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Abstract

We consider games of strategic substitutes and strategic complements on networks. We introduce
two different evolutionary dynamics in order to refine their multiplicity of equilibria, and we analyse
the system through a mean field approach. We find that for the best-shot game, taken as a model for
substitutes, a replicator-like dynamics does not lead to Nash equilibria, whereas it leads to unique equi-
libria (full cooperation or full defection, depending on the initial condition and the game parameter) for
complements, represented by a coordination game. On the other hand, when the dynamics becomes more
cognitively demanding in the form of a best response evolution, predictions are always Nash equilibria
(at least when individuals are fully rational): For the best-shot game we find equilibria with a definite
value of the fraction of contributors, whereas for the coordination game symmetric equilibria arise only
for low or high initial fractions of cooperators. We also extend our study by considering complex hetero-
geneous topologies, and show that the nature of the selected equilibria does not change for the best-shot
game. However for coordination games we reveal an important difference, namely that on infinitely large
scale-free networks cooperation arises for any value of the incentive to cooperate.

1 Introduction

Strategic interactions among individuals located on a network, be it geographical, social or of any other
nature, are becoming increasingly relevant in many economic contexts. Decisions made by our neighbors on
the network influence ours, and are in turn influenced by their other neighbors to whom we may or may not
be connected. Such a framework makes finding the best strategy a very complex problem, almost always
plagued by a very large multiplicity of equilibria. Therefore, many researchers are devoting much effort to
this problem and an increasing body of knowledge is being consolidated [1–3].
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In this work we will address the issue of games of strategic substitutes and strategic complements on
networks, as discussed in [4]. In this paper, Galeotti et al. considered these two types of games on a general
class of networks and obtained an important reduction in the number of equilibria by going from a complete
information setting to an incomplete one. They introduced incomplete information to eliminate the possible
dependence of the setting in a natural way, which is having uncertainty about the identity of players’
neighbors, and being also uncertain about the number of connections that those neighbors will in turn have.
We here aim at providing an alternative view of this problem by looking at it from a evolutionary viewpoint:
Focusing on two specific examples of these families of games, we implement two different dynamics for the
strategies which, as we will see, may lead to different refinements of the equilibrium set.

1.1 Framework

1.1.1 Games

We begin with a finite set of agents I of cardinality n, linked together in a fixed, undirected, exogenous
network. The links between agents reflect social interactions, and connected agents are said to be “neighbors”.
The network is defined through a n× n symmetric matrix G with null diagonal, where Gij = 1 means that
agents i and j are neighbors, while Gij = 0 means that they are not. We indicate with Ni the set of i’s
neighbors, i.e., Ni = {j ∈ I : Gij = 1}, where the number of such neighbors |Ni| = ki is the degree of the
node. Each player can take one of two actions, xi ∈ {0, 1} with xi denoting i’s action. Only pure strategies
will be considered. There is a cost c, where 0 < c < 1, for choosing action 1, while action 0 bears no cost.

In what follows we will concentrate on two games, the best-shot game and a coordination game, as
representative instances of strategic substitutes and strategic complements, respectively. We choose specific
examples for the sake of being able to study analytically their dynamics. In both cases, we consider a game
in which every individual must choose independently an action in X = {0, 1}, in a context (particularly for
the case of substitutes) where action 1 may be interpreted as cooperating and action 0 as not doing so—or
defecting. To define the payoffs we introduce the following notation: xNi

=
∑

j∈Ni
xj is the aggregate action

in Ni and yi = xi + xNi
.

Strategic Substitutes: Best-shot game This game was first considered by Bramoullé and Kranton [5]
as a model of the local provision of a public good. As stated above, we will consider the discrete version,
where there are only two actions available, as in [4, 6]. The corresponding payoff function takes the form

πi = ΘH(yi − 1)− c xi (1)

where ΘH(·) is the Heaviside step function ΘH(x) = 1 if x ≥ 0 and ΘH(x) = 0 otherwise.

Strategic Complements: Coordination game For our second example, we will follow Galeotti et al. [4]
and consider again a situation where X = {0, 1} is the action space, but now let the payoffs of any particular
agent i be given by

πi = (αxNi
− c)xi. (2)

Assuming that c > α > 0, we are faced with a coordination game where, as discussed in [4], depending on
the underlying network and the information conditions, there can generally be multiple equilibria.
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1.1.2 Dynamics

Within the two games we have presented above, we now consider evolutionary dynamics for the players’
strategies. Starting with a certain fraction ρ0 of players randomly chosen to undertake action x = 1, at each
round t of the game players collect their payoff π(t) according to their neighbors’ actions and the kind of
game under consideration. Subsequently, a fraction q of players update their strategy. We will focus on the
two games we have introduced above, but of course the evolutionary dynamics we are going to introduce are
applicable to any game. We consider two different mechanisms for strategy updating:

Proportional Imitation (PI) [7,8]. It represents a rule of imitative nature in which player i may copy the
strategy of a selected counterpart j, which is chosen randomly among the ki neighbors of i. The probability
that i copies j’s strategy depends on the difference between the payoffs that they obtained in the previous
round of the game:

P
{

x
(t)
j → x

(t+1)
i

}

=

{

(π
(t)
j − π

(t)
i )/Φ if π

(t)
j > π

(t)
i

ǫ otherwise
(3)

where Φ is a normalization constant that ensures P{·} ∈ [0, 1], and 0 ≤ ǫ < 1 allows for mistakes (i.e., copying
an action that yielded less payoff in the previous round). Note that because of the imitation mechanism of
PI, the configurations xi = 1 ∀i and xi = 0 ∀i are absorbing states: The system cannot escape from them
and not even mistakes can re-introduce strategies, as they always involve imitation. On the other hand,
it can be shown that PI is equivalent to the well-known replicator dynamics in the limit of an infinitely
large, well-mixed population (equivalently, on a complete graph) [9, 10]. As was first put by Schlag [8], the
assumption that agents play a random-matching game in a large population and learn the actual payoff of
another randomly chosen agent, along with a rule of action that increases their expected payoff, leads to a
probability of switching to the other agent’s strategy that is proportional to the difference in payoffs. The
corresponding aggregate dynamics is like the replicator dynamics. See also [11] for another interpretation of
these dynamics in terms of learning.

