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In this work we investigate a mechanism for the emergence of long-range time correlations observed
in a chronologically ordered database of chess games. We analyze a modified Yule-Simon preferential
growth process proposed by Cattuto et al., which includes memory effects by means of a probabilistic
kernel. According to the Hurst exponent of different constructed time series from the record of games,
artificially generated databases from the model exhibit similar long-range correlations. In addition,
the inter-event time frequency distribution is well reproduced by the model for realistic parameter
values. In particular, we find the inter-event time distribution properties to be correlated with
the expertise of the chess players through the memory kernel extension. Our work provides new
information about the strategies implemented by players with different levels of expertise, showing
an interesting example of how popularities and long-range correlations build together during a
collective learning process.
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I. INTRODUCTION

Human behavior is generally complex. Considerable
amount of resources are, and have been, dedicated to
characterize and understand how humans behave as indi-
viduals, or collectively1–7. The struggle of humans when
playing well defined games according to some set of rules,
provides a convenient experimental setup to understand
human behavior and decision making process8–19. This
is particularly convenient from the physics’ point of view,
because under the rules of a game, the huge number of de-
grees of freedom the systems have are highly constrained
and more easily quantifiable. Moreover, very well doc-
umented records of games are constantly created and
updated in electronic format, facilitating the statistical
analysis.

For instance, recent studies have tried to understand
the statistics of wins and losses in baseball teams13,
the final standing in basketball leagues14, the distribu-
tion of career longevity in baseball15, the football goal
distribution16, and face to face game rank distributions17.
Useful parallels can be established between the statis-
tical patterns of game-based human behavior, and well
defined theories of physical processes. For example, the
time evolution of the results table during a season can be
interpreted as a random walk18, and long-range correla-
tions have been found in the score evolution of the game
of cricket19. The game of chess, which is viewed as a
symbol of intellectual prowess, is not the exception9,20,21.
Since the skill level of chess players can be correctly and
quantitatively identified22, chess has contributed to the
scientific understanding of expertise12. In addition, there
is a big world-wide community of chess players, which
makes the game a benchmark for studying decision mak-
ing processes11 and population level learning10. In par-
ticular, the study of long-range correlations in systems

where Zipf’s law is present is also important, since it has
been observed in literary corpora23,24 and because sys-
tems which exhibit Zipf’s law need a certain degree of
coherence25 for its emergence.

In the game of chess each possible move sequence26

can be mapped as one directed path in a corresponding
game tree. Here, the root node is the initial position of
the game, the moves are represented by the edges, and
there is a one-to-one correspondence between move se-
quences and vertices. The game depth d is the topolog-
ical distance, or shortest path length, between the root
and the node reached after the last move. Exploring
chess databases, Blasius and Tönjes9 observed that the
pooled distribution of chess opening weights follows a
Zipf law with universal exponent. This is a remarkable
result27,28 where the Zipf law holds over six orders of
magnitude. They also established that the popularity
distribution follows a power law in which the exponent
depends on the depth d of the game tree. They explained
these findings in terms of an analytical treatment of a
multiplicative process. In a recent paper20, we study the
dynamics of the game tree growth. More specifically, we
find that the emerging Zipf and Heaps laws can be ex-
plained in terms of nested Yule-Simon preferential growth
processes. Later on, in further studies, we find that em-
pirically generated temporal series using a chronologi-
cally ordered chess database exhibit long-range memory
effects21. These memory effects cannot be explained with
the mechanism based in a multiplicative process, nor the
pure Yule-Simon process. In this sense, the mechanism
of the evolution of the game tree popularity distribution
needs new ingredients in order to reproduce the observed
long-range correlations, establishing the problem we ad-
dress in this work. We tackle this problem by making
use of a result introduced by Catutto et al.29, who modi-
fies the Yule-Simon process by incorporating a probabilis-
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tic memory kernel. This model has the advantage that
while memory is introduced, the long-tailed frequency
distribution is preserved. For simplicity, we refer to this
model as the Catutto’s model (CM). We generate artifi-
cial databases from the CM and detect long-range corre-
lations under plausible values of the model parameters.
In particular, the Hurst exponent30 obtained from the
CM depends on the length of the analyzed time series, in
agreement with the behavior observed for the empirical
chess database. In addition, the inter-event time distri-
bution of the most popular openings is well reproduced
by CM. The parameters of the memory kernel extension
in CM are correlated with the expertise of the players
showing that strategies for choosing a opening line is re-
lated to the level of expertise.

