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Abstract
Various social contexts can be depicted as games of strategic interactions on networks,

where an individual’s welfare depends on both her and her partners’ actions. Whereas

much attention has been devoted to Bayes-Nash equilibria in such games, here we look at

strategic interactions from an evolutionary perspective. To this end, we present the results

of a numerical simulations program for these games, which allows us to find out whether

Nash equilibria are accessible by adaptation of player strategies, and in general to identify

the attractors of the evolution. Simulations allow us to go beyond a global characterization

of the cooperativeness at equilibrium and probe into individual behavior. We find that when

players imitate each other, evolution does not reach Nash equilibria and, worse, leads to

very unfavorable states in terms of welfare. On the contrary, when players update their be-

havior rationally, they self-organize into a rich variety of Nash equilibria, where individual be-

havior and payoffs are shaped by the nature of the game, the social network’s structure and

the players’ position within the network. Our results allow to assess the validity of mean-

field approaches we use to describe the dynamics of these games. Interestingly, our dy-

namically-found equilibria generally do not coincide with (but show qualitatively the same

features of) those resulting from theoretical predictions in the context of one-shot games

under incomplete information.

Introduction
Strategic interactions between people encompass several social and economic contexts (ranging
from public goods provision to information collection) where an individual’s welfare depends
both on her own actions and on the actions taken by her interacting partners. Much effort has
been devoted to understand how the pattern of social connections shapes the choices that indi-
viduals make and the payoffs that they can earn [1–7] (see [8–10] for an overview of the field).
On the theoretical side, the traditional approach of identifying the Bayes-Nash equilibria in
one-shot network games is problematic due to the existence of multiple equilibria (even for
very small network sizes), which imply a huge range of possible outcomes. Nevertheless, it has
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been shown that the problem of multiplicity can be resolved sometimes by the introduction of
incomplete information [11, 12]—which in the context of network games means having only a
local knowledge of the network: a player is aware of the number of her connections (her de-
gree) but not of the degrees of the others. The key point is that when players have limited infor-
mation about the network they are unable to condition their behavior on its fine details, and
this leads to a significant simplification and sharpening of equilibrium predictions. A general
framework for the study of multiplayer games on networks under incomplete information has
been recently developed in [13, 14]. In these works, the authors consider two canonical types of
interaction: the best-shot game and the coordination game, as representatives for strategic sub-
stitutes and strategic complements, respectively [15]. These two cases represent alternative sce-
narios on how a player’s payoff is affected by the actions of others, covering many of the game-
theoretic applications studied in the economic literature. For both these games in their one-
shot version (i.e., for which equilibrium strategies are played once and for all), a context in
which players have complete information on the social network allows for a very rich set of
Nash equilibria, where the relation between network connections, equilibrium actions and pay-
offs may exhibit very different patterns [13, 14]. In contrast, by relaxing the assumption of
complete information, Galeotti et al. [14] proved the existence of Bayes-Nash equilibria involv-
ing strategies that are monotonic with respect to players’ degrees and symmetric, i.e., with all
players of the same degree k choosing the same strategy.

In this work, instead of focusing on equilibrium strategies played once and for all, we look
for the Nash equilibria of these games that are dynamically accessible, i.e., we consider iterated
network games within an evolutionary framework [16] (see [17–19] for an overview of the
field): players’ own actions are described by a strategy which is subject to an evolutionary pro-
cess [20, 21], meaning that—at odds with one-shot games—players’ actions may change at
each repetition of the game. It is important to note that this is different from the stochastic sta-
bility approach presented for this type of games in [22], where the focus is on the different time
regimes of the evolution. In fact, our framework represents a way to select among the large
multiplicity of equilibria that exist in network games in a spirit very close to that of biological
evolution. In particular, we consider two main mechanisms for players to adapt their strategy:
imitation and rational deduction, represented respectively by Proportional Imitation (PI) [23]
and Best Response (BR) [24, 25] dynamics. In both cases, agents play multiple instances of the
game, and can adapt their strategy hoping to increase their payoffs. Note, however, that agents
do not make strategic considerations about the network’s global structure and their position
within it; instead, they base their decision on their own actions/payoffs and on those of neigh-
bors, as observed in the past.