Best Response (BR). This rule was introduced in [12, 13] and has been widely used in the economics
literature. BR describes players that are rational and choose their strategy (myopically) in order to maximize
their payoff, assuming that their neighbors will again do what they did in the last round. This means that

each player i, given the past actions of their partners x
(t)
Ni
, computes the payoffs that she would obtain

by choosing action 1 (cooperating) or 0 (defecting) at time t, respectively π̃
(t)
C and π̃

(t)
D . Then actions are

updated as follows:

P
{

x
(t+1)
i = 1

}

=

{

1− ǫ if π̃
(t)
C > π̃

(t)
D

ǫ if π̃
(t)
C < π̃

(t)
D

; P
{

x
(t+1)
i = 0

}

=

{

ǫ if π̃
(t)
C > π̃

(t)
D

1− ǫ if π̃
(t)
C < π̃

(t)
D

(4)

and x
(t+1)
i = x

(t)
i if π̃

(t)
C = π̃

(t)
D . Here again 0 ≤ ǫ < 1 represents the probability of making a mistake, with

ǫ = 0 indicating fully rational players.

The reason to study these two dynamics is because they may lead to different results as they represent
very different evolutions of the players’ strategies. In this respect, it is important to mention that, in the
case ǫ = 0, Nash equilibria are stable by definition under BR dynamics and, vice-versa, any stationary state
found by BR is necessarily a Nash equilibrium. On the contrary, with PI this is not always true: Even in the
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absence of mistakes, players can change action by copying better-performing neighbors, also if such change
leads to a decreasing of their payoffs in the next round. Another difference between the two dynamics is the
amount of cognitive capability they assume for the players: whereas PI refers to agents with very limited
rationality, that imitate a randomly chosen neighbor on the only condition that she does better, BR requires
agents with a much more developed analytic ability.

1.1.3 Analytical and informational settings

With these two dynamics, we study how the system evolves starting from an initial random distribution of
strategies. We carry out our calculations in the framework of a homogeneous mean field (MF) approximation,
which is most appropriate to study networks with homogeneous degree distribution P (k) like Erdös-Rényi
random graphs [14]. It is interesting to note that the basic assumption underlying this approach is that every
player interacts with an “average player” that represents the actions of her neighbors. Lossely speaking, this
amounts to having a very incomplete information setting, in which all players know only how many other
players they will engage with, and is reminiscent of that used by Galeotti et al. for their refinement of
equilibria. However, the analogy is not perfect and therefore, for the sake of accuracy, we will not dwell any
further on the matter. In any case, MF will be our setup for most of the paper.

As an extension of the results obtained in the above context, we will also study the case of highly
heterogeneous networks, i.e,, networks with broad degree distribution P (k), such as the scale-free ones
proposed in [15]. In these cases in fact there are a number of players with many neighbors (“hubs”) and
many players with only a few neighbors, and this heterogeneity may give rise to very different behaviors
as compared to Erdös-Rényi systems. Analytically, this can be done by means of the heterogeneous mean
field technique (HMF) [16] which generalizes, for the case of networks with arbitrary degree distribution,
the equations describing the dynamical process by considering degree-block variables grouping nodes within
the same degree. By resorting to this second perspective we will be able to gain insights on the effects of
heterogeneity on the evolutionary dynamics of our games.

1.2 Our contribution

As already stated, our paper belongs to the literature on strategic interactions in networks and its applications
to economics. Relevant papers on this topic have been contributed by Angeletos and Pavan [17], Ballester
et al. [18, 19], Bergemann and Morris [20], Bramoullé et al. [21], Calvó-Armengol et al. [22], Glaeser and
Scheinkman [23], Goyal and Moraga-Gonzalez [24], and Vives [25]. This paper pertains in this increasing
literature and complements it with the analysis of the evolutionary dynamics (see Roca et al. [26] for a
review of the literature on evolutionary games) in two representative games and how this dynamics leads to
a refinement of the Nash equilibria or to other final states. In particular, our work originates from and is
closely related to Galeotti et al. (2010), for they consider one-shot games with strategic complements and
substitutes and model equilibria resulting from incomplete information. Our approach is instead based on
evolutionary selection of equilibria, and is thus complementary to theirs. We have also mentioned that one
of the games we study is a discrete version of a public goods game proposed by Bramoullé and Kranton
(2007), who opened the way to the problem of equilibrium selection in this kind of games under complete
information.

On the other hand, our evolutionary approach pertains to the large body of work emanating from the
Nash programme [27–29]. In that spirit, we will be considering the two possible situations: one dynamics,
PI, that does not lead in general to Nash equlibria as already mentioned, and BR, that does converge to Nash
equilibria, an issue about which there are a number of interesting results [30–32]. These dynamical views on
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the convergence to equilibrium refer to the case of a well-mixed population. As we are working on a network
setup, our specific perspective is close to that of Boncinelli and Pin [6]. They elaborate on the literature
on stochastic stability [33, 34] as a device that selects the equilibria that are more likely to be observed in
the long run, in the presence of small errors occurring with a vanishing probability. They work from the
observation by Bergin and Lipman [35] that different equilibria can be selected depending on assumptions
on the relative likelihood of different types of errors. Thus, Boncinelli and Pin work with a best-response
dynamics and by means of a Markov Chain analysis find, counterintuitively, that when contributors are the
most perturbed players, the selected equilibrium is the one with the highest contribution. The techniques
we use here resort to differential equations and have a more dynamical character, and we do not incorporate
the possibility of having special distributions of errors, although we do consider random mistakes in the
evolution of strategies as discussed above.

