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We show that to explain the growth of the citation network by preferential attachment (PA), one
has to accept that individual nodes exhibit heterogeneous fitness values that decay with time. While
previous PA-based models assumed either heterogeneity or decay in isolation, we propose a simple
analytically treatable model that combines these two factors. Depending on the input assumptions,
the resulting degree distribution shows an exponential, log-normal or power-law decay, which makes
the model an apt candidate for modeling a wide range of real systems.

Over the years, models with preferential attachment
(PA) were independently proposed to explain the distri-
bution of the number of species in a genus [1], the power-
law distribution of the number of citations received by
scientific papers [2] and the number of links pointing to
WWW pages [4]. A theoretical description of this class
of processes and the observation that they generally lead
to power-law distributions are due to Simon [3]. Notably,
the application of PA to WWW data by Barabási and Al-
bert helped to initiate the lively field of complex networks
[5]. Their network model, which stands at the center of
attention of this work, was much studied and general-
ized to include effects such as presence of purely random
connections [6], non-linear dependence on the degree [7],
node fitness [8] and others [9, Ch. 8].
Despite its success in providing a common roof for

many theoretical models and empirical data sets, pref-
erential attachment is still little developed to take into
account the temporal effects of network growth. For ex-
ample, it predicts a strong relation between a node’s age
and its degree. While such first-mover advantage [10]
plays a fundamental role for the emergence of scale free
topologies in the model, it is a rather unrealistic feature
for several real systems (e.g., it is entirely absent in the
WWW [11] and significant deviations are found in cita-
tion data [10, 12]). This motivates us to study a model
of a growing network where a broad degree distribution
does not result from strong time bias in the system. To
this end we assign fitness to each node and assume that
this fitness decays with time—we refer it as relevance
henceforth. Instead of simply classifying the vertices as
active or inactive, as done in [13, 14], we use real data to
investigate the relevance distribution and decay therein
and build a model where decaying and heterogeneous rel-
evance are combined.
Models with decaying fitness values (“aging”) were

shown to produce narrow degree distributions (except for
very slow decay) [15] and widely distributed fitness val-
ues were shown to produce extremely broad distributions
or even a condensation phenomenon where a single node
attracts a macroscopic fraction of all links [16]. We show
that when these two effects act together, they produce
various classes of behavior, many of which are compati-
ble with structures observed in real data sets.

Before specifying a model and attempting to solve it,
we turn to data to provide support for our hypothesis
of decaying relevance. We use here the citation data
provided by the American Physical Society (APS) which
contains all 450 084 papers published by the APS from
1893 to 2009 together with their 4 691 938 citations of
other papers from APS journals. It is particularly fit-
ting to use citation data for our work because ordinary
PA with direct proportionality to the node degree was
detected in this case by previous works [10, 17]. Data
analysis according to [18] reveals that the best power-law
fit to the in-degree data has lower bound kmin = 50 and
exponent 2.79± 0.01. Though p-values greater than 0.10
are only achieved for kmin & 150, log-normal distribution
does not appear to fit the data particularly better. Since
PA can be best imagined to model citations within one
field of research, we consider in our analysis also a sub-
set of papers about the theory of networks. We identify
them using the PACS number 89.75.Hc (“Networks and
genealogical trees”)—in this way we obtain a small data
set with 985 papers and 4 395 citations among them.
Denoting the in-degree of paper i at time t as ki(t)

and assuming that during next ∆t days, C(t,∆t) new ci-
tations are added to papers in the network, preferential
attachment predicts that the number of citations received
by paper i is ∆ki(t,∆t)PA = C(t,∆t)ki(t)/

∑

j kj(t). If
in reality, ∆ki(t,∆t) citations are received, the ratio be-
tween this number and the expected number of received
citations defines the paper’s relevance

Xi(t,∆t) :=
∆ki(t,∆t)

∑

j kj(t)

C(t,∆t)ki(t)
. (1)

This expression is obviously undefined for ki(t) = 0 which
stems from the known limitation of the PA in requiring
an additional attractiveness factor to allow new papers
to gain their first citation. Although one could try to
include this effect in our analysis, we simply compute
Xi(t,∆t) only when ki(t) ≥ 1. Similarly we exclude time
periods when no citations are given and C(t,∆t) = 0.
Figure 1 shows how the average relevance of papers

with different final in-degree values decays with time af-
ter their publication. We see that the relevance values
indeed decay and this decay is initially very fast (for pa-
pers with the highest final in-degree, it is by a factor of
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FIG. 1. Time decay of the average relevance values (based
on ∆t = 91days) for papers divided into groups according
to their final in-degree (color online). The dashed line shows
X = 1 indicating exact preferential attachment and open cir-
cles show the initial relevance values. The inset shows results
for papers about the theory of networks.

