
©Copyright	JASSS

Giulio	Cimini	and	Angel	Sanchez	(2015)

How	Evolutionary	Dynamics	Affects	Network	Reciprocity	in	Prisoner's	Dilemma

Journal	of	Artificial	Societies	and	Social	Simulation 	18	(2)	22
<http://jasss.soc.surrey.ac.uk/18/2/22.html>

Received:	20-Jun-2014				Accepted:	06-Nov-2014				Published:	31-Mar-2015

Abstract

Cooperation	lies	at	the	foundations	of	human	societies,	yet	why	people	cooperate	remains	a	conundrum.	The	issue,	known	as
network	reciprocity,	of	whether	population	structure	can	foster	cooperative	behavior	in	social	dilemmas	has	been	addressed	by
many,	but	theoretical	studies	have	yielded	contradictory	results	so	far—as	the	problem	is	very	sensitive	to	how	players	adapt
their	strategy.	However,	recent	experiments	with	the	prisoner's	dilemma	game	played	on	different	networks	and	in	a	specific
range	of	payoffs	suggest	that	humans,	at	least	for	those	experimental	setups,	do	not	consider	neighbors'	payoffs	when	making
their	decisions,	and	that	the	network	structure	does	not	influence	the	final	outcome.	In	this	work	we	carry	out	an	extensive
analysis	of	different	evolutionary	dynamics,	taking	into	account	most	of	the	alternatives	that	have	been	proposed	so	far	to
implement	players'	strategy	updating	process.	In	this	manner	we	show	that	the	absence	of	network	reciprocity	is	a	general
feature	of	the	dynamics	(among	those	we	consider)	that	do	not	take	neighbors'	payoffs	into	account.	Our	results,	together	with
experimental	evidence,	hint	at	how	to	properly	model	real	people's	behavior.
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Introduction

1.1 	Cooperation	and	defection	represent	the	two	alternative	choices	behind	social	dilemmas	(Dawes	1980).	Cooperative	individuals
contribute	to	the	well	being	of	the	community	at	their	own	expenses,	whereas,	defectors	neglect	doing	so.	Because	of	that	cost	of
contribution,	cooperators	get	lower	individual	fitness	and	thus	selection	favors	defectors.	This	situation	makes	the	emergence	of
cooperation	a	difficult	matter.	Evolutionary	game	theory	(Maynard	Smith	&	Price	1973)	represents	a	theoretical	framework
suitable	to	tackle	the	issue	of	cooperation	among	selfish	and	unrelated	individuals.	Within	this	framework,	social	dilemmas	are
formalized	at	the	most	basic	level	as	two-person	games,	where	each	player	can	either	choose	to	cooperate	(C)	or	to	defect	(D).
The	Prisoner's	Dilemma	game	(PD)	(Axelrod	1984)	embodies	the	archetypal	situation	in	which	mutual	cooperation	is	the	best
outcome	for	both	players,	but	the	highest	individual	benefit	is	given	by	defecting.	Mathematically,	this	is	described	by	a	matrix	of
payoffs	(entries	correspond	to	the	row	player's	payoffs)	of	the	form:

so	that	mutual	cooperation	bears	R	(reward),	mutual	defection	P	(punishment),	and	with	the	mixed	choice	the	cooperator	gets	S
(sucker's	payoff)	and	the	defector	T	(temptation).	The	heart	of	the	dilemma	resides	in	the	condition	T>R>P>S:	both	players	prefer
the	opponent	to	cooperate,	but	the	temptation	to	cheat	(T>R)	and	the	fear	of	being	cheated	(S<P)	pull	towards	choosing
defection:	according	to	Darwinian	selection,	cooperation	extinction	is	then	unavoidable	(Hofbauer	&	Sigmund	1998)—a	scenario
known	as	the	tragedy	of	the	commons	(Hardin	1968).

1.2 	However,	cooperation	is	widely	observed	in	biological	and	social	systems	(Maynard	Smith	&	Szathmary	1995).	The	evolutionary
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origin	of	such	behavior	hence	remains	a	key	unsolved	puzzle	across	several	disciplines,	ranging	from	biology	to	economics.
Different	mechanisms	have	been	proposed	as	putative	explanations	of	the	emergence	of	cooperation	(Nowak	2006),	including
the	existence	of	a	social	or	spatial	structure	that	determines	the	interactions	among	individuals—a	feature	known	as	network
reciprocity.	In	a	pioneering	work,	Nowak	and	May	(1992)	showed	that	the	behavior	observed	in	a	repeated	PD	was	dramatically
different	on	a	lattice	than	in	a	well-mixed	population	(or,	in	more	physical	terms,	in	a	mean-field	approach):	in	the	first	case,
cooperators	were	able	to	prevail	by	forming	clusters	and	preventing	exploitation	from	defectors.	Subsequently,	many	researchers
devoted	their	attention	to	the	problem	of	cooperation	on	complex	networks,	identifying	many	differences	between	structured	and
well-mixed	populations	(Roca	et	al.	2009a)	that	by	no	means	were	always	in	favor	of	cooperation	(Hauert	&	Doebeli	2004;	Sysi-
Aho	et	al.	2005;	Roca	et	al.	2009b).	The	main	conclusion	of	all	these	works	is	that	this	problem	is	very	sensitive	to	the	details	of
the	system	(Szabó	&	Toke	2007;	Roca	et	al.	2009a,	2009b),	in	particular	to	its	evolutionary	dynamics	(Hofbauer	&	Sigmund	1998,
2003),	i.e.,	the	manner	in	which	players	adapt	their	strategy.	On	the	experimental	side,	tests	of	the	different	models	were	lacking
(Helbing	&	Yu	2010),	because	the	few	available	studies	(Cassar	2007;	Kirchkamp	&	Nagel	2007;	Traulsen	et	al.	2010;
Fischbacher	et	al.	2001;	Suri	&	Watts	2011)	dealt	only	with	very	small	networks.	Network	sizes	such	that	clusters	of	cooperators
could	form	have	been	considered	only	in	recent	large-scale	experiments	(Grujíc	et	al.	2010;	Gracia-Lázaro	et	al.	2012b)	with
humans	playing	an	iterated	multiplayer	PD,	as	in	the	theoretical	models.	The	outcome	of	the	experiments	was	that,	when	it
comes	to	human	behavior,	the	existence	of	an	underlying	network	of	contacts	does	not	have	any	influence	on	the	global	outcome.