Within this topic, our main contribution can be summarized as follows. In our basic setup of homogeneous
networks (described by the mean field approximation): For the best-shot game, PI leads to a stationary state
in which all players play xi = 0, i.e., to full defection, which is obviously non-Nash. This is the result also in
the presence of mistakes, unless the probability of errors becomes large, in which case the stationary state
is the opposite, xi = 1, i.e., full cooperation, also non-Nash. Hence, PI does not lead to any refinement
of the Nash equilibrium structure. On the contrary, BR leads to Nash equilibria characterized by a finite
fraction of cooperators ρs, whereas, in the case when players are affected by errors, this fraction coincides
with the probability of making an error as the mean degree of the network goes to infinity. The picture is
different for the coordination game. In this case, PI does lead to Nash equilibria, selecting the coordination
in 0 below a threshold value of α and the opposite state otherwise. This threshold is found to depend on
the initial fraction ρ0 of players choosing x = 1. Mistakes lead to the appearance of a new possibility,
an intermediate value of the fraction of players choosing 1, and as before the initial value of this fraction
governs which equilibrium is selected. BR gives similar results, albeit for the fact that a finite fraction of
1 actions can also be found even without mistakes, and with mistakes the equilibria are not full 0 or 1 but
there is always a fraction of mistaken players. Finally, changing the analytical setting by proceeding to the
heterogeneous mean field approach does not lead to any dramatic change in the structure of the equilibria
for the best-shot game. Interestingly, things change significantly for coordination games—when played on
infinitely large scale-free networks. In this case, which is the one where the heterogeneous mean field should
make a difference, equilibria with non-vanishing cooperation obtain for any value of the parameter α.

The paper is organized in five sections including this introduction. Section 2 presents our analysis and
results for the best-shot game. Section 3 deals with the coordination game. In both cases, the analytical
framework is that of the mean field technique. After an overall analysis of global welfare presented in
Section 4, Section 5 presents the extensions of the results for both games within the heterogeneous mean
field approach, including some background on the formalism itself. Section 6 concludes.

2 Best-shot game

2.1 Proportional imitation

We begin by considering the case of our example of strategic substitutes when imitation of a neighbor is only
possible if she has obtained better payoff than the focal player, i.e., ǫ = 0 in eq. (3). In that case, within the
framework of mean field, the main result is the following:

Proposition 1. Within the mean field formalism, under PI dynamics, when ǫ = 0 the final state for
the population is the absorbing state with a density of cooperators ρ = 0 (full defection) except if the initial
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state is full cooperation ρ0 = 1.

Proof. Working in a mean field context means that individuals are well-mixed, i.e., every player interacts
with average players. In this case the differential equation for the density of cooperators ρ is

ρ̇/q = (1− ρ)ρPD→C − ρ(1− ρ)PC→D. (5)

The first term is the probability (1 − ρ)ρ of picking a defector with a neighboring cooperator, times the
probability of imitation PD→C . The second term is the probability ρ(1 − ρ) of picking a cooperator with
a neighboring defector, times the probability of imitation PC→D. In the Best Shot game a defector cannot
copy a neighboring cooperator (who has lower payoff by construction), whereas, a cooperator will eventually
copy one of her neighboring defectors (who has higher payoff). Hence PD→C = 0 and PC→D is equal to the
payoff difference 1 − (1 − c) = c. Since the normalization constant Φ = 1 for strategic substitutes, eq. (5)
becomes

ρ̇/q = −cρ(1− ρ) (6)

The solution, for any initial condition 0 < ρ0 < 1, is

ρ(t) = [1 + (ρ−1
0 − 1) exp(cqt)]−1, (7)

hence ρ(t) → 0 for t → ∞: the only stationary state is full defection unless ρ0 = 1. �

Remark 1: As discussed above, PI does not necessarily lead to Nash equilibria as asymptotic, stationary
states. This is clear in this case. For any ρ0 < 1 the population ends up in full defection, even if every
individual player would be better off by switching to cooperation. This phenomenon is likely to arise from
the substitutes or anti-coordination character of the game: in a context in which it is best to do the opposite
of the other players, imitation does not seem the best way for players to decide on their actions.

Proposition 2. Within the mean field formalism, under PI dynamics, when ǫ ∈ (0, 1) the final state for
the population is the absorbing state ρ = 0 (full defection) when ǫ < c, ρ = ρ0 when ǫ = c, and ρ = 1 when
ǫ > c. When the initial state is ρ0 = 0 or ρ0 = 1, it remains unchanged.

Proof. Eq. (5) is still valid, with PC→D unchanged, whereas, PD→C = ǫ. By introducing the effective
cost c̃ = c− ǫ we can rewrite eq. (7) as:

ρ(t) = [1 + (ρ−1
0 − 1) exp(c̃qt)]−1 (8)

Hence ρ(t) → 0 for t → ∞ only for c̃ > 0 (ǫ < c); instead for c̃ = 0 (ǫ = c) then ρ(t) ≡ ρ0 ∀t, and for c̃ < 0
(ǫ > c) then ρ(t) → 1 for t → ∞ (cooperation is favored now). �

Remark 2: As before, PI does not drive the population to a Nash equlibrium, independently of the
probability of making a mistake. However, mistakes do introduce a bias towards cooperation and thus a new
scenario: when their probability exceeds the cost of cooperating, the whole population ends up cooperating.

2.2 Best response

We now turn to the case of the best response dynamics, which (at least for ǫ = 0) is guaranteed to drive
the system towards Nash equilibria. In this scenario, we have not been able to find a rigorous proof of our
main result, but we can make some approximations in the equation that support it. As we will see, our main
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conclusion is that, within the mean field formalism under BR dynamics, when ǫ = 0 the final state for the
population is a mixed state ρ = ρs, 0 < ρs < 1, for any initial condition.

Indeed, for BR dynamics without mistakes, the homogeneous mean field equation for ρ̇ is

ρ̇/q = −ρQ[πC < πD] + (1− ρ)Q[πC > πD] (9)

where the first term is the probability of picking a cooperator who would do better by defecting, and the
second term is the probability of picking a defector who would do better by cooperating. This far, no
approximation has been made; however, these two probabilities cannot be exactly computed and we need to
estimate them.

