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Abstract

Some gauge theories with Coulomb branches exhibit singularities in perturbation
theory, which are usually resolved by nonperturbative physics. In string theory this cor-
responds to the resolution of timelike singularities near the core of orientifold planes by
effects from F or M theory. We propose a new mechanism for resolving Coulomb branch
singularities in three dimensional gauge theories, based on Chern–Simons interactions.
This is illustrated in a supersymmetric SU(2) Yang–Mills–Chern–Simons theory. We
calculate the one loop corrections to the Coulomb branch of this theory and find a
result that interpolates smoothly between the high energy metric (that would exhibit
the singularity) and a regular singularity-free low energy result. We suggest possible
applications to singularity resolution in string theory and speculate a relationship to a
similar phenomenon for the orientifold six-plane in massive IIA supergravity.
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1 Introduction and summary

Understanding spacetime singularities is one of the central problems in string theory. Sin-
gularities arise in diverse systems, ranging from cosmology to black holes. So far we don’t
know the necessary and sufficient conditions for a singularity to be resolved1, and lacking a
complete framework to answer this question it is important to identify concrete mechanisms
that can resolve singularities. In this work we will present a novel mechanism for resolving
certain timelike singularities, based on Chern–Simons interactions.

One successful approach has been to exploit the connection between D-branes and geom-
etry. Using D-branes to probe string theory solutions reformulates the spacetime geometry
in terms of the scalars on the worldvolume gauge theory. This is helpful because the gauge

1Some proposals in the context of AdS/CFT were given in [1, 2].
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theory can capture phenomena that are beyond the reach of the classical gravity description.2

Here we will focus on gauge theories with perturbative Coulomb branch singularities. These
describe certain timelike singularities of string theory, the canonical example being that of
orientifold planes.

From the gauge theory side, one of the first and most important examples of a Coulomb
branch singularity appeared in the work of Seiberg and Witten [5] on the SU(2) Yang–Mills
theory (YM) with N = 2 supersymmetry in four dimensions. The gauge coupling along the
Coulomb branch receives a one-loop correction

1

g2(φ)
=

1

g20
+

1

4π2
log
|φ|2

Λ2
, (1.1)

where φ is the Coulomb branch coordinate, g0 is the UV value of the gauge coupling, and Λ
is the dynamical scale. This result, which is exact in perturbation theory, shows a singularity
at |φ|2 = Λ2e−4π

2/g20 . For smaller values of |φ|2 the perturbative answer cannot be correct
because it predicts a negative gauge coupling squared. Since the QFT is UV complete, it
should make sense at arbitrarily long distances; so the failure of perturbation theory suggests
that new physics should become important at the scale Λ2e−4π

2/g20 . And indeed, Seiberg and
Witten showed how this singularity is resolved by nonperturbative effects, and found that
the correct low energy description is in terms of a light monopole and a dyon near the origin
of the moduli space.

Another example, which will be relevant for us, is obtained by compactifying one spatial
dimension in this theory. At low energies this gives an SU(2) Yang–Mills theory with N = 4
supersymmetry in three dimensions (i.e. 8 supercharges). Now the gauge coupling including
perturbative corrections is [6, 7]

1

g2(φ)
=

1

g20
− 1√

8π|φ|
. (1.2)

Nonperturbative contributions from instantons resolve the perturbative singularity at |φ| =
g20/(
√

8π), giving rise to the smooth Atiyah–Hitchin metric [8].

In these examples, the existence of singularities signals the appearance of nontrivial
nonperturbative dynamics. Our goal is to understand what happens to such singularities
when these nonperturbative effects are absent. Let us deform the previous theory by adding
a topological Chern–Simons (CS) mass that does not lift the Coulomb branch. Intuitively,
the topological mass for the gauge field leads to confinement of monopole-instantons [9], and
we will argue that the Yang-Mills instantons deformed by a CS term do not have finite action.
Therefore, they cannot resolve the moduli space singularity. How is then the Coulomb branch
singularity resolved?

In this work we analyze the quantum corrections to the Coulomb branch of Yang–Mills–
Chern–Simons theories and show that the Chern–Simons interaction resolves the singularity

2For more details and references see [3, 4].
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(1.2) already in perturbation theory, without the need of nonperturbative contributions.
We focus on the simplest theory that has a Coulomb branch which receives nontrivial loop
corrections; this is the previous SU(2) gauge theory plus a CS term that preserves N = 2
supersymmetry. Besides our motivation from singularities, this class of theories may be
relevant to the AdS/CFT correspondence for 3d gauge theories, or the intriguing possibility
of emergent supersymmetry in condensed matter systems [10]. Furthermore, as far as we are
aware, there is not much work on the quantum Coulomb branch of YM–CS theories, and we
hope that our results help to bridge this gap.

Before proceeding to the explicit analysis, let us discuss the relation of this mechanism
to timelike singularities in string theory. One of our motivations was to understand the
gauge theory version of [11], who found that the O6 plane singularity is resolved in massive
type IIA compactifications to four dimensions. In the absence of Romans mass, the O6
plane geometry can be understood using a D2 probe, which gives exactly (1.2). The strong
coupling limit of type IIA is M-theory, and the nonperturbative effects discussed before arise
from exchange of D0 branes [12]. However, it was argued in [13] that massive type IIA does
not have an M-theory limit. Instead, the O6 singularity is resolved by the Romans mass [11].
A D2 probe in massive IIA acquires a Chern–Simons term, and this is the basic effect that
our mechanism captures.

Actually, it turns out that there exists another type of orientifold plane, the Õ6, whose
singularity resolution is not yet known. This plane can be thought of as an O6 plus a half D6
brane [14]. The half D6 introduces a fundamental flavor on the D2 probe which produces, at
one loop, a Chern–Simons mass for the worldvolume gauge field. Thus, we expect that our
results will be relevant to understanding the Õ6. Another possible application would be to
consider Chern–Simons deformations of the enhançon mechanism of [15] for the resolution
of repulson-type singularities.