100 in less than three years). However, the exponential
decay reported in [19] appears to have only very limited
validity (up to five years after the publication date). Af-
ter 10 or more years, the decay becomes very slow or
even vanishes, producing a stationary relevance value r0.
Figure 2 depicts the distribution of the total relevance
XT (i) =

∑

t Xi(t) and shows that, perhaps contrary to
one’s expectations, this distribution is rather narrow with
an exponential decay for XT & 25 · 103. An exponential-
like tail appears also when the analysis is restricted to
papers of a similar age which means that it is not only
an artifact of the papers’ age distribution. One could
attempt to fit this data with, for example, a Weibull dis-
tribution as in [21]. We shall see later that it is the tail
behavior of XT what determines the tail behavior of the
degree distribution, hence the current level of detail suf-
fices our purpose. We can conclude that in the studied
citation data, relevance values exhibit time decay and
papers’ total relevances are rather homogeneously dis-
tributed, showing an exponential decay in the tail.
Now we proceed to a model based on the above-

reported empirical observations. We consider a uniformly
growing undirected network which initially consists of
two connected nodes. At time t, a new node is introduced
and linked to an existing node i where the probability of
choosing node i is

P (i, t) =
ki(t)Ri(t)

∑t
j=1 kj(t)Rj(t)

(2)

which has the same structure as assumed before in [15,
19]. Here kj(t) and Rj(t) is degree and relevance of node
j at time t, respectively [20]. Our goal is to determine
whether a stationary degree distribution exists and find
its functional form.
Eq. (2) represents a complicated system where evolu-

tion of each node’s degree depends not only on the node
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FIG. 2. The distribution of the total relevance XT in the
studied data (color online). For XT & 25 · 103, f(XT ) decays
as exp[−αXT ] with α = (21.7± 0.2) · 10−3 (denoted with the
indicative dashed line). The peak at XT = 0 is due to ap-
proximately 60 000 papers without citations. The inset shows
results for papers about the theory of networks.

itself but also on the current degrees and relevances of
all other nodes. The key simplification is based on the
assumption that at any time moment (except for a short
initial period), there are many nodes with non-negligible
values of ki(t)Ri(t). The denominator of Eq. (2) is then a
sum over many contributing terms and therefore it fluc-
tuates little with time. This allows us to approximate
the exact selection probability P (i, t) with

P (i, t) =
ki(t)Ri(t)

Ω(t)
(3)

where Ω(t) is now just a normalization factor.
If Ri(t) decays sufficiently fast (faster than 1/t) and

limt→∞ Ri(t) = 0, the initial growth of Ω(t) stabilizes
at a certain value Ω∗ which shall be determined later by
the requirement of self-consistency. The master equa-
tion for the degree distribution p(ki, t) now has the form
p(ki, t+1) = (1−kiRi(t)/Ω

∗)p(ki, t)+(ki−1)Ri(t)p(ki−
1, t)/Ω∗. Note that the stationarity of p(ki, t) in our
case is due to transition probabilities that vanish be-
cause limt→∞ Ri(t) = 0. Before tackling the degree dis-
tribution itself, we examine the expected final degree of
node i, 〈kFi 〉. By multiplying the master equation with ki
and summing it over all ki, we obtain a difference equa-
tion 〈ki(t + 1)〉 = 〈ki(t)〉

(

1 + Ri(t)/Ω
∗
)

. If Ri(t) decays
sufficiently slowly, we can switch to continuous time to
obtain d〈ki(t)〉/dt = ki(t)Ri(t)/Ω

∗ which together with
〈ki(ti)〉 = 1 yields

〈kFi 〉 = exp
( 1

Ω∗

∫

∞

ti

Ri(t) dt
)

. (4)

Here ti is the time when node i is introduced to the
system (in our case, ti = i). When the continuum ap-
proximation is valid, this result is well confirmed by nu-
merical simulations (see the inset in Fig. 3). To observe
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saturation of the degree growth for an infinitely grow-
ing network, the total relevance Ti :=