To evaluate the two probabilities, we can recall that πC = 1 − c always, whereas, πD = 0 when none
of the neighbors cooperates and πD = 1 otherwise. Therefore, for an average player of degree k we have
that Qk[πC > πD] = (1 − ρ)k. Consistently with the mean field framework we are working on, as a rough
approximation we can assume that every player has degree k̄ (the average degree of the network), so that
Qk̄[πC > πD] = 1−Qk̄[πC < πD] = (1 − ρ)k̄. Thus, we have

ρ̇/q = (1− ρ)k̄ − ρ. (10)

To go beyond this simple estimation, we can work out a better approximation by integrating Qk[πC > πD]
over the probability distribution of players’ degrees P (k). For Erdös-Rényi random graphs, in the limit of
large populations (n → ∞), it is P (k) ≃ k̄ke−k̄/k!. This leads to Q[πC > πD] = e−k̄ρ and, subsequently,

ρ̇/q = e−k̄ρ − ρ. (11)

Remark 3. The precise asymptotical value for the density of cooperators, ρs, depends on the approxi-
mation considered above. However, at least for not too inhomogeneous networks, it is to be expected that
the approximations turn out to be very good and therefore the corresponding picture of the evolution of the
population should be quite accurate in that case. It is interesting to note that, whatever its exact value, in
both cases ρs is such that the right-hand sides of eq. (10) and eq. (11) vanishes and, furthermore, ρs is an
attractor of the dynamics, because d(ρ̇)/dρ|ρs

< 0.

How is the above result modified by mistakes? When ǫ ∈ (0, 1), eq. (9) becomes:

ρ̇/q = Q[πC < πD]{−ρ(1− ǫ) + (1 − ρ)ǫ}+Q[πC > πD]{(1− ρ)(1− ǫ)− ρǫ}
= Q[πC < πD](−ρ+ ǫ) +Q[πC > πD](1 − ρ− ǫ) (12)

where the first term accounts for cooperators rightfully switching to defection and defectors wrongly selecting
cooperation, while the second term accounts for defectors correctly choosing cooperation and cooperators
mistaken to defection. Proceeding as before, and again in the limit n → ∞, we approximate Q[πC > πD] =
e−k̄ρ, thus arriving at

ρ̇/q = (1− 2ǫ)e−k̄ρ − (ρ− ǫ) (13)

from which it is possible to find the attractor of the dynamics ρs. Such attractor in turn exists if

ǫ < (1 + k̄−1ek̄ρs)/2,

a threshold that is bounded below by 1/2, which would be tantamount to players choosing their action at
random. Therefore, all reasonable values for the probability of errors allow for equilibria.
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Figure 1: Best-shot game under BR dynamics in the mean field framework. Shown are the asymptotic
cooperation values ρs vs the average degree k̄ for different values of the probability of making a mistake ǫ.
Values are obtained by numerically solving eq. (13).

Remark 4. To gain some insight on the cooperation levels arising from BR dynamics in the Nash
equilibria, we have numerically solved eq. (13). The values for ρs are plotted in Fig. 1 for different values of
ǫ, as a function of k̄. We observe that the larger k̄, the lower the cooperation level. The intuition behind
such result is that the more connections every player has, the lower the need to play 1 to ensure obtaining
a positive payoff. It could then be thought that this conclusion is reminiscent of the equilibria found for
best-shot games in [4], which are non increasing in the degree. However, this is not the case, as in our work
we are considering an iterated game that can perfectly lead to high degree nodes having to cooperate. Note
also that this approach leads to a definite value for the density of cooperators in the Nash equilibrium, but
there can be many action profiles for the player compatible with that value, so multiplicity of equilibria is
reduced but not suppressed.

Remark 5. From Fig. 1 it is also apparent that as the likelihood of mistakes increases, the density of
cooperators at equilibrium increases. Note that for large values of the connectivity k̄ it becomes ρs ≡ ǫ, in
agreement with the fact that when a player has many neighbors she can assume that a fraction ǫ of them
will cooperate even if she is already cooperating, thus turning defection into her BR.

3 Coordination game

We now turn to the case of strategic complements, exemplified by our coordination game. As above, we will
start from the case without mistakes, and we will subsequently see how they affect the results.

3.1 Proportional imitation

Proposition 3. Within the mean field formalism, under PI dynamics, when ǫ = 0 the final state for the
population is the absorbing state with a density of cooperators ρ = 0 (full defection) when α < αc ≡ c/(k̄ρ0),
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and the absorbing state with ρ = 1 when α > αc. In the case α = αc both outcomes are possible.

Proof. Still within our homogeneous mean field context, the differential equation for the density of
cooperators ρ is again eq. (5). As we are in the case in which ǫ = 0, we have that PD→C = (πC −πD)Q[πC >
πD]/Φ and PC→D = (πD − πC)Q[πC < πD]/Φ = −(πC − πD)(1 − Q[πC > πD])/Φ, where for strategic
complements Φ = αkmax. Given that πD = 0 and that, consistently with our MF framework, πC = αk̄ρ− c,
we find:

ρ̇/q = ρ(1 − ρ)(αk̄ρ− c)/Φ = cρ(1− ρ)(ρ/ρc − 1)/Φ, (14)

where we have introduced the values ρc = ρ0(αc/α) and αc ≡ c/(k̄ρ0).
It is easy to see that ρ = ρc is an unstable equilibrium, as ρ̇ < 0 for ρ < ρc and ρ̇ > 0 for ρ > ρc.

Therefore, we have two different cases: when α > αc then ρc < ρ0 and the final state is full cooperation
(ρ = 1), whereas, when α < αc then ρc > ρ0 and the outcome is full defection (ρ = 0). When α ≡ αc then
ρc ≡ ρ0, so both outcomes are in principle possible. �

Remark 6. The same (but opposite) intuition we discussed in Remark 1 about the outcome of PI on
substitute games suggests that imitation is indeed a good procedure to choose actions in a coordination
setup. In fact, contrary to the case of the best-shot game, in the coordination game PI does lead to Nash
equilibria, and indeed it makes a very precise prediction: a unique equilibrium that depends on the initial
density. Turning around the condition for the separatrix, we have ρ0 < c/(k̄α), i.e., when few people
cooperate initially then evolution leads to everybody defecting, and vice versa. In any event, having a
unique equilibrium (except exactly at the separatrix) is a remarkable achievement.