Here we will focus on the previous three dimensional Yang–Mills–Chern–Simons theory
with N = 2 supersymmetry, postponing to a future work a more detailed exploration of the
effects on timelike singularities. One reason for this is that, with this amount of supersym-
metry, the Coulomb branch metric is not protected against higher loop corrections. Our
results, valid at one loop and in the perturbative limit, can receive nontrivial corrections in
the regime of interest for the gravitational singularities. Also, in string theory solutions such
as that of [11], we expect the probe theory to be more complicated, with reduced supersym-
metry and only an approximate moduli space. The theory that we will study is the simplest
one where our mechanism can be exhibited under controlled approximations. Nevertheless,
we expect that our conclusions are applicable more generally.

The paper is organized as follows. First, in §2 we introduce the Yang–Mills–Chern–
Simons theory, study the classic Coulomb branch and show that the YM instantons have
infinite action in the presence of the CS deformation. The rest of the work is then devoted
to understanding the quantum geometry of the Coulomb branch in perturbation theory.

Our analysis of the quantum Coulomb branch metric is done in three steps. In §3 we
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discuss the UV limit where the Coulomb branch expectation value |φ| � kg, where g is the
gauge coupling and k is the CS level. In this regime the CS deformation can be neglected,
and we perform an explicit one loop calculation that reproduces (1.2). A nonzero expectation
value for the Coulomb branch scalar φ leads to massive states of mass m2

g = 2g2|φ|2, and the
quantum corrections to the low energy theory are obtained by integrating out these fields.

Next, in §4 we study the quantum Coulomb branch in the CS theory ignoring the YM
term, which corresponds to the IR limit g → ∞ at fixed φ and k — up to important
finite effects that we discuss below. We present a general argument explaining why the
CS interaction resolves the singularity: for dimensional reasons, scalar expectation values
cannot appear in the corrections to the metric, which thus has to be finite. We also present
an explicit calculation showing indeed a finite smooth correction to the Coulomb branch
metric of order 1/k.

Finally, in §5 we determine the quantum Coulomb branch metric in the full YM–CS
theory at one loop. The effect of the CS deformation on the massive fields is to split
m2
g → m2

±, where the mass eigenvalues m2
± are defined in (2.10). Surprisingly, the one loop

quantum corrected Coulomb branch metric is exactly the same as in the pure YM case, after
replacing the Higgs mass mg by the average mass of the massive modes in the presence of
the CS deformation, (m+ +m−)/2. This gives the Coulomb branch metric

S ⊃
∫
d3x

1− 1√
8π2 |φ3|2

g2
+ k2

16

 ∂µφ3∂
µφ̄3 . (1.3)

This result interpolates smoothly between (1.2) in the UV and a finite nonsingular metric in
the IR that becomes independent of φ. Furthermore, the answer in the deep IR disagrees with
the one calculated in the pure CS theory in §4 by a factor of 2. This is due to an interesting
nondecoupling effect from fields that become infinitely massive in the limit g → ∞ but
still contribute finite corrections. This will end our analysis, proving our claim that the CS
interaction resolves the moduli space singularity by perturbative quantum corrections. Some
useful formulas that are needed for our analysis are collected in the Appendix.

2 The Yang–Mills–Chern–Simons theory

Let us begin by describing the classical Yang–Mills–Chern–Simons (YM–CS) theory that
will be the subject of our analysis. This is a three dimensional SU(2) gauge theory with
N = 2 supersymmetry — i.e. four supercharges. The matter content consists of a vector
superfield with components (Aaµ, σ

a, λa, Da) and a chiral superfield (φa, ψa, Fa). Here a is
the index for the adjoint representation of the gauge group, σ is a real scalar3, λ and ψ are
3d Dirac fermions, and D and F are auxiliary fields. The theory contains a CS deformation
for the vector supermultiplet and there is no superpotential. A review of three-dimensional
supersymmetric YM–CS theories is given in the Appendix.

3This scalar is the extra component of the gauge field upon compactifying the 4d theory on a circle.
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The general lagrangian with N = 2 supersymmetry and no superpotential is (see (A.8))

L = Lgauge + LCS + Lmatter (2.1)

where the gauge kinetic terms are

Lgauge = −1

4
F a
µνF

aµν +
1

2
(Dµσ

a)2 + iλ̄a 6Dλa − gλ̄σλ , (2.2)

the CS deformation is

LCS =
1

2
mk

[
εµνρ(Aaµ∂νA

a
ρ +

1

3
gfabcAaµA

b
νA

c
ρ)− (σa)2 − 2λ̄aλa

]
, (2.3)

and the remaining matter contributions and interactions are

Lmatter = (Dµφi)
†(Dµφi) + iψ̄i 6Dψi − g2φ†σ2φ− gψ̄σψ +

√
2ig(φ†λ̄ψ − ψ̄λφ)

− 1

2

(
gφ†iT

a
ijφj

)2
−mkgσ

aφ†iT
a
ijφj . (2.4)

The auxiliary fields have already been integrated out, and we have introduced the mass
parameter

mk ≡
g2k

4π
(2.5)

where k is the CS level. Note that the CS deformation does not give a mass to the chiral
supermultiplet.

Our conventions for covariant derivatives, index contractions, etc., are described in detail
in the Appendix. Here we will specialize to an SU(2) gauge group, with the chiral superfield
also transforming in the adjoint representation. In this case, the indices i, j also run over
1, 2, 3, and T aij = −iεaij.

In the limit mk → 0 supersymmetry is enhanced to N = 4. This is the low energy limit of
the four-dimensional pure SU(2) theory with 8 supercharges compactified on a circle. This
theory was studied by [6]. Here it arises as the UV limit of (2.1), while the IR is dominated
by the CS deformation. These limits will be studied in §§3 and 4 respectively, before tackling
the whole problem.

2.1 The classical Coulomb branch

The classical Coulomb branch of the theory is parametrized by the gauge invariant trφ2.
Without loss of generality, we will choose a real expectation value along the 3rd direction in
color space,

〈φa〉 = vδa3 , v ∈ R , (2.6)

which breaks SU(2)→ U(1). We will now determine the low energy description of this U(1)
theory, valid at energies E � v.

5



We denote the color indices perpendicular to the Coulomb branch direction by α = 1, 2,
and split the scalar fields into real and imaginary parts

φα =
χα + iχ̃α√

2
, φ3 = v +

χ3 + iχ̃3√
2

. (2.7)

The massive fields come from (Aµα, σα, φα, λα, ψα), with α = 1, 2. The nonzero expectation
value v introduces another mass parameter

m2
g ≡ 2g2v2 . (2.8)

(Recall that both φ and the gauge coupling have classical dimension 1/2).