II. THEORETICAL BACKGROUND

A. Models

One of the first models able to explain the emergence
of Zipf’s law was introduced by Yule31, which was de-
vised to explain the emergence of power laws in the sizes
distribution of biological genera. Later on, Simon32 intro-
duced a similar, but less general variation of the model33,
which fits more naturally in the context of Zipf’s law. It
is known as the Yule-Simon model (YSM), and different
variations of the model re-emerged in the literature sev-
eral times. Its most recent variant, known as preferential
attachment, became one of the more important ideas at
the beginning of complex networks theory34. Cattuto et
al.29 introduced a variant of the YSM, which includes
memory effects by incorporating a kernel, while at the
same time preserving the long tail frequency distribution
exhibited by the YSM. The YSM model applied to chess
game generation is as follows. We begin with an initial
state of n0 games. At each temporal step t there are two
options: i) to introduce a new game with probability p
or ii) to copy an already existing game with probability
p̄ = 1− p. In the latter case we have to determine which
of the previous games is being copied. The probability
of choosing a game that has already occurred k times is
p̄kπ(k, t), where π(k, t) is the fraction of games with fre-
quency k at time t. This means that copying a certain
game does not depend on how far back in time the game
took place. For this reason, the process does not exhibit
long-range memory effects. For Cattuto’s model (CM),
we follow the same procedure, except that now, the prob-
ability of copying a game that occurred at time t − i is
no longer constant, but has the functional form:

Q(i) =
C(t)

τ + i
. (1)

In Eq. (1), τ is a time scale in which recently added games
have comparable probabilities and can be considered as
the memory kernel extension. C(t) is a logarithmic nor-
malization factor. The probability distribution density of

the game frequencies that results from this process is29:

P (k) =
p

(n0 + pt)(Kα)k

[

ln(A/k)

K

]
1

α
−1

, (2)

where α = p̄, K = 1−α
αΩ , A = eKtα and Ω is a fit param-

eter.

B. Correlations

In order to study long-range correlations of a chrono-
logically ordered chess database we map the database to
a time series assigning a real number to each game. It
is known that the assignation rule used in the map has
a direct effect in the degree of persistence observed in
the series35. In other words, long-range correlations are
affected both by the intrinsic properties of the database
and by the mapping code. Taking this into account we
use several assignation rules to study the persistence of
memory effects in the database. One of these rules, which
is introduced in the analysis of literary corpora23 and al-
ready employed in a chess database21, is the popularity
assignation rule (PAR). In PAR, each element of the time
series, X(t), corresponds to the popularity at depth d of
the t-th game in the database. The popularity is equal to
the total number of games in the database that have the
same sequence of moves up to depth d. In this work, we
introduce three new assignation rules: the ELO assigna-
tion rule (EAR), the Gaussian assignation rule (GAR),
and the uniform assignation rule (UAR). EAR makes use
of the information of the players’ ELO available in the
chess database, where the ELO is a standard measure
used in chess to estimate the skill of chess players. In
EAR, we assign to each game the average ELO corre-
sponding to all games with the same moves up to depth
d, where, for each game, we took the ELO corresponding
to the most skillful player of the two. Finally, GAR and
UAR are random assignation rules. More specifically, a
random number taken from certain probability distribu-
tion function, e.g. Gaussian (GAR) or uniform (UAR), is
assigned to each different game. It is expected that all of
these assignations do not introduce spurious correlations.

