concurrent and Real-Time Systems: The CSP Approach. Wiley & Sons,

1999.
24. R.J. van Glabbeek and F.W. Vaandrager. Bundle event structures and CCSP. In Proceedings

of 14th International Conference on Concurrency Theory (CONCUR 2003), volume 2761 of
Lecture Notes in Computer Science, pages 57–71. Springer–Verlag, 2003.

25. P.H.J. van Eijk, C.A. Vissers, and M. Diaz. The formal description technique LOTOS. Else-
vier Science Publishers B.V., 1989.

26. R.J. van Glabbeek and W.P. Weijland. Branching time and abstraction in bisimulation se-
mantics. J. ACM, 43(3):555–600, 1996.

27. G. Winskel. Topics in concurrency. Lecture notes, University of Cambridge, 2008. Available
from http://www.cl.cam.ac.uk/ gw104/TIC08.ps.