Expanding (2.1) to quadratic order around (2.6) obtains,

Lquad =
1

2
Aµα
[
gµν(� +m2

g)− ∂µ∂ν −mkεµνρ∂
ρ
]
Aνα −

1

2
χα�χα −

1

2
σα(� +m2

g +m2
k)σα

− 1

2
χ̃α(� +m2

g)χ̃α +mgmk εαβ σαχ̃β +mg εαβ ∂µA
µ
α χβ (2.9)

+ λ̄α(i 6∂ −mk)λα + iψ̄α 6∂ψα − εαβmg(λ̄αψβ + λαψ̄β) .

The Lagrangian for the fields along a = 3 is not modified by the expectation value and
can be read off directly from (2.1), so we have not included those terms here. In the limit
when the gauge symmetry becomes global, the fields χα are the Goldstone bosons of the
broken symmetry; that is why they do not have a mass term at this stage, and they couple
derivatively to the massive vector bosons. This is, however, gauge dependent, and we will
add a gauge fixing term below. We will first work in Landau gauge, and then consider an
arbitrary Rξ gauge that will allow us to prove the gauge invariance of our results.

Let us now discuss the masses of the heavy fields. Since the bosonic part of the pre-
vious Lagrangian will be modified by the gauge fixing term, we will instead focus on the
fermionic masses, which will not be altered. Diagonalizing the mass matrix obtains the mass
eigenvalues

m2
± ≡ m2

g +
1

2
m2
k ±

1

2
mk

√
4m2

g +m2
k . (2.10)

In the UV limit m2
g � m2

k, m
2
± ∼ m2

g, corresponding to both the gaugino and ψ fermion
acquiring the same mass (and consistent with the approximate N = 4). On the other hand,
approaching the origin of the Coulomb branch m2

g � m2
k, the ψ fermion becomes massless,

while the gaugino acquires a mass mk. This is the topological mass induced by the N = 2
CS deformation.

In our calculation of quantum effects we will also need the interactions for the fields along
the color directions α. The interactions that contribute at one loop order are

Lint = −g
(
mgχ3 +

1

2
gχ2

3 +
1

2
gχ̃2

3

)(
−(Aαµ)2 + σ2

α + χ̃2
α

)
+ g(mg + gχ3)χαχ̃αχ̃3 +

− gmkεαβσα(χ̃βχ3 − χβχ̃3) + 2gεαβA
α
µ(χβ∂µχ3 + χ̃β∂µχ̃3) + gεαβ∂µA

µ
α(χβχ3 + χ̃βχ̃3)

− gεαβχ3(λ̄αψβ + λαψ̄β) + igεαβχ̃3(λ̄αψβ − λαψ̄β) . (2.11)
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2.2 Analysis of instanton solutions

Now we come to the important question of instanton solutions in the YM–CS theory. The
gauge theory in the absence of a CS deformation has three dimensional instanton solutions
that resolve the perturbative Coulomb branch singularity. These instantons are the same as
the 4d BPS monopoles of the Seiberg-Witten theory and are described for instance in [7].
We would like to understand what happens to these solutions when the theory is deformed
by a CS term. Instantons in a nonsupersymmetric theory with a massive Higgs fields have
been studied by several authors; see for instance [9, 16, 17, 18]. Here we will adapt some of
these techniques to the supersymmetric case, and argue that the real instantons of the YM
theory have infinite action once the effects of the CS interaction are taken into account.4

Choosing a Coulomb branch branch coordinate along the real part of φa as in (2.6), the
YM instantons have a nontrivial profile [7]

Aaµ ∼ εaµρ
xρ

x2
, ϕa ≡

√
2 Reφa ∼ xa

x
, (2.12)

where x is the euclidean distance. The other bosonic fields are set to zero, and the solution
for fermions can be obtained by a supersymmetry transformation.

Let us now add the CS term and find how (2.12) is modified. Following [9], we look for
deformed instantons that are invariant under the diagonal subgroup of the rotations and
gauge transformations groups:

Aaµ(x) =
1

g
(1− f(x)) εaµρ

xρ

x2
+

1

g
A(x)

xaxµ
x2

, ϕa =
1

g
ϕ(x)

xa

x
; (2.13)

a possible contribution proportional to δaµ has been set to zero by a gauge transformation
and the factors of g are included to simplify the following formulas. At short distances
the CS deformation is unimportant and these solutions are required to approach the YM
instantons. Given this ansatz, the euclidean bosonic action takes the form

Sb = SYM + SCS + Sscalar, (2.14)

where

SYM =
4π

g2

∫ ∞
0

dx

(
(f ′)2 +

(1− f 2)2

2x2
+ A2f 2

)
SCS = −4π i

g2
mk

∫ ∞
0

dxA(1− f 2) (2.15)

Sscalar =
4π

g2

∫ ∞
0

dx

(
ϕ2f 2 +

r2

2
(ϕ′)2

)
,

4We do not claim that there are no finite action classical solutions; for instance, [18] argue that there
are complex solutions that can contribute to the path integral. The role of these solutions in the physical
theory is not fully understood yet. However, these subtleties will not affect our main conclusion, namely the
smoothness of the quantum corrected Coulomb branch.
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and a prime denotes a derivative with respect to the euclidean distance x.

Integrating out A sets

A = i
mk(1− f 2)

2f 2
, (2.16)

and the euclidean Lagrangian for the instanton becomes

L =
4π

g2

(
(f ′)2 +

(1− f 2)2

4

( 2

x2
+
m2
k

f 2

)
+ ϕ2f 2 +

x2

2
(ϕ′)2

)
. (2.17)

We thus arrive at the equations of motion for the classical configuration,

f ′′ =
f 2 − 1

4

(
4f

x2
+
m2
k

f 3
(f 2 + 1)

)
+ ϕ2f (2.18a)

ϕ′′ =
2

x

(ϕf 2

x
− ϕ′

)
. (2.18b)

As a check, at small distances the effect of the CS term is found to be unimportant and
(2.18) admits the real solutions

f(x) =
mgx

sinh(mgx)
, ϕ(x) = −1

x
+mgcoth(mgx) , (2.19)

which reproduce the instantons of the YM theory. At long distances we require the scalar
field to approach the Coulomb branch expectation value, namely ϕ(∞) = mg. In this regime,
the equation of motion for f is dominated by the CS term and the field approaches a limiting
value

f(∞)4 =
m2
k

m2
k + 4m2

g

. (2.20)

We have solved this system of equations numerically for solutions that interpolate between
the previous asymptotic behaviors. For nonzero CS mass, both f(x) and ϕ(x) are found to
be slowly varying (as opposed to the highly localized instantons of the YM theory), and
a numerical evaluation of the euclidean action shows that it diverges with the size of the
euclidean space. The reason for this is in fact the same as in [9]: at large x the Lagrangian
evaluates to

L ≈ 4π

g2

(
(1− f(∞)2)2

4

m2
k

f(∞)2
+m2

gf(∞)2 + ...

