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Abstract

The present study was designed to investigate the brain functional architecture that subserves visuo-spatial and
motor processing in highly skilled individuals. By using functional magnetic resonance imaging (fMRI), we measured
brain activity while eleven Formula racing-car drivers and eleven ‘naïve’ volunteers performed a motor reaction and a
visuo-spatial task. Tasks were set at a relatively low level of difficulty such to ensure a similar performance in the two
groups and thus avoid any potential confounding effects on brain activity due to discrepancies in task execution. The
brain functional organization was analyzed in terms of regional brain response, inter-regional interactions and blood
oxygen level dependent (BOLD) signal variability. While performance levels were equal in the two groups, as
compared to naïve drivers, professional drivers showed a smaller volume recruitment of task-related regions,
stronger connections among task-related areas, and an increased information integration as reflected by a higher
signal temporal variability. In conclusion, our results demonstrate that, as compared to naïve subjects, the brain
functional architecture sustaining visuo-motor processing in professional racing-car drivers, trained to perform at the
highest levels under extremely demanding conditions, undergoes both ‘quantitative’ and ‘qualitative’ modifications
that are evident even when the brain is engaged in relatively simple, non-demanding tasks. These results provide
novel evidence in favor of an increased ‘neural efficiency’ in the brain of highly skilled individuals.
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Introduction

Selected populations of individuals achieve very high levels
of skills and performance in fields ranging from arts to sport
activities as a consequence of intensive training and, probably,
of some genetic predisposition [1]. Brain functional studies
have begun to indicate that skill acquisition in different
perceptual, motor or cognitive domains may be associated with
response modifications, either in extension or magnitude, in
task-associated brain areas [2-4]. Specifically, these
modifications include both increased or decreased response in
task-related regions, which may also be differentially combined,

giving rise to distinct patterns of cortical functional
reorganization [3]. The expansion of sensory and/or motor
topographic representations, such as in the prototypical cases
of the auditory and motor cortex of musicians, are well-known
examples of practice-related increased responses [5,6]. On the
other hand, a reduction in neural response has been observed
both in longitudinal studies investigating the effects of cognitive
or motor learning [7,8] and in experiments comparing novices
and distinct categories of experts and skilled individuals, such
as golf players or archers [9-16]. While a decrease in brain
response can be interpreted as a sign of enhanced efficiency in
regional resource utilization, a number of studies also reported
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a reallocation of neuronal resources based on both a
decreased response in cognitive control areas and an
enhanced activity in other brain regions (reviewed in 2,4). For
instance, an increased activity within the so called ‘default
mode network’ regions [17] has been shown [4]. As the default
mode network represents a system of interconnect brain areas
that are more active during ‘internal’ rather that ‘external’ tasks
(e.g., mind-wandering, memories recollection or envisioning of
the future [18,19]), these findings suggest that neural efficiency
may be associated with a greater automaticity and a reduced
attentive load during task execution [4].

Moreover, functional and effective connectivity analyses
revealed that these functional changes in brain response may
be accompanied also by modifications in the way task-related
regions interact, usually with a strengthening of the essential
couplings and a pruning of the ‘unnecessary’ ones [20-26].

Altogether, these observations support the so called ‘neural
efficiency’ hypothesis, which postulates a more efficient cortical
functioning based on both a reduced utilization of resources
and an improvement in information processing, thanks to a
better communication between task-related brain areas, in
expert/skilled as compared to ‘ordinary’ individuals [15,27-29].
Interestingly, studies exploring age-related functional changes
during distinct perceptual and cognitive tasks revealed
complementary findings, demonstrating that healthy older
individuals often recruit a greater volume of brain cortical areas
[30-32] and show a reorganization of associated functional
networks [33,34], as compared to younger adults. These
modifications are commonly interpreted as an attempt of the
brain to compensate for an age-related impairment in neural
efficiency [35,36]. Furthermore, older individuals are
characterized by a reduction in blood oxygen level-dependent
(BOLD) signal temporal variability [37], a measure regarded as
a marker of complexity of information integration and functional
efficiency [37-40].