There exists a wide variety of techniques to detect long-
range correlations in time series, but not all suitable to
analyze all kinds of series, especially if they are non-
stationary or exhibit underlying trends. Peng et. al.36

introduced the Detrended Fluctuation Analysis (DFA), a
useful technique for detecting long-range correlations in
time series with non-stationarities. In the DFA method
the cumulated series Y (t) is segmented into intervals of
size n. At each segment the cumulated series is fitted to a
polynomial yn(t) and the fluctuation function is obtained

F (n) =

√

√

√

√

1

N

N
∑

i=1

[y(i)− yn(i)]
2
, (3)

where N is the total number of data points. A log-log
plot of F(n) is expected to be linear. If the slope is less
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than unity, it corresponds to the Hurst exponent. When
H = 0.5 the cumulated time series, Y (t), resembles a
memoryless random walker. On the other hand, for H >
0.5 (H < 0.5) a random walker with persistent (anti-
persistent) long-range correlations or memory effects.

III. RESULTS

A. Inter-event Time Distribution: Fitting Model

Parameters

We analyze the ChessDB dataset, which contains
around 1.4 million chess games played between the years
1998 and 200737. Our first goal is to find the best choices
for the models’ parameters –p for the YSM, and p and τ
for the CM–, in order to reproduce the different statis-
tical patterns observed in the chess database. The value
of the parameter p can be directly measured from the
database, using the formula

p = Nd(ttotal)/Ntotal, (4)

where Ntotal is the total number of games in the database,
and Nd(ttotal) is the number of nodes in the game tree
at depth d, after ttotal games –i.e. all games– have been
considered. Following the ideas used in the analysis of
earthquakes38,39, in Fig. 1 we show the frequency dis-
tribution of inter-event times corresponding to the frac-
tion of the most popular openings in the database. More
specifically, we compute the frequency k of all openings,
then we filter all openings with frequency lower that
(kmax − kmin)/3. The resulting subset corresponds to
the 40% of the chess games in the database, and the 30%
of the games generated with the CM. For the database,
we considered the set of openings corresponding to game
depth d = 4. Both, CM and YSM yield to a good agree-
ment with the chess database. However, in order to find
a good fit in the YSM, the value of p has to be over-
estimated as compared to the mean value measured in
the real database. For the sake of comparison, in Fig. 1
we show the inter-event time distribution for the YSM,
when the value of p is set to the one measured in the
database. This curve clearly deviates from the measured
to the database. While the measured value of p in the
chess database is p = 0.005, the value that yields the
best fit of the inter-event time distribution with YSM
is p = 0.1. On the other hand, using CM we obtain a
good fit with the right value of p when the other param-
eter, defining the characteristic time scale of the memory
kernel (see Eq. (1)) is τ = 34. A correct model for the
inter-event has to take into account a memory of the
previous played games as it is evidenced in the time se-
ries associated to the real databases. The fact that CM
model works better suggest that the memory kernel could
be the necessary mechanism to describe the long-range
correlations observed in the chess database21.

In order to test the existence of memory directly from
the inter-event time distribution of the database , we
fitted a generalized gamma distribution

f(x) =
C

x1−γ
e−

x
δ

a , (5)

typically used to describe the inter-event times observed
between earthquakes, which are known to be strongly
correlated events38,39. We find that a good fit is ob-
tained restricting the value of γ to γ = 1. The value
of δ is also close to 1; in this case δ = 0.969 (see In-
set in Fig. 1). This means that the inter-event time of
the database is similar to an homogeneous Poisson pro-
cess (δ ≃ 1). Besides the fact that the exponential is
slightly stretched, memory effects cannot be derived di-
rectly from the fittings parameters. Is quite direct to see
that a Poisson process is a good approximation for the
inter-event time of the YSM, and also in the CM. There-
fore this is the reason of why both YSM and CM can be
well fitted to the inter-event times of the database. In
the case of the YSM, the probability Pt that an already
existing game is repeated between time t and t + ∆t is
Pt = ((1 − p)Ng/N)∆t, where Ng is number of games
of the game to be repeated, and N is the total number
of games; both quantities specified at time t. After a
transient time Ng/N is expected to be nearly constant
40 in the YSM process, and then Pt = ∆t/τp, where
τp = N/(Ng(1 − p)), also becomes constant. Since the
fitting of Eq.(5) in the database turns out to be γ = 1
and δ = 0.969, then a ∼ τp. The fraction of the most
popular games used for building the inter-event time of
the database is ∼ 0.4 and so τp ∼ 2.5 (p ≪ 1). Consider-
ing that the values of τp from the fitting is τp = 2.689, the
inter-event time in the database can be considered as a
nearly homogeneous Poisson process. In CM, the mem-
ory kernel imposes a restriction to the games that can
be replicated, behaving like a window that looks at the
most recent games, however if in this window the fraction
of the games under consideration remains constant dur-
ing the entire process, then it is similar to the YSM and
therefore this is also a Poisson process. The difference is
that now τp depends on both p and τ . The dependence
on τ of the relaxation time τp is in particular important
because it allows to fit the CM to the database with a
realistic value of p.