Under the above framework, our main contribution is the study of the resulting evolution-
ary dynamics of these games as well as their stationary configurations. In particular, we are
able to understand which Nash equilibria are dynamically accessible by adaptation of players’
strategies, and in general to identify the strategy configurations that are the attractors of the dy-
namics—either Nash equilibria or, possibly, stationary states of different nature. We achieve
these results by running a numerical simulation program that is intended to represent the evo-
lutionary system. As a reference, we consider the analytical results we obtained in [26], where
we studied this issue by resorting to two mean field approaches, the usual homogeneous one
(MF), and its heterogeneous version (HMF) [27]. As shown below, the numerical simulations
allow us to assess the accuracy of the pictures provided by the two approaches and, further-
more, to gain more insight on the individual behavior of the different types of players—going
far beyond the information that can be obtained from analytical predictions. In a nutshell we
find that, for the best-shot game, imitation leads necessarily to full defection—which is howev-
er not a Nash equilibrium—whatever the underlying network, whereas, rational deduction
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allows players to self-organize into a variety of Nash equilibria, with heterogeneous networks
enhancing the total amount of cooperation. On the other hand, the behavior for the coordina-
tion game depends mainly on how much players reinforce each other, which generally results
in a phase transition between a fully defective Nash equilibrium and full cooperation (which is
not always Nash). Notably, the transition point goes to zero for increasing network heterogene-
ity also when the incentive to cooperate vanishes.

In addition to these results, we compare our approach with the theoretical framework of
[14] for one-shot games under incomplete information. We show that the Nash equilibria pre-
dicted by their theory generally do not coincide with the ones obtained by evolutionary dynam-
ics; nevertheless, these equilibria possess qualitatively the same features of those resulting from
evolution, in terms of players’ strategies with respect to their neighborhood structure.

Methods

Network Games
We start by formalizing the games we use to model strategic interactions. Consider a society of
n agents, placed on the nodes of a social network. The links between agents reflect social inter-
actions, and connected agents are said to be neighbors. Each individual must choose (indepen-
dently) an action in X = {0, 1}, where action 1 may be interpreted as cooperating and action 0 as
not doing so—or defecting. To define the payoffs, let xi be the action chosen by agent i, Ni the
set of i’s neighbors, xNi

= ∑j 2 Ni
xj the aggregate action in Ni, and yi = xi+xNi

. There is a cost c,
where 0< c< 1, for choosing action 1, while action 0 bears no cost. For strategic substitutes,
the payoff function takes the form:

pi ¼ Hðyi � 1Þ � c xi; ð1Þ
whereH(�) is the Heaviside step functionH(x) = 1 if x� 0 and H(x) = 0 otherwise. Strategic
substitutes thus represent an anti-coordination game: a player would prefer that someone of
her neighbors takes action 1 (rather than taking the action herself), but she would be willing to
take action 1 if nobody in the neighborhood does. In this way, strategic substitutes encompass
many scenarios that allow for free riding or have a public good structure of play. Instead, strate-
gic complements arise whenever the benefit that an individual obtains from undertaking a
given behavior is greater as more of her partners do the same: they represent a coordination
game, where the payoff reads:

pi ¼ ðaxNi
� cÞ xi: ð2Þ

with 0< α< c representing the incentive to chose action 1.

Bayes-Nash Equilibria
We now recall the framework of Galeotti et al. [14] to describe strategic interactions for one-
shot games (i.e., where players choose their action x once and for all) under incomplete infor-
mation. The basic assumption is that each player knows only her own degree k0 and the proba-
bility distribution P(kjk0) of the degree k of her neighbors—which, for uncorrelated networks

(where degrees of neighboring nodes are independent), reads Pðkjk0Þ ¼ kPðkÞ=�k (with �k ¼P
k kPðkÞ indicating the average connectivity). Within the framework of Bayesian games, a

player’s (pure) strategy σ 2 X now must depend only on the degree k of the player. In fact, for
strategic substitutes, if an agent of degree k chooses action 1 in equilibrium, it must be because
she does not expect that any of her neighbors will choose action 1. Therefore, in an uncorrelat-
ed network, an agent of degree k−1 faces a lower likelihood of an arbitrary neighbor choosing
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the action 1, and would be best responding with action 1 as well. In particular, any Nash equi-
librium is characterized by a threshold τ, the smallest integer for which