While we begin to know the functional changes that
accompany practice in specific tasks, to our knowledge no
study has explored yet the brain functional correlates
associated with exposure to extreme training and competing
conditions, like those involved in high speed car-racing. As a
matter of fact, this sport discipline exposes to some of the most
demanding conditions one can imagine the human brain to
endure, requiring exceptional skills in terms of visuo-spatial
processing, motor control, decision making and sustained
attention. Top-level Formula racing-car drivers ordinarily
undergo intensive psychophysical training and are exposed to
extreme competitive conditions (e.g., accelerations 0-100 km/h
in 1.7 s, top speeds up to 360 km/h, need for high
concentration levels and precise sensory-motor control, etc.),
which unquestionably represent a huge effort for both their
body and brain. In addition, most of them have a history of
‘high-speed activities’ (e.g., go-kart or motor racing) since a
very young age, when brain plasticity is at its maximum [41].

Thus, the present study was designed to assess the brain
functional correlates associated with visuo-spatial and motor
processing in a group of elite Formula racing-car drivers.
Specifically, we hypothesized that visuo-spatial and motor
processing in these highly skilled individuals would be

associated with a significantly more efficient use of brain
resources in comparison with a matched group of untrained
‘naïve’ drivers. To test this hypothesis, functional Magnetic
Resonance Imaging (fMRI) was used to measure brain activity
while professional and naïve drivers performed a motor
reaction task and a multiple target pursuit (visuo-spatial) task.
These tasks required relatively simple perceptual and motor
skills in order to avoid any performance differences between
the two groups and consequent biases on neural response
[42]. To evaluate potential differences in brain functional
efficiency between the two groups, we measured both cortical
regional brain response and patterns of inter-regional
interactions, as well as regional levels of BOLD signal temporal
variability.

Material and Methods

Subjects
Eleven professional (mean age ± S.D. = 24 ± 4 years) and

11 naïve (28 ± 4 years, p= n.s.) car drivers were studied. All
subjects were right-handed healthy males. Professional car
drivers were recruited through the Formula Medicine® group
(Viareggio, Italy), were actively participating in a professional
Formula racing tournament (as Formula One Championship,
World Series, Formula 3, etc.) at the time of the study, and had
a minimum of four years of expertise in amateur and/or
professional racing. All participants received medical,
neurological and psychiatric examinations, and laboratory
exams, including blood tests and a structural brain MRI scan
exam, to rule out history or presence of any disorder that could
affect brain function and development. No participant was
taking any medication.

Ethics Statement
All volunteers gave their written informed consent after the

study procedures and risks involved had been explained. The
study was conducted under a protocol approved by the
University of Pisa Ethical Committee (protocol n. 1616/2003),
and was developed in accordance with the Protocol of Helsinki
(2008). All participants retained the right to withdraw from the
study at any moment.

Image Acquisition
Functional data were acquired on a GE Signa 1.5 Tesla

scanner (General Electric, Milwaukee, WI) using following
parameters: repetition time = 2,500 ms, 21 axial-slices, slice
thickness = 5 mm, field of view = 24 cm, echo time = 40 ms, flip
angle = 90°, image plane resolution = 128 x 128. Subjects were
presented with a six run block design study including randomly-
alternated motor reaction and visuo-spatial tasks. Every run
was constituted by three task blocks (each 60 s duration)
alternated with two inter-task intervals (ITI, each 25 s duration).
Each time series began and ended with 25 s of no stimuli,
similarly to the ITI. For each subject, we obtained 2-3 time
series of 112 brain volumes (280 s) for the motor reaction task
and 3 time series for the visuo-spatial task. Visual stimuli were
presented on a rear projection screen viewed through a mirror
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(visual field: 25° wide and 20° high). Before the fMRI scanning,
subjects assisted to a demonstrative session to become
familiar with the task procedure. To enhance compliance and
participation in the tasks, the experiment was presented as a
competition, in which recorded performances would be used to
measure individual abilities and to establish a ranking.

For each subject we also obtained a high-resolution T1-
weighted spoiled gradient recall image (134 slices, slice
thickness = 1 mm, echo time = 3.8 ms, repetition time = 20 ms,
flip angle = 15°, field of view = 22 cm) to provide detailed brain
anatomy for functional data localization.