)
, (2.21)

which is strictly positive, explaining the divergence of the action.

We conclude that the instantons of the YM theory, when deformed by a CS interaction,
have a divergent action. We need to look somewhere else for a mechanism to resolve sin-
gularities. This ends our analysis of the classical YM–CS theory. In what follows we first
review the appearence of Coulomb branch singularity in the UV limit of the gauge theory
and then argue that the singularity is resolved by perturbative effects that become important
at long distances.
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3 The UV limit: Yang–Mills theory

In this section we will calculate the one loop correction to the two-point function of φ along
the Coulomb branch (2.6) in the limit m2

g � m2
k. This is the UV region, where the CS

deformation may be ignored. In this limit the theory reduces to the 3d SU(2) N = 4
theory. The quantum-corrected Coulomb branch metric was obtained in [6], and the one
loop calculation was carried out in [7]. However, these methods rely heavily on the N = 4
supersymmetry and it is not clear how to generalize them to include a CS deformation. For
this reason, here we will reproduce the known result using an approach that can be extended
to the N = 2 YM–CS theory. This will serve mostly as a warm up for our real motivation
–the YM–CS theory.

3.1 One loop calculation

Our goal is to compute the one-loop corrected two-point function

〈χ3(p)χ3(−p)〉 = G(0)(p) +G(0)(p)Σ(1)(p)G(0)(p) + . . . =
1

(G(0))−1(p)− Σ(1)(p)
, (3.1)

for now in the limit mk → 0. Here G(0)(p) = i/p2 is the tree-level propagator for χ3. Since
supersymmetry forbids the generation of a mass term, Σ(p) ∝ p2 plus higher order terms in
p2. Using the fact that at one loop the self-energy is proportional to the interaction g2 we
have, on dimensional grounds,

Σ(1)(p) = iΣ1
g2

mg

p2 +O(p4) = iΣ1
g√
2|v|

p2 +O(p4) . (3.2)

Σ1 is a dimensionless coefficient that will be calculated explicitly.5 Plugging this form into
(3.1) and Fourier transforming back to position space gives a one-loop kinetic term

L ⊃
(

1 + Σ1
g√
2|v|

)
1

2
∂µχ3∂

µχ3 . (3.3)

This defines the quantum-corrected Coulomb branch metric at the position v, with the rest
of the components fixed by supersymmetry.

Our approach is very straightforward: we will calculate all the one loop diagrams that
contribute to (3.1) using the component fields and interactions described in §2.1. In this
approach, supersymmetry is not used explicitly, although its consequences (such as the can-
cellation of divergences) will be seen directly. It would be nice to apply a method that takes
advantage of supersymmetry from the start, perhaps in terms of the superspace background
field approach of [19, 20, 21]. Furthermore, our final result for the quantum corrected metric
in the YM–CS theory will be so simple that it suggests that a more direct way of calculating
it could exist.

5The index denotes the loop order, and the factor of i anticipates that Σ1 is real.
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We work in Landau gauge
∂µAµ = 0 , (3.4)

which is very convenient for calculations in the Coulomb phase. It can be obtained by taking
the limit ξ → 0 of the Rξ gauge fixing described in the Appendix. In this case there are no
ghosts, the derivative couplings in (2.9) and (2.11) vanish, and χα is massless. The bosonic
propagators simplify to

〈Aαµ(p)Aβν (−p)〉 = −iδαβ gµν − pµpν/p
2

p2 −m2
g

〈σα(p)σβ(−p)〉 = iδαβ
1

p2 −m2
g

〈χα(p)χβ(−p)〉 = iδαβ
1

p2
(3.5)

〈χ̃α(p)χ̃β(−p)〉 = iδαβ
1

p2 −m2
g

,

and for the fermions

〈λα(p)λ̄β(p)〉 = iδαβ
6p

p2 −m2
g

〈ψα(p)ψ̄β(p)〉 = iδαβ
6p

p2 −m2
g

(3.6)

〈λα(p)ψ̄β(p)〉 = iεαβmg
1

p2 −m2
g

.

The one loop diagrams that contribute to the χ3 two point function are as follows. The
total bosonic contribution involves 7 one loop diagrams, which can be written in terms of
the previous propagators to give

Σb = −g2
∫

d3q

(2π)3

[
− i〈AαµAµα〉q + i〈σασα〉q + i〈χ̃αχ̃α〉q + 2m2

g〈AαµAβν 〉q〈AµαAνβ〉p−q (3.7)

+ 4pµpνεαβεγδ〈AµαAνγ〉q〈χβχδ〉p−q + 2m2
g〈σασβ〉q〈σασβ〉p−q + 2m2

g〈χ̃αχ̃β〉q〈χ̃αχ̃β〉p−q
]
.

We use the shorthand notation 〈φ1φ2〉q ≡ 〈φ1(q)φ2(−q)〉. The fermionic contribution amounts
to

Σf = 2g2εαβεγδ

∫
d3q

(2π)3

[
〈λαλ̄γ〉q〈ψβψ̄δ〉q−p + 〈λαψ̄δ〉q〈λγψ̄β〉q−p

]
. (3.8)

Individual diagrams have linear divergences, but they exactly cancel in the total contribution
Σ = Σb + Σf , so no regulator is needed at this order. This is expected from supersymmetry.
Expanding the self-energy in powers of p2 and performing the loop integrals obtains,

Σ(1) = − i

2π

g2

mg

p2 +O(p4) . (3.9)
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We conclude that Σ1 = −1/(2π) — see (3.2) — and the quantum Coulomb branch metric
is (restoring the real and imaginary parts of the flat direction)

L ⊃
(

1− 1

2
√

2π

g

|φ3|

)
∂µφ3∂

µφ̄3 , (3.10)

which reproduces [6, 7]. This result is exact in perturbation theory, and signals a perturbative
singularity at

|φ3| =
1

2
√

2π
g .