1� 1�
Xt

k¼1

kPðkÞ
�k

" #t

� 1� c; ð3Þ

and an equilibrium σmust satisfy σ(k) = 1 for all k< τ, σ(k) = 0 for all k> τ and σ(τ) 2 {0, 1}
(i.e., σ(k) is non-increasing). Instead in the case of strategic complements, independence of
neighbor degrees implies that for each player the probability that a random neighbor chooses
the action 1 cannot depend on her own degree (the player’s neighbors do not know her degree
and, consequently, cannot know whether or not it will be convenient for her to chose action 1).
Thus, the expectation of the sum of actions xNi

of any agent i with jNij = k neighbors is increas-
ing in k. The structure of payoffs then assures that if a degree k agent is choosing the action 1 in
equilibrium, any agent of degree greater than kmust be best responding with the action 1 as
well, as she should have as many cooperating neighbors as the agent of degree k. Therefore
every equilibrium is characterized by an integer threshold τ such that

aðt� 1Þ
Xn�1

k¼t

kPðkÞ
�k

< c and at
Xn�1

k¼t

kPðkÞ
�k

� c: ð4Þ

and must satisfy σ(k) = 0 for all k< τ, σ(k) = 1 for all k> τ and σ(τ) 2 {0, 1} (in particular, σ(k)
is non-decreasing).

Evolutionary Dynamics
In this work, instead of considering one-shot games played once and for all, we study iterated
games within an evolutionary framework. This means that we consider a supergame consisting
in many repetitions (rounds) of the one-shot game, and that at each generic round t players
may change their strategy (i.e., change their chosen action x) according to the behaviors they
observed in the past. Here we give the details of the two different mechanisms for strategy up-
dating we consider.

PI is a rule of imitative nature in which each player imay assume the strategy xj of a selected
counterpart j, which is chosen randomly among the Ni neighbors of i. The probability that i
copies j depends on the difference between the payoffs that they obtained in the previous
round of the game:

P xðtÞj ! xðtþ1Þ
i

n o
¼

ðpðtÞ
j � pðtÞ

i Þ=F if pðtÞ
j > pðtÞ

i ;

0 otherwise;
ð5Þ

8<
:

where F is a normalization constant that ensures P{�} 2 [0, 1]. Note that because of the imita-
tion mechanism of PI, the configurations xi = 1 8i and xi = 0 8i are absorbing states—the sys-
tem cannot escape from them.

With BR instead players are fully rational and choose their strategy in order to maximize
their payoff, given what their neighbors did in the last round. This means that each player i,

given xðtÞNi
, computes the payoffs that she would obtain by choosing action 1 (cooperating) or 0
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(defecting) at time t, respectively ~pðtÞ
C and ~pðtÞ

D . Then

xðtþ1Þ
i ¼

1 if ~pðtÞ
C > ~pðtÞ

D ;

0 if ~pðtÞ
C < ~pðtÞ

D ;

xðtÞi if ~pðtÞ
C ¼ ~pðtÞ

D ;

ð6Þ

8>>><
>>>:

Note that we use PI because it is equivalent, for a well-mixed population, to the well-known
replicator dynamics [21], and BR because it is widely used in the economic literature. Note also
that whereas a Nash equilibrium is stable by definition under BR dynamics, with PI this is not
necessarily true: players can change action by copying better-performing neighbors, even if
such a change deteriorates their payoffs. Hence in the latter case a potential stationary state of
the system does not necessarily correspond to a Nash equilibrium (unless the network is a com-
plete graph [21]).

Network Structures
In this study we consider two representative kinds of population structures—with very differ-
ent degree distribution P(k): Erdös-Rényi (ER) random graphs [28] and scale-free (SF) random
networks [29]. ER graphs are built by adding a link between each pair of nodes independently
and with probability p. The resulting networks are homogeneous, with P(k) decaying exponen-

tially for large degrees k and the average degree is �k ¼ ðn� 1Þp≕m. SF networks are instead
generated using a configuration model [30] with a constraint kmax <

ffiffiffi
n

p
, which gives rise to

uncorrelated random networks [31] with degree distribution P(k)/ k−γ. The average degree
depends on the network size n and converges to a finite value as n diverges

�k ¼ g� 1

g� 2

ffiffiffi
n

p 2�g � k2�g
minffiffiffi

n
p 1�g � k1�g

min

" #
!
n!1

g� 1

g� 2
kmin≕m:

Numerical Simulations
As stated in the introduction, we use a numerical simulation program in order to study our
framework of iterated evolutionary games. We start with a fraction ρ0 of players randomly cho-
sen to undertake action x = 1. At each round t of the game players collect their payoff π(t)—
given by Equation (1) and Equation (2) respectively for strategic substitutes and complements;
then a fraction q of players update their strategy—according to either PI or BR. By denoting as
u(t) the fraction of unsatisfied players (i.e., who would obtain higher payoff by unilaterally
switching action) at round t, the condition u� 0 indicates that the system converged to a Nash
equilibrium, defined exactly as a state in which no player can increase her payoff by unilaterally
changing her strategy. In these cases, we change by hand the strategy of a random player in
order to continue exploring other strategy configurations.