Motor Reaction Task
During the motor reaction task, the visual stimulus

reproduced a starting grid light on a gray background, and was
constituted by five red circles arranged horizontally that turned
to green after a random delay comprised between 2 and 4 s
(Figure 1a). This condition was repeated ten times for each
task-block (total block duration of 60 s; 24 brain volumes per
block). Participants were asked to fixate a white static central
cross (0.15° x 0.15°) and to use their right thumb to press a
response button held in their right hand as rapidly as possible
when the starting grid color turned to green. Reaction times,
defined as the time from the stimulus onset to the key-button
response, were automatically recorded. The intervals between
the blocks presented a 25 s static image with the white fixation
cross on the gray background. We collected 2-3 time series for
each subject of the two experimental groups, with the
exception of a professional driver that was excluded for
technical problems during image acquisition (thus data were
acquired in 11 naïve and 10 professional car drivers). Stimulus
presentation was handled by using the software package
Presentation (http://www.neurobehavioralsystems.com).

Figure 1.  Experimental paradigm.  Every run was constituted
by three task blocks (each 60 s duration) alternated with two
inter-task intervals (ITI, each 25 s duration). During the Motor
Reaction task (a), subjects had to press a button as quick as
possible when the red light turned green (random delay
comprised between 2 and 4 s). During the Visuo-spatial task
(b) volunteers were required to press a button when one of the
moving balls entered the color-matched circle.
doi: 10.1371/journal.pone.0077764.g001

Visuo-Spatial Task
During this visuo-spatial task, subjects were asked to

observe a left-sided red and a right-sided blue circle inside a
white ‘billiard table-like’ frame, arranged horizontally on a black
background (Figure 1b). Two red and two blue balls moved
randomly within the ‘billiard’, and participants had to press a
left-hand or a right-hand held button when a ball run inside the
color-matched circle. A vertically moving small green ‘barrier’
was also present in the center of the frame to interfere with the
movement of the colored balls. All subjects responded using
their left thumb for the red circle/target and their right thumb for
the blue circle/target. For each subject, correct, wrong and
missed answers were automatically recorded. As in the motor
reaction task, in each run, three 60 s long task-blocks were
separated by 25 s of static billiard frame. Stimulus presentation
was handled by using the software Formula Test 2003
(Maxisoft®, Massa, Italy).

Behavioural Data Analysis
Behavioural data analyses were carried out using StatView

software 5.0 (SAS Institute Inc.). In the visuo-spatial task, error
rates, defined as percent of errors on the total given responses,
were taken as an estimation of individual task accuracy.
Reaction times collected during the motor reaction task and
error rates relative to the visuo-spatial task were used in
unpaired two-tailed t-tests to search for differences in
performance between the two experimental groups.

Functional Images Analysis
We used AFNI and SUMA software packages to preprocess,

analyze and view functional imaging data (http://
afni.nimh.nih.gov/afni; [43]). For the two tasks, all volumes
obtained in the respective runs were concatenated and
coregistered (3dvolreg), temporally aligned (3dTshift), and
spatially smoothed (FWHM = 6 mm). Individual run data were
normalized by calculating the mean intensity value for each
voxel during resting baseline timepoints, and by dividing the
value within each voxel by this averaged baseline to estimate
the percent signal change at each time point.

Multiple regression analyses were performed to
independently identify brain regions significantly involved in the
motor reaction and visuo-spatial task (3dDeconvolve), by
modeling each type of condition with a separate regressor,
obtained by convolution of the task with a standard
hemodynamic response model. The six movement parameters
derived from the volume registration and the polynomial
regressors accounting for baseline shifts and linear/quadratic
drifts in each scan series were included in the multiple
regression analysis as regressors of no interest.

Individual unthresholded responses for each of the stimuli of
interest were transformed into the Talairach and Tournoux
Atlas [44] coordinate system, and resampled into 1 mm3 voxels
for group analyses. Activations were anatomically localized on
the naïve and professional group-averaged Talairach-
transformed T1-weighted images, and visualized using
normalized SUMA surface templates.