Finally, we warn the reader that in the chess database
the number of different games grows in time according
to the Heaps’ law20, and not linearly as in Eq. (4). More
specifically, it holds Nd ∼ tλd for some 0 < λd < 1
which depends on the game depth, d, considered. There-
fore, Eq. (4) is just an approximation that we choose to
work with in order to keep things simple since in the CM
model p is kept constant. Moreover, the approach to the
database as a Poisson process is also affected by the time
dependency of p since τp should also depend on t and the
Poisson process is at least slightly inhomogeneous.
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FIG. 1. (Color online) Frequency distribution of inter-event
times measured in the chess database (full triangles), gener-
ated with CM model for p = 0.005 and τ = 34 (green full
line), and generated with YSM model, for parameters p = 0.1
(magenta point-dashed line) and p = 0.005 (cyan dashed line).
Inset: Frequency distribution of inter-event times measured
in the chess database (black triangles) and a fit using Eq. (5)
for C = 0.4265, δ = 0.969, a = 2.689 and γ = 1.

B. Popularity Distribution: Testing Predictions

After fitting the model parameters, we test the model
predictions. Fig. 2 shows a plot of the distribution of
popularities obtained with CM and YSM using the same
parameter values obtained from fitting the inter-event
time distribution in Fig. 1. First, we see how the distri-
bution of popularities for YSM model not only yields a
power law but the slope in a log-log plot is very close to
2, which is exactly what is expected in this process for
small values of p32. Secondly, the distribution obtained
from the CM model shows a gentle curvature, and is very
well fitted by the theoretical expression of Eq. (2). Fi-
nally, the distributions for the database and CM model
are much closer in slope than to that of YSM model.
Notice however, the right slope can be obtained for the
YSM model as well, if an appropriately small value of p
is used (not shown), but at the cost of ruining the fitting
in Fig. 1. In other words, CM is able to fit Fig. 1 and 2,
simultaneously, for the value of p given by Eq. (4). On
the other hand, this is not the case for the YSM.

In summary, the extra parameter τ of CM that mea-
sures the kernel extension provides an extra degree of
freedom which is needed to fit the inter-event time curve
with a plausible value of p. The value of τ is later vali-
dated by the correct prediction of the popularity distri-
bution.
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102
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FIG. 2. (Color online) Log-log plot of the distribution of
popularities measured in the database (black triangles) and
linear fit Sd(k) with slope αd = −1.53 (dotted black line);
generated with CM model, p = 0.005 and τ = 34 (green
squares) and fit PCM (k) corresponding to Eq. (2) with pa-
rameter Ω = 1.65 (full green line); and generated with YSM
model, p = 0.1 (magenta circles) and linear fit PY SM(k) with
slope αY SM = −2.12 (magenta point dashed line).

C. Hurst Exponent: Long-range Correlations

Analysis

The CM model is not only able to simultaneously
fit the inter-event time distribution and the popular-
ity distribution. It also yields to the existence of long-
range correlations, or memory effects, which we compare
against the long-range correlations exhibited by the chess
database. In order to analyze the existence of long-range
correlations, we measure the Hurst exponent of the time
series obtained from the models and data, computed us-
ing the different assignation rules: PAR, EAR, GAR and
UAR (see section II). To calculate the Hurst exponent
we use a linear DFA method.