∫

∞

ti
Ri(t) dt must

be finite and hence Ri(t) must decay faster than 1/t
for all nodes. To assess the error of the continuum ap-
proximation, one can use the Taylor expansion to write
〈ki(t+ 1)〉 − 〈ki(t)〉 ≈ d〈ki(t)〉/dt+ 1

2d
2〈ki(t)〉/dt2. The

second derivative term can be approximately evaluated
using Eq. (4) and it can be shown that it’s negligible
when |Ṙi(t)| ≪ Ri(t), which is consistent with our initial
assumption that Ri(t) decays sufficiently slowly for all i.
Since Ω∗ is the same for all nodes, Eq. (4) demonstrates

that a node’s expected final degree depends only on its
total relevance Ti. Therefore we can use the continuum
approach to compute Ω∗ directly from its definition as
Ω∗ =

∫

̺(T )〈Ω(T )〉dT where 〈Ω(T )〉 ≈ limt→∞

∫ t

0 R(t−
t0)〈k(t − t0)〉dt0 =

∫

∞

0 R(t)〈k(t)〉dt = Ω∗
(

eT/Ω∗ − 1
)

,
as there is only one node with total relevance T which
contributes to 〈Ω(T )〉 with R(t)〈k(t)〉 for each t. When
̺(T ) is given, the resulting equation

∫

̺(T ) eT/Ω∗

dT = 2 (5)

can be used to find Ω∗. Alternatively, the construction
constraint of the average network’s degree in the large
time limit, 〈k〉 = 2, implies

∫

∞

0
̺(T )〈kF (T )〉dT = 2

which gives the same equation for Ω∗. Note that when
̺(T ) decays slower than exponentially, the integral in
Eq. (5) diverges and no Ω∗ can satisfy the system’s re-
quirements, implying that in this case no stationary value
of Ω∗ is established.
Similarly to 〈ki(t)〉, degree fluctuations for nodes of

a given total relevance can be derived from the master
equation. When |Ṙi(t)| ≪ Ri(t), the continuum approx-
imation can be again shown to be valid and yields

d〈k2i 〉/dt = Ri(t)
(

〈ki(t)〉+ 2〈k2i (t)〉
)

/Ω∗ (6)

where 〈k2i (0)〉 = 1 and which can be solved for general
Ri(t) to obtain the stationary standard deviation of the
node’s degree

σk(Ti) =
(

e2Ti/Ω
∗ − eTi/Ω

∗)1/2
. (7)

When Ti = T for all nodes, Eq. (5) implies eT/Ω∗

= 2
and therefore σk =

√
2. We see that the resulting degree

distribution f(k) is very narrow which is not the case
in most real complex networks. One has to proceed to
heterogeneous Ti values.
Since the distribution f(ki|Ti) is very narrow, one

can use the distribution ̺(T ) together with Eq. (4) and
f(k) dk = ̺(T ) dT to obtain the degree distribution f(k).
If Ti are drawn from a distribution with finite support,
the support of f(k) is also finite which is not of interest
for us (though it may be appropriate to model some sys-
tems). If Ti follow a truncated normal distribution (the
truncation is needed to ensure Ti ≥ 0 and 〈ki〉 ≥ 1), it
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FIG. 3. Simulation results for the studied model where
Ri(t) = Ri(0) e

−β(t−ti) (ti is the time when node i entered
the network), Ri(0) values are drawn from an exponential
distribution and the final number of nodes is 105 (color on-
line). Since the decay is the same for all nodes, distributions
of Ri(0) and Ti have the same functional form. The indicative
dashed line has the slope of −3. The inset shows the depen-
dency between βT and the average node degree; the dashed
line follows from Eq. (4).

follows immediately that f(k) is log-normally distributed
which may be of great relevance in many cases [18, 22].
We finally consider Ti values that follow a fast-decaying
exponential distribution ̺(T ) = α exp[−αT ] which is
supported by the analysis of citation data presented in
Figure 2. By transforming from ̺(T ) to f(k), we then
obtain f(k) ∼ k−1−αΩ∗

. From Eq. (5) it follows that
in this case is Ω∗ = 2/α, hence the power-law exponent
is γ = 3. We see that even a very constrained expo-
nential distribution of T leads to a scale-free distribution
of node degree—the exponent of this distribution is in
fact the same as in the original PA model. As shown
in Fig. 3, numerical simulations confirm that this result
truly realizes in a wide range of parameters.