4 Quantum effects in pure Chern–Simons theory

Having understood the perturbative singularity in the YM limit, we will next focus on the
deep IR. In this limit, the CS deformation dominates over the kinetic terms for the vector
superfield. So in this section we will determine the quantum corrected Coulomb branch
metric of the Chern–Simons-matter theory which is also interesting in its own right.6

The resulting theory is obtained from (2.1) by rescaling

(Aµ, σ, λ,D)→ 1

g
(Aµ, σ, λ,D)

and then taking the limit g →∞. Now σ and λ also become auxiliary, and integrating them
out obtains

L = (Dµφi)
†Dµφi + iψ̄i 6Dψi +

k

8π
εµνρ(Aaµ∂νA

a
ρ +

1

3
fabcAaµA

b
νA

c
ρ) (4.1)

− 16π2

k2
(φ†T aT bφ)(φ†T aφ)(φ†T bφ) +

4π

k
(ψ̄T aψ)(φ†T aφ) +

8π

k
(ψ̄T aφ)(φ†T aψ) .

More details are given in §A.1. It is sometimes convenient to introduce the parameter

κ ≡ k

4π
. (4.2)

Perturbation theory is an expansion in powers of κ−1.

This theory has a one-dimensional Coulomb branch parametrized by tr(φ2). The ki-
netic term is not protected against quantum corrections and, unlike the case of N = 4
supersymmetry, it receives corrections to all orders in perturbation theory. Here we will
calculate the one loop corrections and show that there is no singularity. This finite effect is
the dominant contribution in the perturbative regime k � 4π, which we henceforth assume.7

6We refer the reader to [22] for a detailed review of Chern–Simons gauge theories with references to the
original literature. Some of the early works on supersymmetric CS theories are [23, 24, 25, 26]; also see [27]
for a more recent review.

7There are also interesting quantum corrections to the CS level of the U(1) gauge field; see e.g. [28, 29].
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Let us develop some intuition about the corrections that can appear. The crucial differ-
ence between the CS matter theory (4.1) and the previous case with nonzero gauge coupling
is that, at least in perturbation theory, there is no dimensionful parameter. The CS level
k, which is dimensionless and quantized, determines all the interactions. Next, turning on
a Coulomb branch expectation value v, this will be the only dimensionful parameter, and
hence it cannot appear in the loop corrected kinetic term for φ3. In the Yang–Mills case
there was a dimensionless parameter v/g that was appearing in loop corrections, but this is
no longer possible in the pure CS-matter case. We thus conclude that, if there are quantum
corrections to the Coulomb branch metric, they have to be independent of v. This argument
explains the absence of singularities along the Coulomb branch at the perturbative level.

4.1 One loop quantum corrections

Now we need to determine whether such corrections occur and what their numerical value is.
We turn on an expectation value (2.6) and compute the two-point function for the massless
field χ3 — recall our definition (2.7). At one loop, χ3 interacts with the fields (Aαµ, χα, χ̃α, ψα),
where α = 1, 2 are the color directions perpendicular to the Coulomb branch expectation
value.

In Landau gauge ∂µA
µ = 0, the quadratic Lagrangian for the fields (Aαµ, χα, χ̃α, ψα) is

Lquad =
κ

2
Aαµ (εµνρ∂ν +mHg

µρ)Aαρ −
1

2
χ̃α(�+m2

H)χ̃α−
1

2
χα�χα + ψ̄α(i 6∂ +mH)ψα , (4.3)

where the mass induced by the Higgs mechanism is

mH ≡
2v2

κ
. (4.4)

From this quadratic action we can read off the propagators

〈Aαµ(p)Aβν (−p)〉 = −i δαβ κ−1 mH(gµν − pµpν/p2)− iεµνρpρ

p2 −m2
H

〈χα(p)χβ(−p)〉 = δαβ
i

p2
, 〈χ̃α(p)χ̃β(−p)〉 = δαβ

i

p2 −m2
H

〈ψα(p)ψ̄β(p)〉 = δαβ
i( 6p+mH)

p2 −m2
H

. (4.5)

Furthermore, the interaction terms that contribute to the one-loop action of φ3 are

Lint = − 1

κ2

(
2
√

2v3χ̃α(−χαχ̃3 + 2χ̃αχ3) + 6v2χ̃αχ3(−χαχ̃3 + χ̃αχ3) + v2(χ2
α + χ̃2

α)χ̃2
3

)
+

(
2

κ
ψ̄αψα + (Aαµ)2

)(√
2vχ3 +

1

2
χ2
3 +

1

2
χ̃2
3

)
+ 2εαβA

µ
α(χβ∂µχ3 + χ̃β∂µχ̃3) . (4.6)
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Now we are ready to compute the one loop self-energy for χ3. The bosonic contributions
sum up to

Σb = −
∫

d3q

(2π)3

(
i
6

κ
mH〈χ̃αχ̃α〉q − i〈AαµAµα〉q +

8

κ
m3
H〈χ̃αχ̃β〉q〈χ̃αχ̃β〉p−q

+4pµpνεαβεγδ〈AµαAνγ〉q〈χβχδ〉p−q + 4v2〈AαµAβν 〉q〈AµαAνβ〉p−q
)
. (4.7)

This is of the same form as (3.7) (after a rescaling to absorb the powers of g), except that
σ does not appear any more because it is an auxiliary field in the CS theory. On the other
hand, the fermionic contributions are

Σf =
2

κ

∫
d3q

(2π)3
(
i〈ψαψ̄α〉q − 2mH〈ψαψ̄β〉q〈ψαψ̄β〉p−q

)
. (4.8)

Replacing the previous expressions for the propagators and expanding in powers of p2

obtains

Σ(1) = Σb + Σf = − i

2πκ
p2 +O(p4) . (4.9)

Thus, the Coulomb branch metric including one loop effects becomes

L ⊃
(

1− 1

2πκ

)
∂µφ3∂

µφ̄3 . (4.10)

In summary, in the CS-matter theory there is no Coulomb branch singularity, and instead
there is a finite one loop correction to the metric proportional to κ−1 and independent of φ3.
We also expect nonzero higher loop corrections, suppressed by higher powers of the coupling,
so our result gives a good approximation in the perturbative regime κ−1 � 2π.