1.3 	The	key	observation	to	explain	the	discrepancy	between	theory	and	experiments	is	that	most	of	the	previous	theoretical	studies
have	been	building	on	evolutionary	dynamics	based	on	payoff	comparison	(Hofbauer	&	Sigmund	2003;	Roca	et	al.	2009a).	While
these	rules	are	appropriate	to	model	biological	evolution	(with	the	payoff	representing	fitness	and	thus	reproductive	success),
they	may	not	apply	to	social	or	economic	contexts—where	individuals	are	aware	of	others'	actions	but	often	do	not	know	how
much	they	benefit	from	them.	Also	when	the	latter	information	is	available,	recent	analysis	(Grujíc	et	al.	2014)	of	experimental
outcomes	(Fischbacher	et	al.	2001;	Traulsen	et	al.	2010;	Grujíc	2010;	Gracia-Lázaro	2012b)	show	that	humans	playing	PD	or
Public	Good	games	do	not	base	their	decisions	on	others'	payoffs.	Rather,	they	tend	to	reciprocate	the	cooperation	that	they
observe,	being	more	inclined	to	contribute	the	more	their	partners	do.	The	independence	on	the	topology	revealed	in	Gracia-
Lázaro	et	al.	(2012b)	can	be	therefore	seen	as	a	consequence	of	this	kind	of	behavior	(Gracia-Lázaro	et	al.	2012a).	Notably,
absence	of	network	reciprocity	has	also	been	observed	in	theoretical	studies	based	on	Best	Response	dynamics	(an	update	rule
that,	as	we	will	see,	is	independent	on	neighbors'	payoffs)	(Roca	et	al.	2009c)	and	in	a	learning-based	explanation	of	observed
behaviors	(Cimini	and	Sánchez	2014).	This	suggests	that	the	absence	of	network	reciprocity	in	the	iterated	PD	may	be	general
for	any	evolutionary	dynamics	that	does	not	take	neighbors'	payoffs	into	account.

1.4 	In	this	paper	we	aim	specifically	at	shedding	light	on	this	point.	In	order	to	do	so,	we	develop	and	study	an	agent-based	model	of
a	population	of	individuals,	placed	on	the	nodes	of	a	network,	who	play	an	iterated	PD	game	with	their	neighbors—a	setting
equivalent	to	that	of	recent	experiments	(Traulsen	et	al.	2010;	Grujíc	et	al.	2010;	Gracia-Lázaro	et	al.	2012b)—and	whose
strategies	are	subject	to	an	evolutionary	process.	The	key	point	in	this	work	is	that	we	consider	a	large	set	of	evolutionary
dynamics,	representing	most	of	the	alternatives	that	have	been	proposed	so	far	to	implement	the	strategy	updating	process.	At
the	same	time,	we	consider	a	large	set	of	population	structures,	covering	most	of	the	studied	models	of	complex	networks.	In	this
way	we	are	able	to	make,	on	the	same	system,	a	quantitative	comparison	of	the	different	evolutionary	dynamics,	and	check	the
presence	of	network	reciprocity	in	the	different	situations.	At	the	end	we	show	that	the	absence	of	network	reciprocity	is	a	general
consequence	of	evolutionary	dynamics	that	are	not	based	on	payoff	comparison.

1.5 	Note	that	our	study	here	is	intrinsically	different	from	the	work	of	Cimini	and	Sánchez	(2014),	where	we	have	investigated	the
issue	of	whether	the	behavior	observed	in	the	experiments	(Grujíc	et	al.	2010;	Gracia-Lázaro	2012b)—named	moody	conditional
cooperation	or	MCC—could	arise	from	an	evolutionary	dynamics	acting	on	the	MCC	behavioral	parameters	themselves,	and	if
the	resulting	evolution	of	the	system	was	compatible	with	the	experimental	outcomes.	The	work	reported	in	Cimini	and	Sánchez
(2014)	was	therefore	only	intended	to	study	whether	MCC	might	have	an	evolutionary	explanation.	On	the	contrary,	as	explained
below,	here	we	are	considering	stochastic	behaviors	ruled	by	mixed	strategies	(i.e.,	probabilities	of	cooperating)	that	are	subject
to	an	evolutionary	process—and	not	individuals	using	MCC-like	strategies.	This	approach	is	indeed	the	traditional	one
encountered	in	the	literature;	with	this	choice,	while	we	do	not	aim	at	reproducing	the	experimental	results	of	Grujíc	et	al.	(2010)
and	Gracia-Lázaro	et	al.	(2012b),	we	are	able	to	make	an	extensive	comparison	of	the	evolutionary	dynamics	that	are	most
commonly	used,	and	detect	the	effects	of	the	population	structure	and	the	presence	of	network	reciprocity	in	the	different
dynamics	to	which	mixed	strategies	might	be	subjected.