Motivated by Fig. 2, one may ask what happens when
T is exponentially distributed only in its tail. We take a
simple combination where 1 − q of all nodes have T = 1
and the remaining nodes follow the exponential distri-
bution ̺(T ) = e−(T−1) for T ∈ [1;∞). By the same
approach as before, we obtain the equation for Ω∗ in the
form e1/Ω

∗

[1− q+ q/(1− 1/Ω∗)] = 2 which yields power-
law exponents monotonically increasing from 2.44 (for
q = 0) to 4.18 (for q = 1). The reason for the exponent
decreasing as q shrinks is that when q is small, every
node with a potentially high exponentially-distributed T
value has few able competitors during its life span and
therefore it is likely to acquire many links (more than for
q = 1). At the same time, as q decreases, the power-law
tail contains smaller and smaller fraction of all nodes and
becomes less visible. This example further demonstrates
flexibility of the studied model which is able to produce
different kinds of behavior depending on the input pa-
rameters.
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It is easy to show that as long as Ri(t) values decay
faster than 1/t, the growth of ki(t) is sublinear and the
condensation phase observed in [16] is not possible de-
spite T having an unlimited support. However, in the
system numerically studied in Fig. 3, deviations from the
scale free distribution of node degree appear when β is
small. This happens when the characteristic lifetime of a
node, 1/β, is so long that the decay cannot compensate
for the unlimited support of ̺(T ). To get a qualitative
estimate for the value of β when these deviations appear,
we use the following argument. If the final degree distri-
bution is a power law with exponent γ, we expect 〈kmax〉
to grow as t1/(γ−1) =

√
t (here we use that the number

of nodes equals t). When a node with a sufficiently high
relevance appears, the system can undergo a temporary
condensation phase where this node acquires a finite frac-
tion of links during its lifetime. To avoid a deviation from
the power law behavior, this lifetime must not be longer
than 〈kmax〉, hence β . 1/

√
t. As t goes to ∞, β can be

arbitrarily small and yet no deviations appear. This con-
firms that in the thermodynamic limit, the condensation
phase does not realize in our model.
The key formula (4) builds on the assumption that

fluctuations of Ω(t) are small enough, and the degree
distribution results hold if the effective lifetime of nodes
is long enough (a short-living node cannot acquire many
links regardless of its total relevance). These two as-
sumptions are in fact closely related: when the effective
lifetime of nodes is long, then at any time step there are
many nodes competing for the incoming link and the time
fluctuations of Ω(t) are hence small. To evaluate the ef-
fective life time of node i, τi, we use the participation
number

τi :=

(
∑

∞

t=1 Ri(t)
)2

∑

∞

t=1 Ri(t)2
≈ T 2

i /

∫

∞

0

Ri(t)
2 dt. (8)

When τi ≫ 1 for all nodes, Ω(t) fluctuates little. Numer-
ical simulations show that var(Ω) is indeed proportional
to the effective life time for a wide range of decay func-
tions R(t), confirming its relevance in the present con-
text. In conclusion, our analytical results are valid when
all the obtained conditions (Ri(t) decreasing faster than
1/t, |Ṙi(t)| ≪ Ri(t), and τi ≫ 1), are fulfilled.
To summarize, we studied a model of a growing net-

work where heterogeneous fitness (relevance) values and
aging of nodes (time decay) are combined. We showed
that in contrast to models where these two effects are
considered in isolation, here we obtain various realistic
degree distributions for a wide range of input parame-
ters. We analyzed real citation data and showed that
they indeed support the hypothesis of coexisting node
heterogeneity and time decay. Even when our model is
more realistic than the preferential attachment alone, it
neglects several effects which might be of importance in
various systems: directed nature of the network, acceler-

ating growth of the network, gradual fragmentation of the
network into related yet independent fields, and others.
Note that the very reason for the exponential tail of the
total fitness value T , though it is crucial for the resulting
degree distribution, is not discussed here at all—yet we
have empirical support for it in our data. Also the case
when the normalization Ω(t) in Eq. (2) does not have
a stationary value (because limt→∞ Ri(t) > 0 or ̺(T )
decays slower than exponentially) is open. Finally, note
that while we focused on the degree distribution here,
there are other network characteristics—such as cluster-
ing coefficient and degree correlations—that deserve fur-
ther attention.
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