5 The quantum Coulomb branch of YM–CS theory

Finally, we are ready to attack the full problem of computing the one-loop corrected Coulomb
branch metric for the YM–CS theory (2.1). The result hasn’t been obtained before, and the
calculations are somewhat involved, so it is important to perform consistency checks. There-
fore, instead of specializing to the Landau gauge, here we will work in an arbitrary Rξ gauge
and will show that the self-energy is independent of the gauge fixing parameter. This pro-
vides a nontrivial verification on our result, implying its gauge invariance and the restoration
of supersymmetry (which is broken by the gauge fixing function). Other consistency checks
will include the exact cancellation of divergences and the correct UV behavior.

5.1 One loop metric along the Coulomb branch

The Rξ gauge corresponds to the gauge-fixing function (see e.g. [30])

Ga = ∂µA
aµ − igξ

(
〈φ†i〉T aijδφj − δφ

†
iT

a
ij〈φj〉

)
, Lg.f. = − 1

2ξ
(Ga)2 (5.1)
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where δφ is the fluctuation around the vacuum expectation value. Evaluating this and
the Faddeev–Popov determinant for our theory, we find that the gauge fixing and ghost
Lagrangian terms that contribute at one loop are

Lg.f. + Lghost ⊃ −
1

2ξ
(∂µA

µ
α)2 −mgεαβ∂µA

µ
αχβ −

1

2
ξm2

gχ
2
α − c̄α(� + ξm2

g + ξgmgχ3)c
α . (5.2)

More details may be found in §A.2. The fields with color index parallel to the color-breaking
direction a = 3 do not contribute to the one loop effective action. Recall that mg =

√
2gv,

and that we are working in the convention where g appears in the interactions and not in
front of F 2

µν .

The propagators for the massive fields for arbitrary ξ are given in the Appendix. Also,
note that in the Rξ gauge the derivative interaction term L ⊃ gεαβ∂µA

µ
αχβχ3 also contributes

to the one loop self-energy.

There are 13 one loop bosonic contributions to the χ3 two-point function,

Σb = −g2
∫

d3q

(2π)3

{
− i〈AαµAµα〉q + i〈σασα〉q + i〈χ̃αχ̃α〉q + 2m2

g〈AαµAβν 〉q〈AµαAνβ〉p−q

+ 2m2
g

[
〈σασβ〉q〈σασβ〉p−q + 〈χ̃αχ̃β〉q〈χ̃αχ̃β〉p−q + 2〈σαχ̃β〉q〈σαχ̃β〉p−q

]
+ m2

k εαβεγδ

[
〈σασγ〉q〈χ̃βχ̃δ〉p−q + 〈σαχ̃δ〉q〈σγχ̃β〉p−q

]
− 4mgmkεαβ〈σασγ〉q〈σγχ̃β〉p−q

− 4mgmkεαβ〈χ̃βχ̃γ〉q〈σαχ̃γ〉p−q + εαβεγδ (4pµpν + qµqν)〈AµαAνγ〉q〈χβχδ〉p−q
}
. (5.3)

The fermionic contributions are simpler,

Σf = 2g2εαβεγδ

∫
q

[
〈λαλ̄γ〉q〈ψβψ̄δ〉q−p + 〈λαψ̄δ〉q〈λγψ̄β〉q−p

]
. (5.4)

We do not write explicitly the propagators (that can be found in the Appendix) in order
to exhibit explicitly the various symmetry factors and couplings. The ghost contribution
can be obtained from Feynman diagrams or directly from the Faddeev–Popov determinant
det(δαGβ) ∝ det 2(� + ξm2

g + gξmgχ3), with the result

Σghost = −2g2ξ2m2
g

∫
q

1

q2 − ξm2
g

1

(p− q)2 − ξm2
g

. (5.5)

Putting these results together, we finally arrive at the total one loop self-energy

Σ(1) = Σb + Σf + Σghost = − i
π

g2

m+ +m−
p2 +O(p4) , (5.6)

where the mass eigenvalues m2
± were defined in (2.10). As promised, this is independent of

the gauge fixing parameter ξ, thus verifying the gauge invariance of the self-energy. This
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Figure 1: Plot of the function G(|φ|) in the one loop Coulomb branch metric in YM–CS
(namely, S ⊃

∫
G(|φ|)∂µφ3∂

µφ̄3), for different values of k. The four curves correspond to
k = 0, 6, 10, 14 (in red, violet, magenta and blue, respectively), with g = 1 in all cases. For
k = 0, the metric vanishes at φ = g

2
√
2π

, while it stays regular everywhere along the Coulomb
branch for k large enough that our perturbative computations can be trusted.

is a strikingly simple result: it is the same as the pure YM quantum correction (3.9) after
replacing mg by the averaged mass (m+ + m−)/2 of the massive modes! Of course, an im-
portant difference to keep in mind is that the Coulomb branch metric of YM–CS is expected
to receive higher loop corrections, while the YM result is exact in perturbation theory.

In summary, the Coulomb branch metric including one loop corrections is

S ⊃
∫
d3x

1− 1

2π

1√
2 |φ3|

2

g2
+ κ2

4

 ∂µφ3∂
µφ̄3 . (5.7)

This is our main result. In the UV regime |φ| � κg this recovers the known YM result,
providing another test for our result. When |φ| ∼ κg the effects from the CS deformation
become important and for |φ| � κg the metric flows to a constant value G = 1 − 1

πκ
.

When κ = k
4π
� 1 (which is when our perturbative computations can be trusted), G > 0.

Therefore, the perturbative singularity of the YM theory is resolved by the topological mass.
The full metric G(|φ|) interpolating between the UV and IR for different values of κ is shown
in Figure 1, together with the one loop result in the pure YM case.
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5.2 Nondecoupling of massive modes

Finally, let us compare the IR limit g →∞ of the full YM–CS calculation with the result in
the CS theory of §4. When the gauge coupling is taken to infinity,

m+ → mk ∼ g2 , m− → mH ∼ O(g0) , (5.8)

and hence (5.6) and (4.9) are related by

Σ
(1)
YM+CS+m

g→∞
= − i g2

πmk

p2 +O(p4)

=2 Σ
(1)
CS+m +O(p4) .