We used a mixed-effect meta-analysis approach (3dMEMA)
for group analysis by using the unthresholded-weights of each
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condition of interest to construct T contrasts and identify both
significant pattern of neural response during each task
(equivalent to one-sample group t-tests) and significant
differences between the two groups (equivalent to a two-tailed
unpaired t-tests). The MEMA approach assigns the weight of
each subject contribution in the final result based on the
precision of the β estimation from each subject, so determining
a gain in statistical power for the group effect of interest at most
regions, and less spurious isolated voxels in the final results
[45]. This method has been demonstrated to be more robust
against outliers and more reliable in experiments with a
relatively small number of subjects when compared to
conventional group analysis approaches [45].

The correction of both the one sample group t-maps and the
unpaired t-contrasts for multiple comparisons across whole
brain was made using Monte-Carlo simulations run via
AlphaSim in AFNI with a voxelwise threshold p < 0.005 that
resulted in a minimum cluster volume of 561 mm3 (cluster
connection radius 1.73 mm) for a corrected p value < 0.05 at a
cluster level.

Multivariate Autoregressive Analysis
We computed a connectivity analysis based on a multivariate

autoregressive model [46-49] to investigate task-related brain
networks and identify potential differences between the naïve
and professional driver groups. This analysis was carried out
using the 1dGC program included in the AFNI package [49,50].
For each of the two tasks, we identified a set of ‘core’ regions
of interest (ROIs) consistently activated in both naïve and
professional drivers, using the following procedure: (i) group
functional results were thresholded using a conservative
statistical threshold (uncorrected voxel-wise p < 10-5, minimum
cluster size of 100 mm3) and used to compute a conjunction
activation map (logical AND); (ii) an across-group activation
index was computed within the identified ‘common regions’ by
averaging the coefficients of the two groups on a voxel by voxel
basis; (iii) the ‘maxima’ function available in AFNI was used to
draw 5 mm radius spheres centered on the more robust
across-group activation peaks separated by at least 40 mm
(this value was chosen arbitrarily to obtain a number of ROIs
comprised between 5 and 15). For each subject and ROI,
concatenated task-related BOLD timeseries were extracted
and used to compute connectivity networks at a single subject
level. Applied preprocessing steps included slice timing
correction, spatial smoothing for noise reduction, and signal
normalization for each segment. The covariates used as input
for the model included the six movement parameters, a
polynomial function modeling the BOLD drifting effect and the
gray-matter signal. A lag order of one TR was chosen,
according to the Schwarz information criterion for model
selection. Finally, obtained path coefficients (indicative of both
strength and direction of the temporal relation between ROIs)
and corresponding t-statistics were used in a linear mixed-
effect multilevel model to compute a group comparison for
each task (p < 0.05).

BOLD Variability Analysis
The mean squared successive difference (MSSD) [51,52]

has been adopted as a measure of temporal variability of the
BOLD response. The MSSD is based on differences between
successive observations and, for this reason, is more
appropriate than the Standard Deviation (SD - based on the
difference between single observations and the overall mean)
to evaluate temporal variability in experiments with different
task conditions [52].

Data preprocessing included slice timing and motion
correction, spatial normalization and smoothing with a 6 mm
Gaussian kernel. In addition, voxel time series were further
adjusted by regressing out motion correction parameters, a
polynomial function modeling the BOLD drifting effect and
white matter (WM) and cerebrospinal fluid (CSF) timeseries
[37]. WM and CSF time courses were extracted from two small
(1 voxel radius) ROIs respectively located in corpus callosum
and ventricles of the ‘common template’ obtained by merging
spatially normalized anatomical images of all subjects. To
optimize MSSD computation on our system, preprocessed
functional data were resampled to obtain 3 mm3 voxels. For
each individual run, MSSD was computed over the entire
preprocessed activation time course using a custom built
function in MATLAB (The MathWorks, Inc.).

For each subject, obtained MSSD values were averaged
across different runs of the same task and an unpaired t-test
was used to look for any potential differences between
professional and naïve drivers (significance threshold was set
at corrected p < 0.05, obtained with a voxelwise threshold of p
= 0.05 and a minimum cluster volume of 158 voxels).

Results

Behavioral Results
Professional and naïve car drivers showed no significant

differences in performance neither in the motor reaction task
(mean reaction time equals to 190.0 ± 28.6 ms and 190.1 ±
32.7 ms, respectively; T(1,19) = -0.08; p = n.s.; Figure 2a), nor in
the visuo-spatial task (mean error rates were 18.8% ± 9.2 and
21.2% ± 8.2, respectively; T(1,18) = 0.70; p = n.s.; Figure 2b), as
attended given the experimental task design.