Remark 7. In a system where players may have different degrees, while full defection is always a Nash
equilibrium for the coordination game, full cooperation becomes a Nash equilibrium only when α > c/kmin,
where kmin is the smallest degree in the network—which means that only networks with kmin > c/α > 1
feature a fully cooperative Nash equilibrium.

When ǫ ∈ (0, 1), the problem becomes much more involved and we have not been able to prove rigorously
our main result. In fact, now we have PD→C = (πC − πD)Q[πC > πD]/Φ + ǫQ[πC < πD] and PC→D =
(πD − πC)Q[πC < πD]/Φ+ ǫQ[πC > πD]. Eq. (14) thus becomes

ρ̇/q = ρ(1− ρ){c(ρ/ρc − 1)/Φ+ ǫ(1− 2Q[ρ > ρc])} (15)

where we have used Q[πC > 0] ≃ Q[αk̄ρ > c] = Q[ρ > ρc]. We then have three different cases which we can
treat approximately:

• When ρ ≃ ρc then Q[ρ > ρc] ≃ 1/2 and eq. (15) reduces to eq. (14), i.e., we would recover the result
for the case with no mistakes.

• When ρ ≫ ρc then Q[ρ > ρc] ≃ 1 and eq. (15) can be rewritten as:

ρ̇/q = ρ(1− ρ)(c/Φ + ǫ)(ρ/ρ+ − 1) (16)

with ρ+ = ρc(1 + Φǫ/c) > ρs. This value ρ+ leads to an unstable equilibrium; in particular, ρ̇ < 0 for
ρ < ρ+ so that ρ → ρc and hence eq. (15) holds.

• Finally when ρ ≪ ρc then Q[ρ > ρc] ≃ 0 and eq. (15) can be rewritten as:

ρ̇/q = ρ(1− ρ)(c/Φ− ǫ)(ρ/ρ− − 1) (17)

with ρ− = ρc(1 − Φǫ/c) < ρs. As before, ρ− gives an unstable equilibrium, because ρ̇ < 0 for ρ > ρ−
so that again ρ → ρc where eq. (15) holds.
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Remark 8: In summary, the region ρ− < ρ < ρ+ becomes a finite basin of attraction for the dynamics.
Note that when ǫ > c/(αckmax) then ρ+ = ρ0 has no solution and ρc becomes the attractor in the whole
α space. Our analysis thus shows that, for a range of initial densities of cooperators, there is a dynamical
equilibrium characterized by an intermediate value of ρ, which is neither full defection nor full cooperation.
Instead, for small enough or large enough values of ρ0 the system evolves towards the fully defective or fully
cooperative Nash equilibrium, respectively.

Remark 9: The intuition behind the result above could be that mistakes can take a number of people
away from the equilibrium, be it full defection or full cooperation, and that this takes place in a range of
initial conditions that grows with the likelihood of mistakes.

3.2 Best response

Considering now the case of BR dynamics, the case of the coordination game is no different from that of
the best-shot game and we cannot find rigorous proofs for our results, although we believe that we can
substantiate them on firm grounds. To proceed, for this case eq. (9) becomes:

ρ̇/q = −ρ+Q[πC > 0] (18)

where we have taken into account that πD = 0 and Q[πC < πD] = 1 − Q[πC > πD]. Assuming that every
node has degree k̄, i.e., a regular random network, it is clear that there must be at least [c/α]+1 neighboring
cooperators in order to have πC > πD. Thus

Q[πC > πD] = Q[πC > 0] =

k̄
∑

l=[c/α]+1

(

k̄

l

)

ρl(1− ρ)k̄−l (19)

and

ρ̇/q = −ρ+
k̄
∑

l=[c/α]+1

(

k̄

l

)

ρl(1 − ρ)k̄−l (20)

Once again, the difficulty is to show that ρc = ρ0(αc/α) is the unstable equilibrium. However, we can follow
the same approach used with PI and write Q[πC > 0] ≃ Q[αk̄ρ > c] = Q[ρ > ρc], i.e., we approximate
Q[πC > 0] as a Heaviside step function with threshold in ρc. We then again have three different cases as
follows:

• If ρ ≃ ρc then Q[ρ > ρc] ≃ 1/2: we have ρ̇/q = −ρ+ 1/2 and the attractor becomes ρ ≡ 1/2.

• If ρ ≫ ρc then Q[ρ > ρc] ≃ 1: we have ρ̇/q = −ρ+ 1 and a stable equilibrium at ρ ≡ 1.

• Finally if ρ ≪ ρc then Q[ρ > ρc] ≃ 0: we have ρ̇/q = −ρ and a stable equilibrium at ρ ≡ 0.

Remark 10: As we may see, for BR even without mistakes equilibria with intermediate values of the
density of cooperators obtain in a range of initial densities. Compared to the situation with PI, in which
we only found the absorbing states as equilibria, this points to the fact that more rational players would
eventually converge to equilibria with higher payoffs. It is interesting to note that such equilibria could be
related to those found by Galeotti et al. [4] in the sense that not everybody in the network chooses the same
action; however, we cannot make a more specific connection as we cannot detect which players choose which
action—see, however, section 5.2.2 below.
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A similar approach allows some insight on the situation ǫ > 0. We start again from eq. (12), which now
reduces to:

ρ̇/q = −(ρ− ǫ) +Q[πC > 0](1− 2ǫ) (21)

Approximating as before Q[πC > 0] ≃ Q[ρ > ρc] we again have the same three different cases.

• If ρ ≃ ρc then the attractor ρ ≡ 1/2 is unaffected by the particular value of ǫ.