Model

2.1 	We	consider	a	population	of	N	individuals,	placed	on	the	nodes	of	a	network	and	playing	an	iterated	PD	game	with	their
neighbors.	During	each	round	t	of	the	game,	each	player	chooses	to	undertake	a	certain	action	(C	or	D)	according	to	her	strategy
profile,	then	plays	a	PD	game	with	her	k	neighbors	(the	selected	action	remains	the	same	with	all	of	them)	and	finally	receives	the
corresponding	payoff	π(t)—which	is	the	sum	of	the	single	payoffs	obtained	in	all	her	k	pairwise	games.	Each	player's	strategy	is
modeled	stochastically	by	the	probability	p(t)	∈	[0,1]	of	cooperating	at	round	t.	Strategies	are	subject	to	an	evolutionary	process,
meaning	that	every	τ	rounds	each	player	may	update	her	probability	of	cooperating	according	to	a	particular	rule.	Note	that	each
player	starts	with	an	initial	probability	of	cooperating	p(0)	drawn	from	a	uniform	distribution	Q[p(0)]=U[0,1].	This	results	in	an
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expected	initial	fraction	of	cooperators	c0	equal	to	1/2—a	value	close	to	what	is	observed	in	the	experiments	(Grujíc	et	al.	2010;
Gracia-Lázaro	et	al.	2012b),	and	otherwise	representing	our	ignorance	about	the	initial	strategy	of	the	players.	In	any	event,	our

results	remain	valid	for	any	(reasonable)	form	of	the	distribution	Q[p(0)].

2.2 	We	consider	different	parameterizations	for	the	PD	game,	i.e.,	different	intensities	of	the	social	dilemma.	While	we	leave	R=1
and	P=0	fixed,	we	take	T	values	in	the	range	(1,2),	and	S	values	in	the	range	(−1,0]	(note	that	S=P=0	corresponds	to	the	"weak"
PD).	More	importantly,	we	take	into	account	different	patterns	of	interactions	among	the	players.	These	include	the	"well-mixed"
population,	represented	by	an	Erdös–Rényi	random	graph	with	average	degree	m,	rewired	after	each	round	of	the	game	(which
we	indicate	as	well-mixed),	as	well	as	static	networks	(all	with	average	degree	 m):	Erdös–Rényi	random	graphs	(random),	scale
free	random	networks	with	degree	distribution	P(k)≈k-3	(scale-free)	and	regular	lattice	with	periodic	boundary	conditions—where
each	node	is	linked	to	its	k≡m	nearest	neighbors	(lattice).	Finally,	we	include	two	real	instances	of	networks,	the	first	given	by	the
e-mail	interchanges	between	members	of	the	Univerisity	Rovira	i	Virgili	in	Tarragona	(email)	(Guimerà	et	al.	2003),	and	the
second	being	the	giant	component	of	the	user	network	of	the	Pretty-Good-Privacy	algorithm	for	secure	information	interchange
(PGP)	(Boguñá	et	al.	2004).	The	degree	distributions	of	all	these	networks	are	reported	in	Figure	1.	In	simulations,	we	build	the
artificial	networks	using	N=1000	and	m=10,[1]	whereas,	for	the	two	real	networks	it	is	N=1133,	m=19.24	(email)	and	N=10679,
m=4.56	(PGP).

Figure	1.	Degree	distributions	P(k)	of	the	considered	networks.	Note	that	for	the	well-mixed	case	the	network	is	dynamic	but
P(k)	does	not	change,	and	thus	is	identical	to	that	of	random	static	networks.

2.3 	The	original	and	most	important	aspect	of	this	study	is	that	we	consider	a	large	variety	of	evolutionary	dynamics	for	players	to
update	their	strategies,	covering	the	rules	that	are	most	frequently	employed	in	the	literature	to	model	the	strategy	updating
process.	Note	that	we	do	not	consider	reactive	strategies	(Sigmund	2010)—i.e.,	probabilities	to	cooperate	that	depend	directly	on
the	opponents'	previous	actions;	rather,	we	focus	on	the	simplest	case	of	modeling	strategies	as	unconditional	propensities	to
cooperate	(which,	however,	contain	past	actions	through	the	evolutionary	dynamics).	Yet,	our	study	is	more	general	than	most	of
those	encountered	in	the	literature—where	only	pure	strategies	(i.e.,	playing	always	C	or	D)	are	considered.	In	our	framework	of
mixed	strategies,	pure	strategies	can	arise	as	special	(limit)	cases,	when	for	a	player	p	becomes	equal	to	0	or	1.

2.4 	We	start	by	exploring	a	set	of	rules	of	imitative	nature,	representing	a	situation	in	which	bounded	rationality	or	lack	of	information
force	players	to	copy	(imitate)	others'	strategies	(Schlag	1998).	These	rules	are	widely	employed	in	the	literature	to	model
evolutionary	dynamics.	Here	we	consider	the	most	notorious	ones,	in	which	a	given	player	i	may	adopt	a	new	strategy	by	copying
the	probability	of	cooperating	p	from	another	player	j,	which	is	one	of	the	ki	neighbors	of	i.

2.5 	Proportional	Imitation	(Helbing	1992)—j	is	chosen	at	random,	and	the	probability	that	i	imitates	j	depends	on	the	difference
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between	the	payoffs	that	they	obtained	in	the	previous	iteration	of	the	game:

Prob{pj(t)→pi(t+1)}=(πj(t)−πi(t))/Φij	if	πj(t)>πi(t)	and
Prob{pj(t)→pi(t+1)}=0	otherwise.

Here,	Φij=max(ki,kj)[max(R,T)−min(P,S)]	to	have	Prob{·}∈[0,1].	This	updating	rule	is	known	to	bring	(for	a	large,	well-mixed
population)	to	the	evolutionary	equation	of	the	replicator	dynamics	(Schlag	1998).