We conclude this section with an overview on simulation parameters. Without loss of gen-
erality, we set ρ0 = 1/2, c = 1/2 and q = 1/10—but our results remain valid for all values of these
parameters in (0, 1). Note that we have to impose the condition q< 1 to avoid possible trap-
ping into period-2 loops, where all players change action simultaneously at each round of the
game, that can arise in anti-coordination under BR. Concerning the population structure,
while we explore various network sizes and link densities for ER graphs, for SF networks we set

γ = 2.5 and kmin = 3, and consider various sizes: n ¼ 103 ð�k ¼ 6:415Þ, n ¼ 104 ð�k ¼ 7:48Þ,
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n ¼ 105 ð�k ¼ 8:13Þ, n ¼ 106 ð�k ¼ 8:51Þ—note that for n!1 it ism≔ �k1 ¼ 9. All results
are averaged overN ¼ 20 independent realizations of the system, an amount that we found
enough to tame single-realization fluctuations (that are however shown with error bars, when
visible).

Results
We present now the outcomes of our numerical study, accompanied by a brief summary of the
analytical predictions we obtained in [26] as tools to understand the results. In this respect,
note that the MF approach (which should work best for homogeneous random graphs)
deals with the aggregate density of cooperators ρ(t), whereas, the HMF (which is more

appropriate for heterogeneous networks) involves the computation of the quantityYðtÞ ¼P
k kPðkÞrkðtÞ=�k (i.e., the average of the probability ρk that a node of degree k cooperates,

weighted by the relative degree).

Best-shot game
Proportional Imitation. In this case, the MF prediction is that

rðtÞ ¼ ½1þ ðr�1
0 � 1Þ exp ðcqtÞ��1

; 0 < r0 < 1: ð7Þ

Hence the population converges to the state with no cooperators ρ = 0 (full defection), unless
the initial state is ρ0 = 1 (full cooperation). We see from Fig. 1a that, also in simulations, the sys-
tem always goes towards the absorbing state xi = 0 8i) ρ� 0 and the full dynamical evolution
is in excellent agreement with the MF theory. The convergence toward full defection occurs be-
cause a defector cannot copy a neighboring cooperator (who has lower payoff by construction),
whereas a cooperator will eventually copy one of her neighboring defectors (who has higher
payoff). However, full defection is not a Nash equilibrium as any player surrounded by defec-
tors would do better by cooperating.

Also in the case of SF networks the behavior is remarkably well described by the simple MF
approach, which coincides with the HMF as ρk(t = 0) does not depend on k.

Best Response. For the best-shot game, MF predicts that the final state is, for any initial
condition, a mixed state ρ = ρs, where ρs 2 (0, 1) is the solution of the equation:

rs ¼ e�mrs : ð8Þ

Fig 1. Best-shot games. Average ρ(t) for ER and SF graphs with n = 104 (but results are independent on the specific value of n). (a) Results for PI; the red
dashed curve is the MF result of Equation (7). (b) Results for BR; the vertical dotted curve approximately divides the dynamics in two regimes: u(t)> 0 (left)
and u(t) = 0 (right).

doi:10.1371/journal.pone.0120343.g001
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The HMF approach leads to an analogous conclusion: the final state is Θs, which is the solution
of the equation

Ys ¼
X
k

ð1�YsÞkkPðkÞ=�k: ð9Þ

Since BR dynamics leads by construction to Nash equilibria, ρs and Θs are the attractors of the
dynamics—their values depending only on the average degree of the network (in particular,
they decrease for increasing network connectivity) but not on ρ0, c or q.