• If ρ ≫ ρc then the stable equilibrium lies at ρ ≡ 1− ǫ;

• If ρ ≪ ρc then the stable equilibrium is at ρ ≡ ǫ;

Remark 11: Adding mistakes to BR does not change dramatically the results, as it did occur with PI.
The only relevant change is that equilibria for low or high densities of cooperators are never homogeneous,
as there is a percentage of the population that chooses the wrong action. Other than that, in this case the
situation is basically the same with a range of densities converging to an intermediate amount of cooperators.

4 Analysis of global welfare

Having found the equilibria selected by different evolutionary dynamics, it is interesting to inspect their
corresponding welfares (measured in term of average payoffs). We can again resort to the mean field approx-
imation to approach this problem.

Best-shot game. In this case the payoff of player i is given by eq. (1): πi = Θ(yi − 1) − c xi. Within
the mean field approximation, for a generic player i with degree ki we can approximate the theta function as
Θ(yi − 1) ≃ ρ+ (1− ρ)[1− (1− ρ)ki ], where the first term is the contribution given by player i cooperating
(xi = 1), whereas, the second term is the contribution of player i defecting (xi = 0) and at least one of i’s
neighbors cooperating (xj = 1 for at least one j ∈ Ni). It follows easily that:

〈π〉 =
∑

k

P (k) {ρ+ (1− ρ)[1 − (1− ρ)k]− cρ}. (22)

If P (k) = δ(k− k̄) then 〈π〉 = 1−cρ−(1−ρ)k̄+1, whereas, if P (k) = k̄k e−k̄/k! then 〈π〉 = 1−cρ−(1−ρ)e−ρk̄.
We recall that in the simple case where players do not make mistakes (ǫ = 0), PI leads to a stationary
cooperation level ρ ≡ 0, which corresponds to 〈π〉 = 0. On the other hand, with BR the stationary value of
ρs is given by eqn. (10) or (11), both leading to 〈πs〉 = 1−cρs−ρs(1−ρs). As long as ρs < c, it is 〈πs〉 > 1−c
(the payoff of full cooperation). We thus see that under BR players are indeed able to self-organize into
states with high values of welfare in a non-trivial manner.

Coordination game. Now player i’s payoff is given by eq. (2): πi = (αxNi
− c)xi. Again within the

mean field framework we approximate the term xNi
as ρki, and we immediately obtain:

〈π〉 =
∑

k

P (k) ρ{αρk − c} = ρ(αρk̄ − c). (23)

〈π〉 is thus a convex function of ρ, which (considering that 0 ≤ ρ ≤ 1) attains its maximum value at ρ = 0
when α < απ := c/k̄, and at ρ = 1 for α > απ. Recalling that, in the simple case ǫ = 0, both with PI and
BR there are two different stationary regimes (ρ → 0 for α ≪ αc = c/(ρ0k̄) and ρ → 1 for α ≫ αc), we
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immediately see that for α > αc > απ the stationary state ρ = 1 maximizes welfare, and the same happens
for α < απ with ρ = 0. However, in the intermediate region απ < α < αc the stationary state is ρ = 0 but
payoffs are not optimal.

5 Extension: higher heterogeneity of the network

In the two previous sections, we have confined ourselves to the case in which the only information about
the network we use is the mean degree, i.e., how many neighbors players are going to interact with on
average. However, in many cases we may consider information on details of the network, such as the degree
distribution, and this is relevant as most networks of a given nature (e.g., social) are usually more complex
and heterogeneous than Erdös-Rényi random graphs. The heterogeneous mean field (HMF) [16] technique
is a very common theoretical tool [36] to deal with the intrinsic heterogeneity of networks. It is the natural
generalization of the usual mean field (homogeneous mixing) approach to networks characterized by a broad
distribution of the connectivity. The fundamental assumption underlying HMF is that the dynamical state of
a vertex depends only on its degree k. In other words, all vertices having the same number of connections have
exactly the same dynamical properties. HMF theory can be interpreted also as assuming that the dynamical
process takes place on an annealed network [36], i.e., a network where connections are completely reshuffled
at each time step, with the sole constraints that both the degree distribution P (k) and the conditional
probability P (k|k′) (i.e., the probability that a node of degree k′ has a neighbor of degree k, thus encoding
topological correlations) remain constant.

Note that in the following HMF calculations we will concern ourselves with the deterministic case in which
no mistakes are made (ǫ = 0), as otherwise the HMF equations become intractable, making it impossible
to compare with the simpler mean field setup. Additionally, we will always assume that our network is
uncorrelated, i.e., P (k′|k) = k′P (k′)/k̄. This is consistent with our minimal informational setting, meaning
that it represents the most natural assumption we can make.

5.1 Best-shot game

5.1.1 Proportional imitation

In this framework, considering more complex network topologies does not change the results we found before,
and we again find a final state that is not a Nash equilibrium, namely full defection:

Proposition 4. In the HMF setting, under PI dynamics, when ǫ = 0 the final state for the population
is the absorbing state with a density of cooperators ρ = 0 (full defection) except if the initial state is full
cooperation ρ0 = 1.

Proof. The HMF technique proceeds by building the k-block variables: we denote by ρk the density of
cooperators among players of degree k. The differential equation for the density of cooperators ρk is:

ρ̇k/q = (1− ρk)
∑

k′

ρk′P (k′|k)Pk k′

D→C − ρk
∑

k′

(1− ρk′ )P (k′|k)Pk k′

C→D (24)

The first term is the probability of picking a defector of degree k with a neighboring cooperator of degree
k′ times the probability of imitation (all summed over k′), whereas, the second term is the probability of
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picking a cooperator of degree k with a neighboring defector of degree k′ times the probability of imitation
(again, all summed over k′). For the best shot game, when ǫ = 0, we have:

Pk k′

C→D = c Pk k′

D→C = 0 ∀k, k′

We now introduce these values in eq. (24) and, using the uncorrelated network assumption, we arrive at:

ρ̇k/q = −cρk
∑

k′

(1− ρk′)
k′P (k′)

k̄
= −c(1−Θ)ρk (25)

where we have introduced the variable

Θ :=
∑

k′

k′P (k′)ρk′/k̄. (26)

The corresponding differential equation for Θ reads

Θ̇ =
∑

k

kP (k)ρ̇k/k̄ = −qcΘ(1−Θ), (27)

and its solution has the same form of eq. (7):

Θ(t) = [1 + (Θ−1
0 − 1) exp(cqt)]−1 (28)

with Θ0 ≡ ρ0 as ρk(t = 0) = ρ0. Hence Θ(t) → 0 for t → ∞ which implies ρk(t) → 0 for t → ∞ and ∀k. �
Remark 12: For the best-shot game with PI, the particular form of the degree distribution does not

change anything. The outcome of evolution still is full defection, thus indicating that the failure to find
a Nash equilibrium arises from the (bounded rational) dynamics and not from the underlying population
structure. Again, this suggests that imitation is not a good procedure for the players to decide in this kind
of games.