2.6 	Fermi	rule	(Szabó	&	Toke	1998)—j	is	again	chosen	at	random,	but	the	imitation	probability	depends	now	on	the	payoff	difference
according	to	the	Fermi	distribution	function:

Prob{pj(t)→pi(t+1)}=1/{1+exp[−β(πj(t)−πi(t))]}.

Note	that	mistakes	are	possible	under	this	rule:	players	can	imitate	others	who	are	gaining	less.	The	parameter	β	regulates
selection	intensity,	and	is	equivalent	to	the	inverse	of	noise	in	the	update	rule.

2.7 	Death-Birth	rule,	inspired	by	Moran	dynamics	(Moran	1962)—player	i	imitates	one	of	her	neighbors	j,	or	herself,	with	a	probability
proportional	to	the	payoffs:

Prob{pj(t)→pi(t+1)}=(πj(t)−ψ)/[∑k∈ni*	(πk(t)−ψ)],

where	ni*	is	the	set	including	i	and	her	neighbors	and	ψ	=maxj∈ni*	kj	min(0,S)	to	have	Prob{·}∈[0,1].	As	with	the	Fermi	rule,
mistakes	are	allowed	here.

2.8 	Unconditional	Imitation	or	"Imitate	the	Best"	(Nowak	1992)[2]—under	this	rule	each	player	i	imitates	the	neighbor	j	with	the	largest
payoff,	provided	this	payoff	is	larger	than	the	player's:

Prob{pj(t)→pi(t+1)}=1						if	j	:	πj(t)=maxk∈ni*	πk(t).

Note	that	while	the	first	three	rules	are	stochastic,	Unconditional	Imitation	leads	to	a	deterministic	dynamics.

2.9 	Voter	model	(Holley	&	Liggett	1975)—i	simply	imitates	a	randomly	selected	neighbor	j.	Differently	from	the	other	imitative
dynamics	presented	here	(in	which	the	imitation	mechanism	is	based	on	the	payoffs	obtained	in	the	previous	round	of	the	game),
the	Voter	model	is	not	based	on	payoff	comparison,	but	rather	on	social	pressure:	players	simply	follow	the	social	context	without
any	strategic	consideration	(Fehr	&	Gächter	2000;	Vilone	et	al.	2012,	2014).

2.10 	We	also	consider	two	evolutionary	dynamics	that	go	beyond	pure	imitation	and	are	innovative,	allowing	extinct	strategies	to	be
reintroduced	in	the	population	(whereas	imitative	dynamics	cannot	do	that).	As	we	will	see,	neither	of	these	rules	(nor	the	Voter
model)	makes	use	of	the	information	on	others'	payoffs.

2.11 	Best	Response	(Matsui	1992;	Blume	1993)—this	rule	has	been	widely	employed	in	economic	contexts,	embodying	a	situation	in
which	players	are	rational	enough	to	compute	the	optimum	strategy,	i.e.,	the	"best	response"	to	what	others	did	in	the	last	round.

More	formally,	at	the	end	of	each	round	t	a	given	player	i	uses	xi(t)	(the	fraction	of	neighbors	who	cooperated	at	t)	to	compute	the
payoffs	that	she	would	have	obtained	by	having	chosen	action	C	or	D,	respectively:

E[πi(t)(C)]=R	xi(t)+S	(1−xi(t))	;	E[πi(t)(D)]=T	xi(t)+P	(1−xi(t)).

The	quantity	to	increase	is	then:

E[πi(t)]=pi(t)	E[πi(t)(C)]+(1−pi(t))	E[πi(t)(D)].

The	new	strategy	pi(t+1)	is	picked	among	{pi(t),	pi(t)+	δ,	pi(t)−δ}	(where	δ	is	the	"shift")	as	the	one	that	brings	to	the	highest	E[πi(t)]

(and	satisfies	0	≤	pi(t+1)	≤	1).	Note	that	we	do	not	use	exhaustive	best	response	here	(which	consists	in	choosing	pi(t+1)	as	the

value	of	p	that	maximizes	E[πi(t)])	as	it	leads	immediately	to	the	Nash	equilibrium	of	the	PD	game	(pi=0	∀i).	Best	Response
belongs	to	a	family	of	strategy	updating	rules	known	as	Belief	Learning	models,	in	which	players	update	beliefs	about	what
others	will	do	according	on	accumulated	past	actions,	and	then	use	those	beliefs	to	determine	the	optimum	strategy.	Best
Response	is	a	limit	case	that	uses	only	last	round	actions	to	determine	such	optimum.	We	chose	to	restrict	our	attention	to	Best
Response	for	three	main	reasons.	1)	it	allows	for	a	fair	comparison	with	the	other	updating	rules,	that	only	rely	on	last	round
information;	2)	in	the	non-exhaustive	formulation	of	Best	Response,	history	is	held	in	the	actual	values	of	the	parameter	p;	3)	in
the	one-shot,	strong	PD	the	Nash	equilibrium	is	full	defection,	hence	at	the	end	the	system	collapses	to	this	state	for	any
information	used	to	build	beliefs	about	others'	actions.

2.12 	Reinforcement	Learning	(Bush	&	Mosteller	1955;	Macy	&	Flache	2002;	Izquierdo	et	al.	2008;	Cimini	&	Sánchez	2014)—under
this	rule,	a	player	uses	her	experience	to	choose	or	avoid	certain	actions	based	on	their	consequences:	choices	that	met
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aspirations	in	the	past	tend	to	be	repeated	in	the	future,	whereas,	choices	that	led	to	unsatisfactory	outcomes	tend	to	be	avoided.