Numerical simulations confirm such a picture: the dynamics finds a rich variety of Nash
equilibria—which are, however, all characterized by an intermediate cooperation level amount-
ing to ρ� (Fig. 1b); moreover, ρ� decreases with increasing network connectivity (Fig. 2a)—in
agreement with both Equation (3) and (8). The key observation to understand the features of
such equilibria is that, in best-shot games under BR dynamics, a player switches to defection as
soon as one of her neighbors is a cooperator, and this happens with higher probability when
the player has many social ties (see also Fig. 2b, c). The higher values of ρ� in SF networks than
in ER graphs of the same link density (Fig. 1b) can be explained by the presence, in the first
case, of more low-degree nodes—who preferentially cooperate as they have few neighbors to
exploit. However, low-degree nodes weight less in Θ, so that we find a Θ� for random SF net-
works similar to the ρ� of ER random graphs. This is in agreement with the mean field

Fig 2. Best-shot games with Best Response. (a) Average ρ* at Nash equilibria vsm on ER random graphs, from simulations (n = 104), theoretical
prediction from Equation (3) and MF Equation (8). (b, c) Average ρ*(k) at Nash equilibria for nodes with different degrees k (n = 104). The vertical dashed
lines identify the thresholds τ from Equation (3)—which basically depend onm.

doi:10.1371/journal.pone.0120343.g002
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predictions: the nodes with highest degrees—that make the difference in P(k)—do not cooper-
ate in the best-shot game, so that their effects on the system is negligible and ρs ’ Θs.

The Nash equilibria found dynamically can be compared with those derived under the as-
sumption of incomplete information by [14]. We first inspect if the cooperation level of our
equilibria lies in the range ρg 2 [ρk < τ, ρk � τ], where ρk < τ and ρk � τ are the densities of players
with k< τ and k� τ, respectively, and τ is the equilibrium threshold given by Equation (3).
Fig. 2a shows the average ρ� at Nash equilibria for ER random graphs as a function ofm, ob-
tained by numerical simulations, by the theoretical framework of [14], and by the mean field
approach. Clearly, whereas the trends are similar, we observe that the cooperation levels of the
static equilibria are compatible with simulations only for small values ofm, while the mean
field approximation works better for high average degrees. We then check whether ρ�(k), i.e.,
the strategy profile as a function of the degree k of dynamically-found Nash equilibria, is com-
patible with the analytical strategy profile σ(k) from Equation (3). Fig. 2b, c shows that, as pre-
dicted in [14], ρ�(k) is non-increasing; however, the behavior is not step-like. Summing up, the
dynamics leads to Nash equilibria which share qualitative features but do not coincide with
those identified in [14] under the assumption of incomplete information. Note that this does
not occur because the configuration space is not sufficiently explored, but rather because the
two approaches are intrinsically different and do not have necessarily to give the same results.
In fact, attempts to manually drive our system into one of the equilibria derived by [14] were
unsuccessful, and this is because the equilibria that are evolutionary selected by our determin-
istic BR-based dynamics are indeed proper Nash, whereas, the framework of [14] is probabilis-
tic and selects Bayes-Nash equilibria.

Coordination game
For coordination games the picture is richer, as the behavior of the system depends on the ratio
α/c. Without loss of generality, we leave c = 1/2 fixed and vary the value of α in the range (0, c).

Proportional Imitation. Here the MF theory predicts the existence of a critical value αc =
c/(mρ0), such that the final state of the dynamics is ρ = 0 (full defection) when α< αc, and ρ = 1
(full cooperation) when α> αc. Note, however, that while full defection is always a Nash equi-
librium for the coordination game, full cooperation becomes a Nash equilibrium only when
α> c/kmin, where kmin is the smallest degree in the network—which means that only networks
with kmin > c/α> 1 may feature a fully cooperative Nash equilibrium. For ER graphs, numeri-
cal simulations agree with this picture (Fig. 3a, c), as a transition for α = αT is observed. The
value αT of the transition point found numerically is smaller than the MF prediction αc; howev-
er αT! αc as the average degreem grows. Note that apart from full defection, no other Nash
equilibrium (with intermediate cooperation levels) is found.