Task related functional brain responses
During the motor reaction task, both naïve and professional

drivers recruited a network of bilateral cerebral regions,
including middle and inferior frontal cortex, insula, striatum,
cerebellum, cingulate, sensorimotor, temporo-occipital and
parietal cortex (Figure 3a). In a mixed-effect analysis, as
compared to professional drivers, naïve controls showed a
significantly (p < 0.05, whole brain corrected) stronger
response in right postcentral cortex, left precentral area, left
precuneus, left inferior and superior parietal lobules (Figure
3b).

During the visuo-spatial task, both groups engaged a
network of bilateral regions, including middle and inferior frontal
cortex, insula, striatum, cerebellum, cingulate, sensorimotor,
temporo-occipital and parietal cortex (Figure 3a). Moreover, as
compared to professional drivers, naïve subjects showed a
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significantly (p < 0.05, whole brain corrected) greater and more
extensive response in supplementary motor area (SMA), left
middle frontal and precentral cortex, bilateral inferior parietal
lobule, right superior parietal, and postcentral cortex,
cerebellum, and bilateral striatum (Figure 3b). Additionally,
naïve drivers showed a significantly greater reduction of BOLD
response in the right temporopolar area as compared to
professional car drivers.

The Talairach coordinates for the regions that showed a
significantly different activation between the two groups during
the motor reaction and visuo-spatial task are listed in Table S1.

Brain functional networks
A multivariate autoregressive analysis was used to search

for differences between task-related networks in professional

Figure 2.  Behavioural results.  Behavioural performance of
professional (red) and naïve (blue) drivers during the motor
reaction task (a) and the visuo-spatial task (b). Average
reaction time and mean error rate (± SE) are shown in the
graphs. No significant differences between the two groups
have been observed.
doi: 10.1371/journal.pone.0077764.g002

and naïve car drivers. Specifically, we identified two sets of
‘core’ regions of interest (ROIs) on across-group activation
peaks: SMA, bilateral insula, bilateral inferior occipital cortex
and cerebellum, for the motor reaction task; bilateral dorsal
premotor cortex (dPM), bilateral human middle temporal cortex
(hMT), right precuneus, left insula, cerebellum and thalamus for
the visuo-spatial task. The Talairach coordinates of included
ROIs are listed in Table S2.

During both tasks, the connectivity analysis demonstrated
numerous stronger (p < 0.05) connections in professional
drivers brain networks as compared to naïve drivers (Figure 4).
Specifically, during the motor reaction task, activity in SMA
predicted subsequent activation in bilateral insula, and activity
in right insula predicted activation in right inferior occipital
cortex to a significantly greater extent in professional drivers
than in the control group (Figure 4a). Similarly, during the

Figure 3.  Brain activation results.  (a) Brain activations in
left (top) and right (bottom) hemispheres of professional (blue/
yellow scale) and naive (gray shadow) drivers during motor
reaction (1st column) and visuo-spatial (2nd column) tasks
computed at whole brain corrected p < 0.05. (b) Left (top) and
right (bottom) hemispheres activation contrast maps for the two
tasks, where blue color corresponds to regions significantly
more activated in naive as compared to professional drivers,
while red color corresponds to regions significantly more
activated in the professional drivers group (p < 0.05, whole
brain corrected).
doi: 10.1371/journal.pone.0077764.g003
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visuo-spatial task, professional drivers showed stronger
correlations between right hMT+ and left hMT+, right hMT+ and
left dPM, left superior parietal cortex and left hMT+, and
between right dPM and right hMT+. Moreover, we observed
significantly stronger negative correlations between the right
precuneus and the right dPM the thalamus and the cerebellum,
in professional as compared to naïve drivers (Figure 4b).

The group mean path coefficients observed during the motor
reaction and the visuo-spatial task are listed in Table S3 and
S4, respectively.