This	dynamics	works	as	follows.	First,	after	each	round	t,	player	i	calculates	her	"stimulus"	si(t)	as:

si(t)	)=(πi(t)/ki−Ai(t))/max{|T−Ai(t)|,	|R−Ai(t)|,	|P−Ai(t)|,	|S−Ai(t)|},

where	Ai(t)	is	the	current	"aspiration	level"	of	player	i,	and	normalization	assures	|si(t)|≤	1.	Second,	each	player	updates	her
strategy	as:

pi(t+1)=	pi(t)+λ	si(t)	(1−pi(t))	if	si(t)>0	and	pi(t+1)=	pi(t)+λ	si(t)	pi(t)

otherwise.

Here,	λ∈(0,1]	is	the	learning	rate—low	and	high	λs	representing	slow	and	fast	learning,	respectively	(hence	for	simplicity	we	use	τ
=1	in	this	case).	Finally,	player	i	can	adapt	her	aspiration	level	as:

Ai(t+1)=(1−h)	Ai(t)+h	πi(t)/ki,

where	h∈[0,1)	is	the	adaptation	(or	habituation)	rate.	Note	that,	when	learning,	players	rely	only	on	the	information	about	their	own
past	actions	and	payoffs.

2.13 	In	summary,	our	model	is	defined	as	follows:

We	place	N	players	on	the	nodes	of	the	chosen	social	network;	for	each	player,	we	draw	the	initial	probability	of
cooperating	p(0)	from	the	initial	distribution	Q[p(0)]=U[0,1].
Each	step	t	of	the	simulation	is	a	round	of	the	game,	in	which	each	player	i	chooses	action	C	with	probability	pi(t)	(and

action	D	otherwise),	then	plays	a	one-shot	PD	game	with	her	ki	neighbors	and	collects	the	resulting	payoff	πi(t)—defined
as	the	sum	of	the	single	payoffs	obtained	in	all	her	ki	pairwise	games.	These	actions	happen	simultaneously	for	all
players.
Every	τ	rounds	players	simultaneously	update	their	probability	of	cooperating	according	to	one	of	the	evolutionary	rules
described	above.

The	pseudo-code	for	the	model	is	available	at	https://www.openabm.org/model/4354/version/1/view.

Results	and	Discussion

3.1 	Here	we	report	the	results	of	the	extensive	simulation	program	for	the	model	described	above.	In	the	following	discussion,	we
focus	our	attention	on	the	particular	evolutionary	dynamics	employed,	as	well	as	on	the	specific	network	topology	describing	the
interaction	patterns	among	the	players.	We	study	the	evolution	of	the	level	of	cooperation	c	(i.e.,	the	fraction	of	cooperative
players	in	each	round	of	the	game),	as	well	as	the	stationary	probability	distribution	Q*(p)	of	the	individual	strategies	(i.e.,	the
parameters	{p})	among	the	population.	We	will	show	results	relative	to	the	case	τ=10	(we	update	players'	strategy	every	ten
rounds),	yet	we	have	observed	that	the	particular	value	of	τ	influences	the	convergence	time	of	the	system	to	its	stationary	state,
but	does	not	alter	its	qualitatively	characteristics.	Also,	we	will	report	examples	for	two	sets	of	game	parameters	(T=3/2,	S=−1/2
and	T=3/2,	S=0)	but	our	findings	are	valid	for	the	whole	range	studied—the	main	differences	appearing	between	the	"strong"	and
"weak"	version	of	the	PD	game.	Finally,	we	will	show	results	averaged	over	a	low	number	of	realizations	because,	as	the
experiments	show,	the	absence	of	network	reciprocity	is	observed	for	single	realizations,	and	hence	it	should	be	recovered	from
the	model	in	the	same	manner.

Imitative	dynamics

3.2 	Results	for	the	different	imitation-based	strategy	updating	rules	are	reported	in	Figures	 2	and	3.	As	plots	clearly	show,	the	final
level	of	cooperation	in	this	case	depends	heavily	on	the	population	structure,	and	often	the	final	state	is	full	defection	(especially
for	the	well-mixed	case).	The	fact	that	these	updating	are	imitative	and	not	innovative	generally	leads,	for	an	individual	realization
of	the	system,	to	a	very	low	number	of	strategies	p	(often	just	one)	surviving	at	the	end	of	the	evolution.	However,	the	surviving
strategies	are	indeed	different	among	independent	realizations	(but	when	p→0,	i.e.,	the	final	outcome	is	a	fully	defective	state).
This	points	out	to	the	absence	of	strategies	that	are	stable	attractors	of	the	evolution.

3.3 	The	easiest	situation	to	understand	is	perhaps	given	by	employing	the	Voter	model	as	the	update	rule:	since	there	is	no
mechanism	here	to	increase	the	payoffs,	the	surviving	strategy	is	just	randomly	selected	among	those	initially	born	in	the