(5.9)

Therefore, the YM–CS and CS results differ by a factor of 2. At first this is a bit puzzling,
because the CS interaction dominates over the YM kinetic term in the IR; so we would
expect the CS calculation to reproduce the long distance behavior of the full theory.

In order to understand this difference consider, for instance, the one loop contribution
from the interaction term involving χα and Aµβ. In Landau gauge,

Σ
(1)
YM+CS+m[χA] = −i16g2

3
p2
∫

dq3

(2π)3
(q2 −m2

g)

(p− q)2(q2 −m2
+)(q2 −m2

−)
, (5.10)

while for the CS+matter theory,

Σ
(1)
CS+m[χA] = −i16

3κ
p2
∫

dq3

(2π)3
mH

(p− q)2(q2 −m2
H)

. (5.11)

Taking the limit g → ∞ before performing the integral, both contributions give the same
result. However, performing the integrals at finite g and taking the IR limit at the end of
the calculation gives a different answer. Let us see how this comes about.

Wick-rotating and expanding to order p2 obtains

Σ
(1)
YM+CS+m[χA] = −i4g

2

3π2
p2
∫ +∞

−∞
dq

(q2 +m2
g)

(q2 +m2
+)(q2 +m2

−)
+O(p4) . (5.12)

This integral can be done using residue methods. For instance, closing the contour in the
upper complex plane, the two poles that contribute are at q = im±, obtaining

Σ
(1)
YM+CS+m[χA] = −8g2

3π
i

p2

m+ +m−
+O(p4)

g→∞
= −8i p2

3πκ
+O(p4) . (5.13)

In contrast, in the CS+matter theory there is only one pole that contributes:

Σ
(1)
CS+m[χA] = −i 4

3κπ2
p2
∫ +∞

−∞
dq

mH

q2 +m2
H

+O(p4) = −4i p2

3πκ
+O(p4) . (5.14)
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Thus, the relative factor of 2 comes from the massive states that yield the extra pole at
q2 = −m2

+, which is absent in the CS theory. These masses diverge for g → ∞ but, as we
just found, they give a finite wavefunction renormalization to the Coulomb branch field. If
we instead take g → ∞ first and then perform the integral both answers agree because the
massive pole goes to infinity and does not contribute to the contour integral.

It is interesting that the Coulomb branch metric is in this way sensitive to the UV
completion. This is related to anomalies. In three dimensions, the generation of a CS
interaction from massive fermions is itself an example of this [31, 32, 33], related to the parity
anomaly. The nondecoupling finite effect on the Coulomb branch that we just described is
associated to the trace anomaly.8
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A Some useful field theory results

In this Appendix we collect our field theory conventions and other required results for the
calculations in the main part of the paper.

The metric signature is (+ − −); 3d fermions are Dirac, with ψ̄ = ψ†γ0. A possible
representation of gamma matrices is γ0 = σ2, γ

1 = iσ3, γ
2 = iσ1. The covariant derivative

is given by
Dµφi = ∂µφi − iAaµT aijφj . (A.1)

For the adjoint representation, T aij = −ifaij and Dµφa = ∂µφa + fabcAbµφc.

A.1 Three-dimensional supersymmetric theories

In three dimensions, the vector superfield contains the gauge field Aaµ and gaugino λa, a real
scalar σa (the extra component of the gauge field in reducing from 4d to 3d) and an auxiliary
D-term Da. Their lagrangian is

Lgauge =
1

g2

[
−1

4
F a
µνF

aµν +
1

2
Dµσ

aDµσa + iλ̄a 6Dλa − λ̄σλ+
1

2
DaDa

]
. (A.2)

8An analog of this in four dimensions that is phenomenologically important is the triangle diagram for
Higgs production from gluon fusion or the h → γγ decay, where loops of very massive fermions give finite
contributions [34]. We thank M. Peskin for discussions on these points.
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The gaugino is a 3d Dirac fermion.

Moving to the matter sector, a chiral superfield contains a complex scalar φ, a Dirac
fermion ψ and an auxiliary field F . The lagrangian reads

Lmatter = (Dµφi)
†Dµφi + iψ̄i 6Dψi − φ†σ2φ+ φ†Dφ− ψ̄σψ + i

√
2φ†λ̄ψ − i

√
2ψ̄λφ

+ F †i Fi + Fi
∂W

∂φi
+ F †i

(
∂W

∂φi

)†
− 1

2

∂2W

∂φi∂φj
ψiψj −

1

2

(
∂2W

∂φi∂φj

)†
ψ̄iψ̄j . (A.3)

The fields from the vector superfield act on the matter ones as matrices. For instance,
φ†Dφ ≡ φ†i (T

aDa)ijφj. Similarly, φ†σ2φ ≡ φ†i (σ
aT aij)(σ

bT bjk)φk. Integrating out the D-term

sets Da = −g2φ†T aφ, and the relevant part of the lagrangian becomes

1

2g2
DaDa + φ†Dφ→ −g

2

2
(φ†T aφ)(φ†T aφ) . (A.4)

Consider now the 3d N = 4 theory with gauge group SU(N) and no flavors. This
arises for the special case of an N = 2 theory with a single matter superfield in the adjoint
representation, and vanishing superpotential, W = 0. Therefore, the Lagrangian reads

LN=4 =
1

g2

[
−1

4
F a
µνF

aµν +
1

2
Dµσ

aDµσa + iλ̄a 6Dλa − λ̄σλ
]

+ (Dµφ
a)†Dµφa + iψ̄a 6Dψa

− λ̄σλ− ψ̄σψ − φ†σ2φ+ i
√

2φ†λ̄ψ − i
√

2 ψ̄λφ− g2

2
(φ†T aφ)(φ†T aφ) . (A.5)

Here we have included a factor of 1/g2 in the vector multiplet kinetic terms, while in the main
part of the paper these kinetic terms are taken to be canonical. The convention here is more
convenient for understanding the g →∞ limit, which we will consider shortly. On the other
hand, the choice of canonical kinetic terms simplifies the Feynman diagram calculations in
the Coulomb branch of the full YM–CS theory.