BOLD signal temporal variability
During both the motor reaction and the visuo-spatial tasks,

professional, as compared to naïve, drivers showed a

Figure 4.  Connectivity Group Comparisons.  Statistical map
of between group comparisons derived from path coefficients
and t-statistics obtained using multivariate autoregressive
analysis (MAR) during (a) the motor reaction and (b) the visuo-
spatial task. Red and blue arrows respectively indicate
significantly greater positive and negative influence on target
regions for which a within group effect was also present (p <
0.05). Here are shown connections that were significantly
stronger in professional as compared to naïve drivers (we
observed no stronger connections in this latter group).
doi: 10.1371/journal.pone.0077764.g004

significantly higher BOLD signal temporal variability (p < 0.05,
whole brain corrected) in distinct cortical regions, while no area
showed any increased MSSD in the naïve drivers (Figure 5).
Specifically, in both tasks, professional drivers showed a
greater variability in medial visual areas and posterior cingulate
cortex. In addition, in the visuo-spatial task, professional drivers
showed differences also in areas including cingulate cortex,
bilateral medial and middle frontal areas, right insula and
bilateral occipital cortex.

Discussion

The present study was designed to investigate the brain
functional organization in a sample of top-level professional
racing-car drivers, whose brain is required to process visuo-
spatial and motor information at a degree that is far beyond the
highest level that may arise under physiological situations. In
fact, these athletes race at very high speed, have to sustain
high concentration levels for extended periods of time, and
must rely on fast and accurate visuo-spatial processing and
motor response. Therefore, we used fMRI to measure brain
functional responses in professional and naïve drivers while
they performed simple motor reaction and visuo-spatial tasks.
Specifically, we questioned how such high-level skills would
affect the brain functional response associated with the
execution of ‘everyday’ tasks that did not require any specific
training or expertise. To this purpose, the experimental tasks
were designed to require basic motor and visuo-spatial abilities
available to everyone, in order to avoid any potential effect due
to a different performance level between the two groups [42].
Indeed, a significantly different level of performance during
more complex tasks would indicate the inability of the lesser
skilled subjects to correctly perform the proposed assignment,

Figure 5.  MSSD Group Comparisons.  MSSD contrast maps
for motor reaction (a) and visuo-spatial (b) task. Yellow/red
regions indicate significantly (p < 0.05, whole brain corrected)
greater BOLD variability in professional as compared to naïve
drivers. No regions showed significantly greater MSSD in naïve
drivers.
doi: 10.1371/journal.pone.0077764.g005
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and therefore would bias any comparison of the neural activity
patterns between the two groups. Behavioral results showed
that, as expected and desired, performance did not differ on
either task between professional and naïve drivers.

Reduced activation in task-related cortical areas in
skilled drivers

During the motor reaction and the visuo-spatial tasks, both
naïve and professional drivers recruited similar distributed
networks of bilateral cortical regions, which included areas
devoted to visuo-spatial processing (occipital, posterior
temporal and parietal cortex), motor control (motor and
premotor areas, striatum and cerebellum), and executive
functions (middle and inferior frontal cortex). Interestingly, while
the observed activation patterns showed a clear spatial overlap
across the two groups, in both tasks, professional drivers
recruited task-related brain areas, including sensorimotor,
parietal, and prefrontal regions, to a significantly smaller extent
as compared to naïve subjects. These findings are in
agreement with results obtained in other skilled groups,
including musicians [53-57], golf players [9,10,12] and pistol
shooters [13,58], and indicate an increased efficiency in
attentional and sensory information processing along with a
reduced ‘resource consumption’ [27,28,59]. However,
increased activations in experts as compared to ordinary
individuals also has been reported [60-63], and a number of
factors have been claimed to play a role in determining these
divergent results, including task complexity and specific
cognitive task requirements [29,64]. For instance, the greater
cortical recruitment during motor imagery or observation of
sport-related activities in divers [62] and archers [60], as
compared to non-athletes, may be explained by the different
confidence of the two groups with the involved motor acts. In
fact, it is now clear that a specific motor expertise is required to
obtain an actual motor representation in the human brain
[65-67]. On the other hand the increased cortical activation in
the archers group during a visuo-spatial working memory task
[61] could be explained by the fact that this task did not directly
reflect the specific skill domain of these athletes [3].