Also the HMF theory predicts a discontinuous transition between a stable fully defective
equilibrium Θ = 0 for α< αc and full cooperation Θ = 1 for α> αc [26]. The critical value is
now αc = c/Θ2, where

Y2≔
X
k

k2PðkÞrk=
�k: ð10Þ

The quantity Θ2 is related to the second moment of the degree distribution hk2i and it can be
shown to diverge for networks with γ< 3 as the system size n goes to infinity. Therefore, at
odds with the case of ER random graphs, for SF networks the threshold αc! 0 as n diverges.
This vanishing of the transition point is analogous to what occurs for other processes on SF
networks, such as percolation or epidemic spreading [32]. This phenomenon is due to the pres-
ence of hubs, i.e., nodes with very large degree (diverging with the network size n). For any
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value of α> 0, the payoffs πC of cooperation for the largest hubs will become positive for suffi-
ciently large values of n. Those hubs then spread the cooperative strategy to the rest of
the network.

Numerical simulations on SF networks confirm only in part the theoretical picture (Fig. 3b).
We observe a transition between a fully defective Nash equilibrium, for small values of α and
final states with intermediate cooperation (which are not Nash equilibria) for α> αT. As α
keeps increasing, cooperation becomes the stable strategy for an increasing number of nodes,
and the system heads smoothly towards full cooperation—which in this case becomes a stable
Nash equilibrium starting from α = c/kmin (which is finite as kmin > 0). The transition point αT
tends to zero as the system size grows. Hence HMF theory predicts correctly that the fully de-
fective state disappears in the large size limit (a phenomenon not captured by MF or by the
one-shot results in [14]).

Best Response. The approximate MF calculations predict again the existence of a critical
value αc = c/(mρ0) such that for α	 αc the only Nash equilibrium is full defection, whereas, for
α
 αc the final state exhibits a large level ρ� of cooperation. Note that here any Nash equilibri-
um features players with k< c/α being defectors by construction; therefore, the fully coopera-
tive Nash equilibrium is achieved for α
 αc but only in networks with kmin > 1.

Fig 3. Coordination games with Proportional Imitation. Stationary cooperation levels ρ1 vs α. The vertical solid lines identify the values of αc. (a) ER
graphs withm = 9 and various n. (b) SF networks with γ = 2.5 and various n; here αc values were estimated from Equation (10) as ac ¼ c=Y2 ’ c�k=hk2i. (c)
ER graphs with n = 103 and variousm. Note that for small values ofm such that p =m/(n−1)< ln(n)/n the graph is disconnected: isolated nodes are bound to
their initial action, so that full defection and full cooperation are not accessible states; additionally, defective behavior spreads easily inside isolated
components which are poorly connected (also for high α), so that ρ1 remains far from 1.

doi:10.1371/journal.pone.0120343.g003
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The behavior found in numerical simulations is similar to the case of PI (Fig. 4a, c). On ER
random graphs a discontinuous transition is found (players have similar degrees, and thus, for
a given ρ, they become cooperators for similar values of α). An important difference is that
many non-trivial Nash equilibria (all characterized by intermediate cooperation levels ρ�) are
found just above the transition point. A continuous transition is found instead for SF networks
(Fig. 4b). Here players have different degrees, and for a given ρ each degree class requires its
own value of α to switch to cooperation.

The HMF approach yields a self-consistent equation for the equilibrium Θs:

Ys ¼
X

k>c=ðaYsÞ
kPðkÞ=�k ð11Þ

If the network is SF with 2< γ< 3, Θs represents a stable equilibrium whose dependence on
α is of the form Θs * α(γ−2)/(3−γ), i.e., there exists a non-vanishing cooperation level Θs no
matter how small the value of α. However, if the network is more homogeneous (e.g., γ> 3),
Θs becomes unstable and for α! 0 the system always converges to the fully defective
Nash equilibria.

The existence, in some α values intervals, of Nash equilibria with intermediate cooperation
levels calls for the comparison between simulation results and predictions of [14]. Fig. 5a
shows that, for ER graphs at α = αc, the cooperation level of equilibria found dynamically lies
in the range ρg 2 [ρk � τ, ρk > τ], where τ is given by Equation (4). However, we do not find
such a good agreement for all values of α nor for SF networks (Figs. 5b, c).