Next, let us add an N = 2 CS deformation — preserving more supersymmetries would
lift the Coulomb branch. This is given by

LCS =
k

8π

(
εµνρ(Aaµ∂νA

a
ρ +

1

3
fabcAaµA

b
νA

c
ρ)− 2λ̄aλa + 2Daσa

)
, (A.6)

so that the YM–CS theory is
L = LN=4 + LCS . (A.7)

The final form for the Lagrangian is obtained by integrating out the auxiliary D-term,

Da = −g
2k

4π
σa − g2φ†iT aijφj .
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We then arrive at

L =
1

g2

[
−1

4
F a
µνF

aµν +
1

2
(Dµσ

a)2 + iλ̄a 6Dλa − λ̄σλ
]

+
k

8π

[
εµνρ(Aaµ∂νA

a
ρ +

1

3
fabcAaµA

b
νA

c
ρ)− 2λ̄aλa

]
− 1

2
g2
(
k

4π
σa + φ†iT

a
ijφj

)2

+ (Dµφi)
†(Dµφi) + iψ̄i 6Dψi − φ†σ2φ− ψ̄σψ +

√
2i(φ†λ̄ψ − ψ̄λφ) . (A.8)

This shows directly that in the presence of LCS, the gaugino and scalar σ acquire a mass

mk ≡
g2k

4π
. (A.9)

Calculating the gauge field propagator requires choosing a gauge, as we will discuss momen-
tarily. The theory studied in this paper is given by (A.8) with SU(2) gauge group.

Finally, we consider the limit g2 →∞, where the kinetic terms for the vector supermul-
tiplet are set to zero. Now σ, D and λ are all auxiliary, and integrating them out sets

λa =
4π

k

√
2i(φ†T aψ) , σa = −4π

k
(φ†T aφ)

where (φ†T aφ) = φ†iT
a
ijφj. Therefore, the Lagrangian becomes

L = (Dµφi)
†Dµφi + iψ̄i 6Dψi +

k

8π
εµνρ(Aaµ∂νA

a
ρ −

1

6
fabcAaµA

b
νA

c
ρ) (A.10)

− 16π2

k2
(φ†T aT bφ)(φ†T aφ)(φ†T bφ) +

4π

k
(ψ̄T aψ)(φ†T aφ) +

8π

k
(ψ̄T aφ)(φ†T aψ) .

A.2 Fields and propagators in the Coulomb phase

In this work we are interested in the quantum corrections to the Coulomb branch metric. The
classical Coulomb branch was described in §2.1. It can be parametrized by the expectation
value

〈φa〉 = vδa3 , v ∈ R . (A.11)

Let us focus on the fields that contribute to the one loop effective action for φ3, which have
color indices α = 1, 2 perpendicular to the color breaking direction a = 3. Here we work
with canonical kinetic terms for the gauge field and gauginos, which simplifies the one loop
calculations.

We consider a general Rξ gauge (see [30])

Lg.f. = − 1

2ξ

(
∂µA

aµ − igξ
(
〈φ†i〉T aijδφj − δφ

†
iT

a
ij〈φj〉

))2
(A.12)
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where δφ is the fluctuation around the vacuum expectation value. In our case, the gauge
fixing terms and ghost Lagrangian simplify to

Lg.f.+Lghost = − 1

2ξ

(
∂µA

aµ +mgξε
ab3χb

)2−c̄a ((∂µDµ)ab +m2
gξδ

ab
)
cb−mggξ(c̄

αcαχ3−χ̄αc3χα) .

(A.13)
The Lagrangian for the fields along along the α direction also involves the quadratic terms
(2.9) and interactions (2.11).

The gauge fixing Lagrangian (A.13) cancels the quadratic coupling between ∂µA
µ
α and

the Goldstone mode, but the cubic interaction ∂µA
µ
αχ3χβ survives. It is also possible to

choose a quadratic gauge fixing function

Ga = ∂µA
aµ − igξ

(
φ†iT

a
ijφj − φ

†
iT

a
ijφj

)
that also cancels the cubic derivative interaction and has a simple Faddeev–Popov determi-
nant det(δβGα) ∝ det2(� + 2g2ξ|φ3|2). We have verified that both gauge fixing functions
give the same result.

Let us now list the propagators that enter in the one loop diagrams for the self-energy of
χ3. The propagators for the gauge field and Goldstone boson are found to be

〈Aαµ(p)Aβν (−p)〉 = −iδαβ
(p2 −m2

g)(gµν −
pµpν

p2−ξm2
g
) + imkεµνρp

ρ + ξ
p2−m2

k−m
2
g

p2−ξm2
g
pµpν

(p2 −m2
+)(p2 −m2

−)

〈χα(p)χβ(−p)〉 = i
δαβ

p2 − ξm2
g

. (A.14)

Landau gauge corresponds to the limit ξ → 0 in these expressions. The scalars (σα, χ̃α) have
mass mixings, leading to the two-point functions

〈σα(p)σβ(−p)〉 = iδαβ
p2 −m2

g

(p2 −m2
+)(p2 −m2

−)

〈χ̃α(p)χ̃β(−p)〉 = iδαβ
p2 −m2

g −m2
k

(p2 −m2
+)(p2 −m2

−)
(A.15)

〈σα(p)χ̃β(−p)〉 = −iεαβ
mgmk

(p2 −m2
+)(p2 −m2

−)
.

For the fermions (λα, ψα) we find

〈λα(p)λ̄β(p)〉 = iδαβ
(p2 −m2

g) 6p+mkp
2

(p2 −m2
+)(p2 −m2

−)

〈ψα(p)ψ̄β(p)〉 = iδαβ
(p2 −m2

g −m2
k) 6p+mkm

2
g

(p2 −m2
+)(p2 −m2

−)
(A.16)

〈λα(p)ψ̄β(p)〉 = iεαβmg

p2 −m2
g +mk 6p

(p2 −m2
+)(p2 −m2

−)
.
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Finally, the ghost propagator is

〈cα(p)cβ(−p)〉 = iδαβ
1

p2 − ξm2
g

. (A.17)

The iε prescription, not shown here, is the same as in [30].
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