Fig. 3 shows the Hurst exponent as function of the
length of the analyzed time series, for the PAR. Con-
sistently with a lack of long-range time correlations, or
memory effects, the Hurst exponent is close to 0.5 in
the artificial database generated with the YSM, for both
p = 0.1 and p = 0.005 (this last one is not shown). In
particular, the result has not significant size effects. In
contrast, the time series generated with the CM exhibit
both, long-range memory and size effects, although H
does not grow as rapidly as it does for the empirical chess
database. The value of the Hurst exponent for the whole
chess database is H = 0.69. Using CM model we were
able to obtain this value for a generated database of the
same size, using the same parameters obtained from the
fit of the inter-event time, i.e. p = 0.005 and τ = 34.
However, the tendency is different between the database
and the CM. For the database, the Hurst exponent be-
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comes large, even for short sequences of games. In con-
trast, the Hurst exponent grows steadily in the CM. We
ignore the source of such difference, but it constitutes a
problem that can be studied in future works.

It is known that large fluctuations in the values of the
time series, X(t), might lead to spurious long-range mem-
ory effects, i.e., values of H significantly different from
0.541. Since the popularity distribution is long tailed –in
both models and in the empirical database–, the PAR
assignation rule leads to large fluctuations in the values
of X(t). In order to test the influence of these fluctua-
tions we repeated the calculations of H using time shuf-
fled series Xshuff(t) (Figure not shown). The Hurst ex-
ponents obtained after the shuffling are close to 0.5, and
thus, the large fluctuations in X(t) are not the reasons for
which H > 0.5. Conversely, we can check if the condition
H > 0.5 persist when there are no large fluctuations in
the values, X(t), of the time series. For that purpose, we
used the others assignation rules, EAR, UAR and GAR,
as the corresponding time series values have a well de-
fined variance. In Fig. 4 we show the Hurst exponent as
a function of the size of the analyzed time series for three
different assignation rules; EAR at the top, GAR in the
middle and UAR at the bottom panel. The results shown
in the figure, confirm that long-range correlations –i.e. a
Hurst exponent H > 0.5–, is also obtained for this other
assignation rules. We remark that these assignation rules
are not expected to introduce spurious correlations. In
particular, the GAR and UAR are completely random.
However, as the reader can see, different assignation rules
lead to different values of the Hurst exponent; both, in
the model and in the database. The higher values of the
H are observed in the database with the EAR rule, and at
the same time, the larger discrepancy with the CM. This
is expected, as the ELO’s are artificially introduced into
the CM, while for the chess database is an intrinsic part
of the data. In fact, this is consistent with the observa-
tion that the best agreement between the CM model and
the database is obtained for the UAR and GAR assigna-
tion rules. We leave open the problem of understanding
the correlations existing between the ELO’s and the se-
quence of games in the empirical chess database.

D. The Expertise of the Chess Players

In order to analyze the expertise of chess players let
us first look at the inter-event time distribution. To im-
plement this analysis we divided the chess database in
three disjoint ELO intervals which contain nearly the
same number of games, and fitted the corresponding
inter-event time distributions using the CM. In Fig. 5
we show these results, which indicate how the expertise
of the players is correlated with the extent of the memory
kernel parameterized by τ . For each ELO interval, the
probability of adding a new game was measured in the
empirical database, resulting in: ELO range [1 − 2199],
p = 0.01; ELO range [2200− 2399], p = 0.009; and ELO
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FIG. 3. (Color online) Hurst exponent obtained by the DFA
method as a function of the length of the time series using
the PAR assignation rule in the database (dotted black line
with triangles), generated with CM model, p = 0.005 and
τ = 34 (full green line with squares), and generated with
YSM, p = 0.1 (point dashed magenta line with circles).