Increased regional correlations during visuo-motor
processing

Measures of connectivity were used to investigate whether
the described differences in the brain functional response were
accompanied by modifications in the way task-related regions
intercommunicate. During both the motor reaction and the
visuo-spatial task, professional as compared to naïve drivers
were characterized by a reinforced connectivity between a
number of task-related areas. In particular, during the motor
reaction task professional drivers revealed an increased
correlation between SMA and bilateral insula, two regions that
play a key role in response inhibition and preparation of motor
acts [68,69]. Similarly, during the visuo-spatial task,
professional drivers showed stronger correlations between a
motion detection devoted area, that is, the human MT complex
[70], and parietal and premotor cortical regions, suggesting an
enhanced information flow during visuo-spatial processing.
These results are consistent with previous experiments

indicating that superior skills or expertise acquisition are
associated with strengthened functional correlations between
brain areas involved in sensory processing and motor control
[20,21,26,58,71,72]. While also opposite or mixed evidence
have been reported, for instance in studies on the functional
correlates of cognitive efficiency in working memory [25], a
commonly accepted explanation for these results is that a
greater neural efficiency may be associated with a
reinforcement of the essential task-related connections and a
pruning of the superfluous ones [29,73]. As a matter of fact,
regions that are not activated during task execution in the
skilled group have a lower probability to show a high degree of
interaction (and thus, of connectivity measures) with other brain
areas. Given these premises, to avoid any potential circularity,
here we focused only on brain regions that were strongly
activated in both groups during each task.

Our connectivity results are consistent with the reduced
regional activation described above, and altogether indicate
that skills and expertise in these professional drivers are
accompanied by relevant brain functional modifications.
Importantly, such a distinct brain functional organization
emerges even during relatively simple visuo-motor tasks that
do not require any specific expertise.

BOLD signal variability as a marker of neural efficiency
A greater temporal variability of BOLD signal, as measured

by using the MSSD statistic, was observed in professional as
compared to naïve drivers during both the motor reaction and
the visuo-spatial tasks. Recently, BOLD signal variability has
been proposed as a novel potential index of ‘brain age’ and
‘operative efficiency’. In fact, younger, better performers exhibit
significantly higher signal variability in a number of brain
cortical areas when compared to older, poorer-performing
individuals [37,38]. Therefore, an increase in temporal
variability may indicate a more sophisticated neural system,
capable to better adapt to rapid changes in environmental
demands, with a more efficient use of cognitive resources
[74,75]. Interestingly, the pattern of MSSD differences
observed in the present study is similar to the one described in
the comparison between young and older individuals [38].
Therefore, our results indicate that brain signal variability may
represent a useful and reliable index not only to distinguish
different age groups but, from a broader perspective, to
individuate more general differences in the quality of brain
operative functioning [39,40,76].

The present findings complement the information obtained
from the comparison of functional brain activity between young
and older adults, as well as from the comparison of healthy and
cognitively impaired older individuals [35,36,77,78]. In fact,
here we explored the ‘opposite direction’ of the spectrum, as
we compared ‘common’ and ‘super-skilled’ young adults. In this
respect, the brain functional correlates observed in the highly
skilled individuals seem to mirror the changes associated with
aging. Indeed, as the brain of younger individuals is
characterized by a greater neural efficiency as compared to
older individuals, the brain of elite athletes, such as
professional racing-car drivers, may be considered someway
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‘younger’ (thus, more efficient) than the one of age-matched
non-athletes.

Neural efficiency and driving behavior
Although the two tasks adopted in the present study did not

comprise any direct performance of (simulated) driving, they
required basilar motor and visuo-spatial abilities that are
fundamental functions for driving behavior. Indeed, while
driving, individuals have to visually monitor the environment
around them to identify potential imminent or forthcoming
dangers, and have to put in place prompt and accurate motor
responses [79]. Consistently, recent functional studies
demonstrated that driving a car requires the recruitment of
brain regions previously associated with functions such as
attention, motor control, visuo-spatial perception and decision
making, including striate and extrastriate cortex, superior and
inferior parietal lobules, lateral prefrontal cortex and sensori-
motor areas [79-82]. As a matter of fact, most of these areas
were also recruited during the two tasks adopted in the present
study, suggesting the possibility of shared anatomical,
functional and cognitive substrates with driving-related
activities. Although to our knowledge no studies yet
investigated the functional differences between every-day
driving and high-speed competitive car-racing, this latter
condition is unquestionably more demanding for the human
brain, mostly due to the extremely high speeds and the
consequent need for a sustained high level of attention and a
very efficient visuo-motor processing. Specifically, these highly
demanding driving conditions, and the associated mental and
physical training activities, may have contributed to the
development of the distinctive functional organization observed
in the present work in professional car racers during simple
motor and visuo-spatial tasks.