Fig 4. Coordination games with Best Response. Stationary cooperation levels ρ1 vs α. The vertical solid lines identify the values of αc. (a) ER graphs with
m = 9 and various n. (b) SF networks with γ = 2.5 and various n. (c) ER graphs with n = 103 and variousm. Note that asm decreases, the amount of nodes
with k< c/α increases; as these players are defectors by construction, ρ1↛ 1 even for α!1.

doi:10.1371/journal.pone.0120343.g004
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Another important prediction of the HMF approach is that ρk ! 0 when k< c/(αΘs), and
ρk! 1 for k> c/(αΘs). In this sense, the equilibria predicted by HMF agree qualitatively with
those found in [14]: players’ actions show a non-decreasing dependence on their degrees. In-
deed, Fig. 5d, e shows that the average cooperation level ρ�(k) of Nash equilibria found dynam-
ically in simulations for α = αc is generally non-decreasing in k, and that a step-like behavior of
the analytical strategy profile σ(k) from Equation (4) becomes a good approximation for large
n. In conclusion, the equilibria predicted in [14] are a good approximation of the equilibria
found dynamically only in the thermodynamic limit (n!1) and, more importantly, only for
a small subset of α values.

The effect of correlated networks
In order to study the effects of topologies with degree-degree correlations on the behavior of
the games, we run simulations with interaction patterns given by SF networks with assortative
and disassortative correlations. To generate these networks, we use the prescriptions of the
model by Weber and Porto [33] (again with the constraint kmax <

ffiffiffi
n

p
on the largest degree).

Fig 5. Coordination games with Best Response. Average ρ* at Nash equilibria from simulations and theoretical prediction from Equation (4). (a) ρ* vsm
for ER random graphs with n = 104 at α = αc. (b) ρ* vs α for ER random graphs with n = 103 andm = 9. (c) ρ* vs α for SF networks with n = 103 and γ = 2.5.
The vertical dashed lines denote the critical value αc. (d, e) Average ρ*(k) at α = αc for nodes with different degrees k (n = 104). The vertical dashed lines
identify the thresholds τ form Equation (4).

doi:10.1371/journal.pone.0120343.g005
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Correlated networks feature a parameter β that controls the properties of the resulting topolo-
gies: the average degree of the nearest-neighbors of a node of degree k is proportional to kβ, so
that for β> 0 neighbors of nodes with large k have large degree (assortative networks), while
for β< 0 nodes with large k have neighbors with small degree and vice versa (disassortative
networks). The uncorrelated case is recovered for β = 0.

For the best-shot game (Fig. 6a), the simple case of PI dynamics is totally unaffected by the
presence of correlations: the temporal evolution and the asymptotic state do not depend at all
on β. Instead, when strategies evolve according to BR (Fig. 6b), the dynamics leads to Nash
equilibria with levels ρ� of cooperation (dominated by the behavior of low-degree nodes) that
decrease with β. The reason is that for β< 0 low-degree nodes are connected to hubs, which
are likely to be defectors; as a consequence they tend to cooperate and ρ� is higher. The oppo-
site occurs in assortative networks (β> 0): low-degree nodes are connected to each other and
less cooperation is needed.

For coordination games with PI dynamics, the effect of assortative (disassortative) correla-
tions is to make broader (sharper) the transition observed as a function of α for finite network

Fig 6. Best-shot games for correlated networks. Here γ = 2.5,m = 9, n = 104 and various β (again, these results are independent on the specific value of
n). (a) ρ(t) for PI—the red dashed curve being the MF Equation (7). (b) ρ(t) for BR—the vertical dotted line approximately dividing the dynamics in the regimes
u(t)> 0 (left) and u(t) = 0 (right).

doi:10.1371/journal.pone.0120343.g006

Fig 7. Coordination games for correlated networks. Here with γ = 2.5,m = 9, n = 104 and various β (again, these results are independent on the specific
value of n): Stationary cooperation levels ρ1 vs α for PI (a) and BR (b) dynamics. The vertical solid line identifies the value of αc = c/Θ2(0).

doi:10.1371/journal.pone.0120343.g007
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size n (Fig. 7a). This can be understood by considering that, in the assortative case, hubs tend
to be connected with each other, so that cooperation can spread more easily among them and
be sustained by mutual connections: the critical density of stable cooperators decreases. At the
same time, low-degree nodes are connected only with each other, so that they require larger
values of α to sustain cooperation within themselves (as compared to the uncorrelated case).
As a result, the transition becomes broader. An analogous argument explains the sharper tran-
sition for dissortative networks. In the case of BR dynamics, the same picture applies (Fig. 7b).