population,	and	thus	the	average	cooperation	level	is	determined	by	Q[p(0)]	(the	probability	distribution	of	the	initial	parameters
p).	This	happens	irrespectively	of	the	particular	values	of	T	and	S	and,	more	importantly,	of	the	specific	topology	of	the	underlying
social	network.	A	similar	situation	is	observed	with	the	Fermi	rule	for	low	β	(high	noise).	Indeed,	in	this	case	errors	are	frequent,
so	that	players	copy	the	strategies	of	others	at	random	and	c	remains	close	on	average	to	its	initial	value	c0.	The	opposite	limit	of
high	β	(small	noise,	the	case	reported	in	the	plots)	corresponds	instead	to	errors	occurring	rarely,	meaning	that	players	always
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copy	the	strategy	of	others	who	have	higher	payoffs.	In	the	majority	of	cases,	for	the	strong	PD	this	leads	to	a	fully	defective	final
outcome.	The	exception	is	given	by	games	played	on	network	topologies	with	broad	degree	distribution,	where	cooperation	may
thrive	at	a	local	scale	(resulting	in	a	small,	non-zero	value	of	c)	because	of	the	presence	of	hubs—see	below	for	a	more	detailed
discussion	of	this	phenomenon.	On	the	other	hand,	the	weak	PD	showcases	more	diverse	final	outcomes:	the	stationary	value	of
c	is	higher	than	c0	for	scale-free	topologies,	and	a	non-zero	level	of	cooperation	arises	also	in	static	random	graphs	and	lattices.
Note	that	in	general	we	observe	that	the	stationary	(non-zero)	cooperation	levels	decrease/increase	for	increasing/decreasing
values	of	the	temptation	T,	however	such	variations	do	not	alter	qualitatively	the	picture	we	present	here—for	this	reason,	we	only
present	results	for	T=3/2.	Moving	further,	Proportional	Imitation	leads	to	final	outcomes	very	similar	to	those	of	the	Fermi	Rule	for
high	β,	which	makes	sense	as	the	two	rules	are	very	similar—the	only	difference	being	the	form	of	the	updating	probability	(linear
in	the	payoff	difference	for	Proportional	Imitation,	highly	non-linear	for	the	Fermi	rule).	The	Death-Birth	rule	and	Unconditional
Imitation	also	bring	to	similar	results,	and	this	is	also	due	to	their	similarity	in	preferentially	selecting	the	neighbor	with	the	highest
payoff.	For	these	latter	two	rules,	cooperation	emerges	for	games	played	on	all	kinds	of	static	networks	(i.e.,	it	does	not	only	for	a
well-mixed	population),	with	a	stationary	value	of	c	that	varies	depending	on	the	specific	network	topology	and	on	the	particular
entries	of	the	payoff	matrix	(T	and	S).
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Figure	2.	Evolution	of	the	level	of	cooperation	c	and	stationary	distribution	of	p	when	the	evolutionary	dynamics	is,	from	left	to
right:	Proportional	Imitation,	Fermi	Rule	with	β=1/2,	Death-Birth	rule.	Top	plots	refer	to	S=−1/2,	bottom	plots	to	S=0.	T=3/2	in	all

cases.	Results	are	averaged	over	10	independent	realizations.

http://jasss.soc.surrey.ac.uk/18/2/22.html 7 20/10/2015



Figure	3.	Evolution	of	the	level	of	cooperation	c	and	stationary	distribution	of	p	when	the	evolutionary	dynamics	is,	from	left	to
right:	Unconditional,	Voter	model,	Best	Response	with	δ=0.01.	Top	plots	refer	to	S=−1/2,	bottom	plots	to	S=0.	T=3/2	in	all

cases.	Results	are	averaged	over	10	independent	realizations.

3.4 	While	explaining	in	detail	the	effects	of	a	particular	updating	rule	and	of	a	given	population	structure	is	out	of	the	scope	of	the
present	work,	we	can	still	gain	qualitative	insights	on	the	system's	behavior	from	simple	observations.	Here	we	discuss	the	case
of	networks	with	highly	heterogeneous	degree	distribution,	such	as	scale-free	ones.	These	topologies	are	characterized	by	the
presence	of	players	with	high	degree	("hubs")	that	generally	get	higher	payoff	than	an	average	player's	as	they	play	more
instances	of	the	game	(the	average	payoff	being	greater	than	0).	For	a	dynamics	of	imitative	nature,	hubs'	strategy	remains
stable:	they	hardly	copy	their	less-earning	neighbors,	who	in	turn	tend	to	imitate	the	hubs.	As	a	result,	hubs'	strategy	spread
locally	over	the	network,	and,	if	such	strategy	profile	results	in	frequent	cooperation,	a	stable	subset	of	player	inclined	to
cooperate	can	appear	around	these	hubs	(Gómez-Gardeñes	et	al.	2007).	The	same	situation	cannot	occur	in	random	or	regular
graphs,	where	the	degree	distribution	is	more	homogeneous	and	there	are	no	hubs	with	systematic	payoff	advantage.	This
phenomenon	becomes	evident	with	Proportional	Imitation	as	the	updating	rule.	Note	that	the	subset	of	players	around	hubs	loses
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stability	if	they	can	make	mistakes	(as	with	the	Fermi	rule);	on	the	other	hand,	such	stability	is	enhanced	when	the	updating	rule
preferentially	selects	players	with	high	payoffs	(as	with	the	Death-Birth	rule	and	Unconditional	Imitation),	because	hubs'	strategy
spreads	more	easily.	The	fact	that	in	the	latter	two	cases	cooperation	thrives	also	in	lattices	is	instead	related	to	the	emergence	of
clusters	of	mutually	connected	players	who	often	cooperate,	get	higher	payoff	than	the	defectors	at	the	boundary	of	the	cluster
exploiting	them	and	can	thus	survive.

3.5 	We	finally	remark	that,	beyond	all	the	particular	features	and	outcomes	of	each	imitative	dynamics,	the	main	conclusion	of	this
analysis	is	that	imitation	based	on	payoff	comparison	(as	modeled	by	the	various	processes	we	consider	here)	does	not	lead	to
the	absence	of	network	reciprocity.	The	only	updating	rule	whose	behavior	is	not	affected	by	the	population	structure	is	the	Voter
model—which	however	does	not	depend	on	payoffs.	Such	a	conclusion	is	consistent	with	Yamauchi	et	al.	(2010,	2011),	who	also
considered	various	imitative	dynamics	based	on	payoff	comparison	and	found	that	the	final	cooperation	level	does	depend	on	the
network	topology	(and	is	in	general	higher	for	scale-free	networks	and	lattices).	We	note	also	that	in	Ohtsuki	et	al.	(2006),	where

the	"helping"	game[3]	was	studied,	payoff-based	imitation	was	shown	to	lead	to	slightly	different	situations	depending	on	the
network	type.