Finally, it is worth noting that the concept of neural efficiency,
as it is emerging from the existent literature and the present
work, may have relevant practical implications for many human
activities, including every-day driving. In fact, one can
speculate that neural efficiency could favor an increased
resistance to cognitive fatigue during long tasks because of a
reduced resource consumption (e.g., [83]). In particular, driving
is a complex task in which errors can easily emerge at different
levels, especially when the speed is high and/or a decrease in
attention level is favored by a long and monotonous driving
route [82,84]. In this perspective, future studies should
investigate a potential relationship between neural efficiency,
time-on-task and performance, and the potential benefice of
training programs aimed at improving neural efficiency,
especially for individuals exposed to longer driving times, such
as bus or track drivers.

Limitations of the study
The number of subjects in this study may appear to be

relatively limited in light of the current standards of many fMRI
experiments [85]. Nonetheless, it is important to keep in mind
the exceptionality of the athletes sample, as the number of
professional racing-car drivers with top level careers in Formula
One, or similar racing categories (e.g., World Series, Formula
3), is very limited to begin with. Moreover, we obtained

consistently significant findings across two independent tasks
and three different analysis approaches, thus indicating that the
functional changes were statistically robust despite the
relatively low number of participants.

The interpretation of results obtained using connectivity
analysis based on the measure of time-lagged influence in
fMRI also ought to be considered with caution, due to intrinsic
technical and physiological limitations of the method (e.g.,
[86]). Specifically, individual regional variability and the
sluggishness of hemodynamic response measured by fMRI
may represent potential confounding factors. Although we
cannot completely exclude these issues in our case, the fact
that we obtained consistent results evaluating different
networks recruited during two unrelated visuo-motor tasks,
strongly support our interpretation. Moreover, we carried out
group comparisons using an approach based on a linear
mixed-effect meta-analysis [45,49], which allowed us to use
individual information about both effect size and variance, thus
accounting for across and within subject variability. Finally, our
findings also are supported by previous functional studies
indicating that the increased neural efficiency associated with
practice and expertise usually is expressed by a reduced brain
response extension and a network reorganization, with
strengthened connectivity measures between key regions
involved in a defined task [3].

Conclusions

To our knowledge, the present study is the first to provide an
integrated and consistent analysis of three indices of brain
functional activity associated with intensive training and
exposure to extreme conditions in a unique sample of highly
skilled athletes, namely professional Formula racing-car
drivers. Using two independent visuo-spatial and motor
reaction tasks, we showed that in professional racing-car
drivers a reduced regional neural response is associated with a
reinforced connectivity among task-related cortical areas, as
compared to naïve control subjects. In addition, the
professional drivers were characterized by an increased BOLD
signal variability, a feature previously found in younger
individuals as compared to poorer performing older adults.
These findings demonstrate that visuo-motor processing in
highly-skilled individuals is sustained by a different brain
functional architecture, with both ‘quantitative’ and ‘qualitative’
differences in brain recruitment as compared to naïve subjects.
Indeed, the brain of highly skilled individuals processes visuo-
motor information in a clearly distinctive manner even when
subjects are requested to perform relatively simple, non-
demanding tasks, in which naïve individuals have equal levels
of performance. These results are consistent with and further
expand findings from other skilled groups, including musicians,
and provide novel evidence to the hypothesis of an increased
‘neural efficiency’ in highly skilled individuals [29,59]. Finally,
from a wider perspective, the described results are particularly
relevant in light of the recent interest toward the use of physical
and mental trainings as ways to contrast or slow down
cognitive impairment associated with physiological or
pathological aging [87], as they strongly support the potential
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role of psycho-physical trainings in maintaining a functionally
‘elastic’ and efficient brain.
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