5.1.2 Best response

Always within the deterministic scenario with ǫ = 0, for the case of best response dynamics the differential
equation for each of the k-block variables ρk has the same form as eq. (9) above, where now to evaluate
Qk[πC > πD] we have to consider the particular values of neighbors’ degrees. As before, we consider the
uncorrelated network case and introduce the variable Θ from eq. (26). We thus have

Qk[πC > πD] =

[

∑

k′

(1− ρ′k)P (k′|k)
]k

= (1−Θ)k, (29)

and
ρ̇k/q = −ρk Qk[πC < πD] + (1 − ρk)Qk[πC > πD] = (1−Θ)k − ρk. (30)

The differential equation for Θ is thus:

Θ̇/q = −Θ+
∑

k

(1−Θ)kkP (k)/k̄ (31)
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Figure 2: Asymptotic value of the cooperator density for the best-shot game with BR dynamics for Erdös-
Rényi and scale-free random graphs (with kmin = 3 and varying γ): ρs, vs the average degree k̄, obtained
by numerically solving eq. (31)

whose solution depends on the form of degree distribution P (k). Nevertheless, the critical value Θs such
that the right-hand side of eq. (31) equals zero is also in this case the attractor of the dynamics.

Remark 13: In order to assess the effect of degree heterogeneity, we have plotted in Fig. 2 the numerical
solution for two random graphs, an Erdös-Rényi graph with a homogeneous degree distribution, and a scale-

free graph with a much more heterogeneous distribution P (k) = (γ−1)k
(γ−1)
min /kγ . In both cases, the networks

are uncorrelated so our framework applies. As we can see from the plot, the results are not very different,
and they become more similar as the average degree increases. This is related on one hand to the particular
form of Nash equilibria for strategic substitutes, where cooperators are generally the nodes with low degree,
and on the other hand to the fact that the main difference between a homogeneous and a scale-free P (k) lies
in the tail of the distribution. In this sense, the nodes with the highest degrees (that can make a difference)
do not contribute to Θs and thus their effects on the system is negligible.

5.2 Coordination game

Unfortunately, for the coordination game, working in the HMF framework is much more complicated, and
we have been able to gain only qualitative but important insights on the system’s features.

5.2.1 Proportional imitation

The average payoffs of cooperating and defecting for players with degree k are:

πk
D = 0 ∀k ; πk

C = αk

[

∑

k′

P (k′|k)ρk′

]

− c = αkΘ − c

where Θ is the same as defined in eq. (26).
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We then use our starting point for the HMF formalism, eq. (24), where now the probabilities of imitation
are:

Pk k′

D→C = (πk′

C − πk
D)Q(πk′

C > πk
D) = (αk′Θ− c)Q(πk′

C > 0)/Φ

Pk k′

C→D = (πk′

D − πk
C)Q(πk′

D > πk
C) = −(αkΘ− c)

[

1−Q(πk
C > 0)

]

/Φ

Once again within the assumption of an uncorrelated network, we find:

Φρ̇k/q = (1−ρk)
∑

k′

ρk′

k′P (k′)

k̄
(αk′Θ−c)Q(πk′

C > 0)+ρk
∑

k′

(1−ρk′)
k′P (k′)

k̄
(αkΘ−c)

[

1−Q(πk
C > 0)

]

(32)

In the second term we can carry out the sum over k′, which yields
∑

k′ (1− ρk′)k′P (k′)/k̄ = 1− Θ. We are
now ready to write the differential equation for Θ:

Φk̄Θ̇/q =
∑

k

kP (k)ρ̇k/q =
∑

k

kP (k)(1− ρk)
∑

k′

ρk′

k′P (k′)

k̄
(αk′Θ− c)Q(πk′

C > 0)

+
∑

k

kP (k)ρk(1−Θ)(αkΘ − c)
[

1−Q(πk
C > 0)

]

(33)

Carrying out the summation over k in the first term (which results again in 1 − Θ), and relabeling k′ as k
we are left with

Φk̄Θ̇/q =
∑

k

kP (k)ρk(1−Θ)(αkΘ − c)Q(πk
C > 0) +

∑

k

kP (k)ρk(1−Θ)(αkΘ− c)
[

1−Q(πk
C > 0)

]

=
∑

k

kP (k)ρk(1−Θ)(αkΘ − c) = (1−Θ)Θ

[

α
∑

k

k2P (k)ρk − ck̄

]

. (34)

Finally, introducing the new variable

Θ2 :=
∑

k′

(k′)2P (k′)ρk′/k̄ (35)

we arrive at:
ΦΘ̇/q = (1 −Θ)Θ(αΘ2 − c) (36)