range [2400− 2851], p = 0.007. In consequence, we fitted
the distribution for the three ELO intervals by fixing the
corresponding value of p and varying the parameter τ .
We were able to fit the inter-event times curves for the
two higher ELO intervals using the corresponding values
of p, however we were not able to achieve this for the
lower ELO interval. A good fit was found for a memory
extension with parameter τ = 10, but at the cost of in-
creasing the value of the probability of introducing a new
opening to p = 0.03. The values of τ for which the best
fits are achieved, increase with the ELO. Using Eq.(5)
we fitted the inter-event times curves corresponding to
the three ELO intervals (fittings no shown). While the
exponent is approximately γ ∼ 1 for all the cases, for the
chess database, the parameter δ varies slightly when an-
alyzing inexperienced and experienced players. However,
we have to keep in mind that the function of Eq.(5) is ex-
tremely sensitive to variations of δ (Table I). As expected,
the exponent δ is very close to unity for the YSM, and so
for this model we fitted the inter-event time using a sim-
plified version of the gamma function: f(x) = Ce−x/a.
As mentioned before, in the CM the probability of copy-
ing a game that occurred at time t − i is given by the
probabilistic kernel. Therefore, a more detailed analysis
can be performed. More specifically, in Fig. 6 we show
the histogram of all times i resulting from the process of
generating the artificial database with CM. In terms of
the memory kernel, Fig. 5 and 6 can be interpreted as fol-
lows. We see that for more experienced players we find a
more extended, and slow decaying, memory kernel than
for players with lower ELO ratings. Is more probable
for inexperienced players to repeat more recent openings
than players with higher ELO ratings. In contrast, at
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FIG. 4. (Color online) Hurst exponent obtained by the DFA
method as a function of the length of the time series using the
EAR (top panel), GAR (middle panel) and UAR (bottom
panel) assignation rules in the database (dotted black line
with triangles) and generated with CM model, p = 0.005 and
τ = 34 (full green line with squares).

larger times, the function Q(i), that is, the probability
of repeating an opening that occurred i time steps back,
decays more rapidly for lower ELOs. This is consistent
with the difference in behavior of the Hurst exponent
observed in the three ELO intervals21.

We also analyze the expertise of the players measuring
the Hurst exponent. For this we employ the same ELO
intervals used in the analysis of the inter-event times.
While the UAR assignation rule yields the best agree-
ment between the database and CM model, here, the
Hurst exponent has the weakest dependence with the
ELO intervals when varying the size of the database.
Specially for the CM. Therefore, we restrict our analysis
to the GAR, which is shown in Fig. 7. Here, to generate
the time series corresponding to each ELO in the CM, we
use the parameter values shown in table I. In this way,
we introduce into the CM, at least to some extent, a cor-
relation between the game statistics and the ELOs. We
find that for long times, the Hurst exponent increases as
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FIG. 5. (Color online) Frequency distribution of inter-event
times for different ELO ranges: A) full database, B) ELO
range [1 − 2199] C) ELO range [2200 − 2399] and D) ELO
range [2400−2851]. The full black triangles correspond to the
inter-event time distribution measured from the database and
the full green line to that generated with CM. The parameters
used in CM are: A) τ = 34, p = 0.005; B) τ = 10, p = 0.003;
C) τ = 20, p = 0.009; and D) τ = 70 and p = 0.007.

TABLE I. Summary of the parameters for the best fits in
model, corresponding to the inter-event time distributions in
Fig. 5, for different ELO ranges and the full ELO range in
the empirical chess database. τp is the estimated value of the
corresponding Poisson process.

ELO range p τ δ a τp

A) full 0.005 34 0.969 2.689 2.56

B) 1–2199 0.03 10 0.941 2.85 3.94
C) 2200–2399 0.009 20 0.977 1.978 2.65
D) 2500–2851 0.007 70 0.986 1.489 2.11
E) Yule 0.1 1 3.77 4.28

the ELO increases, specially for the chess database.