Non-imitative	dynamics

3.6 	The	first	general	remark	about	these	evolutionary	rules	is	that	they	allow	extinct	strategies	to	be	reintroduced	in	the	population;
because	of	this,	many	strategy	profiles	survive	at	the	end	of	each	realization	of	the	system	(even	when	the	dispersion	of	the
parameters	p	is	small).	Results	for	Best	Response	dynamics	are	reported	in	the	right	column	of	Figure	3.	We	recall	that	this	way
of	updating	the	strategies	is	the	most	"rational"	among	those	we	are	considering	in	this	work,	and	is	not	based	on	comparing	own
payoffs	with	those	of	others.	As	a	result,	we	see	that	for	the	strong	PD	the	system	converges	towards	full	defection	for	any	value
of	the	temptation	and	for	any	population	structure.	Indeed,	this	outcome	is	the	Nash	equilibrium	of	PD	games,	which	would	have
been	obtained	also	by	global	maximization	of	the	individual	expected	payoffs.	Hence	the	specific	value	of	δ	(the	amount	by	which
the	parameters	p	can	be	shifted	at	each	update)	only	influences	the	time	of	convergence	to	full	defection,	with	higher	δ	causing
simulations	to	get	faster	to	pi=0	∀i.	For	this	reason,	we	only	show	results	for	a	particular	value	of	δ.	For	the	weak	PD	we	observe
instead	a	semi-stationary,	non-vanishing	yet	slightly	decreasing	level	of	cooperation—which	is	the	consequence	of	actions	C	and
D	bringing	to	the	same	payoff	when	facing	a	defector.	Such	cooperation	level	seems	to	depend	on	the	network	size	(bigger
networks	achieve	higher	c),	rather	than	on	the	network	topology.	In	this	sense,	we	can	claim	that	evolution	by	Best	Response
features	absence	of	network	reciprocity.	This	conclusion	is	supported	by	the	fact	that	the	optimal	choice	for	a	strong	PD	game
does	not	depend	on	what	the	others	do	or	gain	(also	for	S=0	such	dependence	is	only	"weak");	as	a	consequence,	the	social
network	in	which	players	are	embedded	must	play	no	role.

3.7 	The	other	non-imitative	rule	that	we	consider	in	this	study	is	Reinforcement	Learning.	Results	for	this	choice	of	the	dynamics	are
shown	in	Figure	4.	We	start	with	the	simplest	assumption	of	aspiration	levels	remaining	constant	over	iterations	of	the	game.
Here	the	most	remarkable	finding	is	that,	in	contrast	to	all	other	update	schemes	discussed	so	far,	with	this	dynamics	mixed
strategies	that	are	stable	attractors	of	the	evolution	do	appear:	the	parameters	p	concentrate	around	some	stationary,	non-trivial
values,	that	do	not	depend	on	the	initial	condition	of	the	population,	neither	on	the	topology	of	the	underlying	network.	Concerning
cooperation	levels,	when	aspirations	are	midway	between	the	punishment	and	reward	payoffs	(P<A<R)	we	observe	a	stationary,
non	vanishing	c	around	0.3÷0.4—which	is	in	agreement	with	what	is	observed	in	experiments	(Grujic	et	al.	2010;	Gracia-Lázaro
et	al.	2012b),	also	with	respect	to	the	convergence	rate	to	the	stationary	state.	The	specific	value	of	c	does	depend	on	the
payoff's	matrix	entries	T	and	S,	but	not	on	the	population	structure.	Note	that	the	described	behavior	is	robust	with	respect	to	the
learning	rate	λ.[4]	We	can	thus	assert	that	Reinforcement	Learning	represents	another	evolutionary	dynamics	that	can	explain	the
absence	of	network	reciprocity.	This	happens	because,	for	this	choice	of	updating	rule,	players	do	not	take	into	consideration
others'	actions	nor	payoffs	when	adjusting	their	strategy,	and	thus	the	patterns	of	social	interactions	become	irrelevant.	Additional
evidence	for	the	robustness	of	this	updating	scheme	derives	from	the	behavior	observed	for	other	aspiration	levels,	including
dynamic	ones.	As	a	general	remark,	the	final	level	of	cooperation	reached	is	higher	for	higher	A.	For	instance,	when	R<A<T	an
outcome	of	mutual	cooperation	does	not	meet	players'	aspirations,	however	an	outcome	of	mutual	defection	is	far	less
satisfactory	and	brings	to	a	substantial	increase	of	p	for	the	next	round.	Because	of	this	feedback	mechanisms,	players'
strategies	tend	to	concentrate	around	p=1/2	(i.e.,	playing	C	or	D	with	equal	probability),	which	thus	results	in	c=1/2,	again
irrespectively	of	the	population	structure.	Leaving	aside	the	questionable	case	of	aspiration	levels	below	punishment	(S<A<P),	we
finally	move	to	the	case	of	adaptive	aspiration	levels.	What	we	observe	now	is	that	players'	aspirations	become	stationary—with
final	values	falling	in	the	range	P<A<R—and	that	no	topological	effects	are	present	(as	with	Best	Response,	bigger	networks
achieve	slightly	higher	cooperation).
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Figure	4.	Evolution	of	the	level	of	cooperation	c	and	stationary	distribution	of	p	when	the	evolutionary	dynamics	is	Reinforcement
Learning	with	λ=0.01.	From	left	to	right:	A=1/2,	A=5/4,	adaptive	A	(A(0)=1/2,	h=0.2).	Top	plots	refer	to	S=−1/2,	bottom	plots	to

S=0.	T=3/2	in	all	cases.	Results	are	averaged	over	10	independent	realizations.