Remark 14: While is it difficult to solve eq. (36) in a self-consistent way, qualitative insights can be
gained by defining αc = c/Θ2. For α < αc the stable equilibrium is Θ = 0, whereas, for α > αc the attractor
becomes Θ = 1. The transition between the two regimes lies at α = αc. Note that Θ2 is basically the second
momentum of the degree distribution, where each degree k is weighted with the density ρk. Recalling that
〈k2〉 may diverge for highly heterogeneous networks (for instance, it diverges for scale-free networks with
γ < 3), and that for the coordination game cooperation is more favorable for players with many neighbors
(hence ρk ≃ 1 for high k), we immediately see that in these cases Θ2 diverges as well (as the divergence is
given by nodes with high degree). Thus, while the product αcΘ2 remains finite (and equal to c), αc → 0 to
compensate for the divergence of Θ2 (Figure 3). We can conclude that, in networks with broad P (k) and
in the limit n → ∞, cooperation emerges also when the incentive to cooperate (α) vanishes. This is likely
to be related to the fact that as the system size goes to infinity, so does the number of neighbors of the
largest degree nodes. This drives hubs to cooperate, thus triggering a non-zero level of global cooperation.
However, if the network is homogeneous, neither 〈k2〉 nor Θ2 diverge, so that αc remains finite and the fully
defective state appears also in the limit n → ∞.
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Figure 3: Coordination game with PI dynamics for scale-free networks (with γ = 2.5, kmin = 3 and
kmax =

√
n): stationary cooperation levels ρ∞ vs αΘ2 for various system sizes n. The vertical solid line

identifies the critical value of αcΘ2 = c.

5.2.2 Best response

For BR dynamics, we would have to begin again from the fact that the differential equation for each of
the k-block variables ρk has the same form of eq. (18). We would then need to evaluate Qk[πC > 0] =
∑k

l=[c/α]+1

(

k
l

)

[
∑

k′ ρk′P (k′|k)]l[1−∑

k′ ρk′P (k′|k)]k−l =
∑k

l=[c/α]+1

(

k
l

)

Θl(1−Θ)k−l. As in the homogeneous
case, such expression is difficult to treat analytically. Alternatively, we can perform the approximation of
setting Qk[πC > 0] = Q[αkΘ > c], i.e., we approximate Qk[πC > 0] with a Heaviside step function with
threshold in c/(αk). This leads to:

ρ̇k/q = −ρk for k < c/(αΘ) (37)

ρ̇k/q = −ρk + 1 for k > c/(αΘ) (38)

Θ̇/q = −Θ+
∑

k>c/(αΘ)

kP (k)/k̄ (39)

and to the following self-consistent equation for the equilibrium Θs:

Θs =
∑

k>c/(αΘs)

kP (k)/k̄ (40)

whose solution strongly depends on the form of degree distribution P (k). Indeed, if the network is highly
heterogeneous (e.g., a scale-free network with 2 < γ < 3), it can be shown that Θs is a stable equilibrium
whose dependence on α is of the form Θs ∼ α(γ−2)/(3−γ), i.e., there exists a non-vanishing cooperation level
Θs no matter how small the value of α. However, if the network is more homogeneous (e.g., γ > 3), Θs

becomes unstable and for α → 0 the system always falls in the fully defective Nash equilibria. Another
important characterization of such system comes from considering eq. (37) and eq. (38): we have ρk → 0
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when k < c/(αΘs) and ρk → 1 for k > c/(αΘs). In this sense, we find a qualitative agreement between the
features of our equilibria and those found by Galeotti et al. [4], in which players’ actions show a monotonical,
non-decreasing dependence on their degrees.

6 Conclusion

In this paper, we have presented two evolutionary approaches to two paradigmatic games on networks,
namely the best-shot game and a coordination game as representatives, respectively, of the wider classes of
strategic substitutes and complements. As we have seen, when the available information is very little, we
have been able to prove a number of rigorous results and otherwise to get good insights on the outcome of
the evolution.

Proceeding in order of increasing cognitive demand, let us first summarize what we have learnt about PI
dynamics, equivalent to replicator dynamics in a well-mixed population. For the case of the best-shot game,
this dynamics has proven unable to serve as a refinement of Nash equilibria, as it always leads to outcomes
that are not Nash equilibria. On the other hand, the asymptotic states obtained for the coordination game
are Nash equilibria and constitute indeed a drastic refinement. We believe that the difference between these
results arises from the fact that PI is an imitative dynamics and in a context such as the best-shot game,
in which equilibria are not symmetric, this leads to players imitating others who are playing ”correctly” in
their own context but whose action is not appropriate for the imitator context. In the coordination game,
where the equilibria should be symmetric, this is not a problem and we find equilibria characterized by an
homogeneous action except in a few specific situations.

When going to a more demanding evolutionary rule, BR does lead by construction to Nash equilibria—
when players are fully rational and do not make mistakes. We are then able to obtain predictions on the
average level of cooperation for the best-shot game but still many possible equilibria are compatible with that
value. Predictions are less clear for the case of coordination, due to the fact that in an intermediate range
of initial conditions equilibria with finite densities of cooperators are found. The general picture remains
the same in terms of finding full defection or full cooperation for low or high initial cooperation, but this
intermediate region proves much more complicated to analyze.

Finally, we have probed into the issue of degree heterogeneity by considering more complex network
topologies. Generally speaking, the results do not change much, at least qualitatively, for any of the dynamics
applied to the best-shot game. The coordination game is more difficult to deal with in this context but we
were able to show that, when when the number of connections is very heterogeneous, cooperation may obtain
even if the incentive for cooperation is very small. In any event, from what we have been able to learn, our
results tend to indicate that the dynamics is much more relevant than the network structure in determining
the result of the evolutionary process.
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[5] Bramoullé Y, Kranton RE (2007) J. Econ. Theory 135, 478-494.

[6] Boncinelli L, Pin P (2012) Games Econ. Behav. 75 (2), 538-554.

[7] Helbing D (1992) Physica A 181, 29-52 (1992).

[8] Schlag K (1998) J. Econ. Theory 78(1), 130-156.

[9] Levine DK, Pesendorfer W (2007) Games Econ. Behav. 58, 293-315.

[10] Gintis H (2009) Game Theory Evolving (Princeton: Princeton University Press).

[11] Borgers T, Sarin J (1997) J. Econ. Theory 77, 1-15.

[12] Matsui A (1992) J. Econ. Theory 57, 343-362.

[13] Blume LE (1993) Games Econ. Behav. 5, 387-424.
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[18] Ballester C, Calvó-Armengol A, Zenou Y (2006) Econometrica 74, 1403-1417.
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