IV. DISCUSSION

From the fit of the inter-event time curve of the most
popular openings in the chess database, using a gener-
alized gamma function, we found that this curve is in
fact well described with a slightly stretched exponential.
values obtained from the fit of the decaying time are con-
sistent with the value derived through direct calculation.
On the other hand, the inter-event time of both CM and
YSM are also well described by a Poisson process, and
then a good fit of the database can be obtained using both
models. However, the value of the parameter p that yields
to a best fit in the YSM model is far from the measured
value in the database, they are p = 0.1 and p = 0.005,
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FIG. 6. (Color online) Histogram of times i (Memory kernel
function Q(i)) up to i = 103 for ELO range [1 − 2199] (
magenta squares), ELO range [2200−2399] (green diamonds)
and ELO range [2400 − 2851] (cyan circles) and fits using
Q(i) = C̃/(i+τ̃ ) with resulting fit parameters C̃ = 0.0975 and
τ̃ = 10.48 for ELO range [1 − 2199] (full magenta line), C̃ =
0.1039 and τ̃ = 20.46 for ELO range [2200 − 2399] (dashed
green line) and C̃ = 0.1189 and τ̃ = 70.28 for ELO range
[2400 − 2851] (point-dashed cyan line) .

respectively. On the contrary, CM model permits a good
fit with the value of p measured in the database by a
convenient choice of the parameter τ which quantifies
the memory kernel extension. This result indicates that
the memory kernel of CM model can be used to quantify
memory effects in the games of the chess database.

The popularity distribution is also well described by
CM model using the parameter p and τ obtained from
the fitting of the inter-event time. In this sense CM is
also a better approximation than YSM model. This pro-
vides additional information on the importance of the
memory kernel to model the behavior of the real chess
database. Moreover, time series generated using the CM
model show long-range correlation and size effects in a
similar fashion as the database of real game does. All
these results show that many of the main ingredients
necessary to model the memory effects in the real chess
database are captured by the CM model.

In the analysis of long-range correlations, we found
that size effects and the degree of persistence are affected
by the particular choice of the assignation rule. In a
previous work, we realized that the popularity assigna-
tion rule (PAR) is adequate to discriminate the behavior
of players with different levels of expertise21. However,
when we use the PAR to compare the behavior of the
Hurst exponent as a function of the length of the time
series, the value of H for the full size of the database is
nearly the same for the chess database and CM, but the
Hurst exponent does not grow as rapidly in the case of the
CM. On the other hand, the random maps of the Gaus-
sian and Uniform Assignation Rules (GAR and UAR)

 0.5

 0.6

 0.7

 0 1 2 3 4

H

size (x105)

CM model

 0.5

 0.6

 0 1 2 3 4

H

size (x105)

Database

FIG. 7. (Color online) Hurst exponent obtained by the
DFA method as a function of the length of the time se-
ries corresponding to the three different ELO intervals, ELO
range [1 − 2199] (full red line with squares), ELO range
[2200 − 2399] (dashed green line with diamonds) and ELO
range [2400− 2851] (point dashed blue line with circles), gen-
erated with the GAR assignation rule for the database (top
panel) and CM model (bottom panel) using the correspond-
ing parameters that give the best fit for the inter-event time
curves.

seem to be adequate, since they give similar results for
CM model and the database, though in the case of the
GAR we obtain more similar results to those for the PAR.
Despite this, the CM does not display distinguishable
difference in the behavior of the Hurst exponent for the
different levels of expertise. We remark however, that
the observation of the different strategies employed by
players with different levels of expertise depends on the
chosen assignation rule.

These observations reinforce the use of the inter-time
event frequency distribution to detect the level of exper-
tise of the chess players in the database since this analysis
does not use an assignation rule. In this sense, we find
through the fittings of the inter-time frequency distri-
bution using CM model, that the characteristic time τ
increases as the expertise of the players increases. Since
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τ fixes the memory kernel extension, this indicates that
high level players use on average more opening lines than
less expert players. This has a direct interpretation since
it is expected for more expert players to have a more

extensive knowledge of opening lines. These supports
previous results where the expertise of the players was
detected using long-range correlations analysis.
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