3.8 	Summing	up,	we	observe	absence	of	network	reciprocity	for	the	innovative	dynamics	considered	here,	which	we	recall	are	not
based	on	payoff	comparison.	This	again	supports	our	assumption	that	such	outcome	derives	from	not	taking	into	account	the
payoffs	of	the	rest	of	the	players.

Conclusion

4.1 	Understanding	cooperation	represents	one	of	the	biggest	challenges	of	modern	science.	Indeed,	the	spreading	of	cooperation	is
involved	in	all	major	transitions	of	evolution	(Maynard	Smith	&	Szathmary	1995),	and	the	fundamental	problems	of	the	modern
world	(resource	depletion,	pollution,	overpopulation,	and	climate	change)	are	all	characterized	by	the	tensions	typical	of	social
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dilemmas.	This	work	has	been	inspired	by	the	experimental	findings	(Grujic	et	al.	2010;	Gracia-Lázaro	et	al.	2012b)	that	network
reciprocity	is	not	a	mechanism	to	promote	cooperation	within	humans	playing	PD.	We	aimed	at	identifying	the	evolutionary
frameworks	that	are	affected	by	the	interaction	patterns	in	the	population,	thus	being	inconsistent	with	the	experimental
outcomes.	To	this	end,	we	have	considered	several	mechanisms	for	players	to	update	their	strategy—both	of	imitative	nature	and

innovative	mechanisms,	as	well	as	rules	based	on	payoff	comparison	and	others	based	on	non-economic	or	social	factors.[5]

These	rules	indeed	represent	most	of	the	alternatives	that	have	been	proposed	so	far	in	the	literature	to	implement	the	strategy
updating	process.	We	stress	that	this	is	a	very	relevant	point,	as	for	the	first	time	to	our	knowledge	we	are	providing	an	extensive
comparison	of	payoff-based	and	non-payoff	based	evolutionary	dynamics	on	a	wide	class	of	networks	(representing	population
structures),	and,	importantly,	within	the	same	model	settings.	Our	research	points	out	that	the	absence	of	network	reciprocity	is	a
general	feature	of	the	evolutionary	dynamics	(among	those	considered	here)	in	which	players	do	not	base	their	decisions	on
others'	well	being.	Note	that	the	evolutionary	dynamics	that	we	eliminated	as	possible	responsible	for	how	people	behave	are
difficult	to	justify	for	humans	and	in	a	social	context,	because	they	assume	very	limited	rationality	that	only	allows	imitating
others.	Indeed,	analysis	of	experimental	outcomes	(Grujic	et	al.	2014)	point	out	that	humans	playing	PD	do	not	base	their
decisions	on	others'	payoffs.	We	thus	believe	that	the	present	work	provides	a	firm	theoretical	support	for	these	experimental
results,	and	allows	to	conclude	that	many	of	the	evolutionary	dynamics,	based	on	payoff	comparison,	used	in	theory	and	in
simulations	so	far	simply	do	not	apply	to	the	behavior	of	human	subjects	and,	therefore,	their	use	should	be	avoided.

4.2 	Even	so,	our	findings	do	not	exclude	the	plausibility	of	other	strategy	updating	in	different	contexts.	For	instance,	analytical
results	with	imitative	dynamics	(Wu	et	al.	2010)	display	an	agreement	with	experimental	outcomes	on	dynamical	networks	(Fehl
et	al.	2011;	Wang	et	al.	2012).	It	is	also	important	to	stress	that	our	findings	here	relate	to	human	behavior,	whereas,	other
species	could	behave	differently;	thus,	in	Hol	et	al.	(2013)	it	has	been	reported	that	bacteria	improve	their	cooperation	on	a
spatial	structure	(and	this	could	arise	because	of	more	imitative	strategies).	Finally	we	stress	that	our	results	are	valid	for	PD
games	in	which	players	are	not	aware	of	the	identity	of	their	interacting	partners.	In	this	respect,	network	reciprocity	can	still	be	a
likely	mechanism	when	people	actually	know	each	other	(Apicella	et	al.	2012).
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	Notes

	1	Results	for	artificial	networks	are	robust	with	respect	to	system	size	and	link	density.

2	Unconditional	imitation	is	the	only	imitative	dynamics	whose	plausibility	has	not	been	fully	excluded	by	experiments	(Grujíc	et
al.	2014),	but	only	if	around	30%	of	actions	are	mistaken	(i.e.,	an	action	different	from	that	of	the	neighbor	with	the	highest	payoff
is	chosen).

3	The	helping	game	shows	dynamics	similar	to	PD	for	some	choice	of	parameters	(Nowak	and	Sigmund	1998).

4	The	specific	value	of	λ	influences	the	convergence	time	of	the	system	to	its	stationary	state.	However,	if	players	learn	too
quickly	(λ≅1)	then	the	parameters	p	change	too	much	at	each	iteration	to	reach	stationary	values,	as	typically	happens	for
learning	algorithms.

5	Note	that	we	have	not	considered	noise	(i.e.,	the	possibility	of	making	errors)	in	the	strategy	updating	process.	Indeed,	noise
can	make	the	model	more	realistic	(and	even	eliminate	some	stable	outcomes);	however,	it	can	hinder	our	understanding	of	the
joint	effect	of	network	topology	and	evolutionary	dynamics	on	the	system.
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