Discussion
In this work we have studied by numerical simulations two kinds of games, namely the best-
shot and the coordination games, as representatives of two wide classes of social interactions
(strategic substitutes and strategic complements, respectively). In these games, the welfare of a
player depends both on her own actions and on the actions taken by her partners; thus, we
have considered different topological structures for the pattern of interactions. We have em-
bedded these games into an evolutionary framework, described by two types of dynamics,
widely employed to model evolving populations: PI, in which players imitate more successful
neighbors, and BR, in which players are rational and make optimal choices. We have per-
formed numerical simulations, determining the attractors of the evolution, and characterizing
them in term of Nash equilibria. By comparison with the results of numerical simulations we
have assessed the validity of the MF approaches in describing such systems, gaining additional
insight on individual behaviors, and we have also compared our findings with the theoretical
predictions of [14] about the features of Nash equilibria in one-shot games under
incomplete information.

Generally, we observe that the behavior of the system is highly influenced by the dynamics
employed and by the population structure. Strategic substitutes under PI dynamics represents
the simplest case, in which full defection is the only accessible (but non-Nash) equilibrium,
whatever the underlying topology, in complete agreement with the mean field predictions.
This suggests that the failure to find a Nash equilibrium arises from the (bounded rational) dy-
namics and, with the benefit of hindsight, it is clear that imitation is not a good procedure for
players to decide in anti-coordination games. Such a conclusion is supported by the behavior
observed for strategic substitutes under BR dynamics. Indeed, here we observe many stable
Nash equilibria, with cooperation level ρ� slightly smaller than (but close to) the mean field
prediction ρc. Moreover, in simulations we observe precisely what is predicted by the MF theo-
ry, namely that ρ� decreases with increasing network connectivity and does not depend on the
initial conditions, game and simulation parameters, and system size (which was taken as infi-
nite in the analytical calculations). Concerning the topology, ρ� is enhanced in heterogeneous
networks because of more low-degree nodes who are typically cooperators. Additionally, disas-
sortativity has a positive effect on the cooperation levels, as low-degree nodes are connected to
high-degree nodes who are likely to be defectors, and thus tend to cooperate even more. Vice
versa, assortativity allows more low-degree nodes to defect.

The picture is far more rich and interesting for strategic complements, that feature an addi-
tional parameter α playing a key role in determining which equilibria are dynamically accessi-
ble. Indeed, in the case of PI for ER random graphs we observe two kinds of stationary states:
fully defective Nash equilibria for α< αT, and full cooperation for α> αT (that becomes Nash
equilibrium only when α> c/kmin). Remarkably, αT ! αc for n,m!1, where αc = c/(mρ0) is
the value predicted by the MF theory. We thus see that imitation is indeed a good procedure to
choose actions in a coordination setup: PI does lead to Nash equilibria, and indeed it makes a
very precise prediction: a unique equilibrium that depends on the initial density. If the topology

Dynamics to Equilibrium in Network Games

PLOSONE | DOI:10.1371/journal.pone.0120343 March 24, 2015 13 / 15



is a SF network, HMF theory and simulations agree on αT and αc going to zero for n!1, in-
dicating that in these cases cooperation emerges also when the incentive to cooperate vanishes.
The situation with BR dynamics is rather similar to the case of PI, with the single difference
that for ER random graphs and α> αc the stationary state is now a Nash equilibrium, and
again full cooperation is achieved for α> c/kmin. Thus we see that, with BR, equilibria with in-
termediate values of the density of cooperators are obtained in a range of initial densities. Com-
pared to the situation with PI, in which we only find the absorbing states as equilibria, this
points to the fact that more rational players can eventually converge to equilibria with higher
payoffs. Finally, we have found that, whatever the dynamics, the presence of topological corre-
lations in the network does not change the global qualitative picture.

Besides the general features of the dynamics, we have also been able to study the degree-de-
pendent features of Nash equilibria (when present) and compare our findings with the theoret-
ical predictions of [14], in the which authors consider games played once and for all but using
only partial information on the underlying topology. Our conclusion is that, while the Nash
equilibria predicted in [14] cannot (always) be reached (i.e., such equilibria, arising in a one-
shot game, are not necessarily the outcome of an evolutionary process in the iterated version of
the game), their theory still provides good guidance on the shape and features of the Nash equi-
libria which are evolutionarily accessible. Note that the connection between the two visions of
the game is not trivial, and even less so in our networked context. We refer the reader to [20,
21] for a discussion on dynamical approaches to Nash equilibria from a rigorous viewpoint.
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