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Abstract

Klaim is an experimental language designed for modeling and programming distributed systems
composed of mobile components where distribution awareness and dynamic system architecture
configuration are key issues. StocKlaim [13] is a Markovian extension of the core subset of
Klaim which includes process distribution, process mobility, asynchronous communication, and
site creation. In this paper, MoSL, a temporal logic for StocKlaim is proposed which addresses
and integrates the issues of distribution awareness and mobility and those concerning stochastic
behaviour of systems. The satisfiability relation is formally defined over labelled Markov chains.
A large fragment of the proposed logic can be translated to action-based CSL for which efficient
model-checkers exist. This way, such model-checkers can be used for the verification of StocKlaim
models against MoSL properties. An example application is provided in the present paper.

Keywords: mobility, stochastic logics, process algebra

1 Introduction

During the last decades, computer systems have changed from isolated static
devices to machines that are highly interconnected to perform tasks in a
cooperative and coordinated manner. These modern, complex distributed
systems—also known as global or network-aware computers [7]—are highly
dynamic and have to deal with frequent changes of the network environment.
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New features such as distribution awareness and code mobility play a promi-
nent role in the concept of global computing. Dedicated programming and
specification formalisms have been developed that can deal with issues such as
(code and agent) mobility, remote execution, and privacy and security aspects
(e.g., data integrity). Prominent examples of such languages and frameworks
are, among others, Obliq [6], Seal [9], and Klaim [11].

Due to their enormous size—networks typically consist of thousands or
even millions of nodes—and their strong reliance on mobility and interaction,
performance and dependability issues of global computers are of utmost im-
portance for “network-aware computing”. Spontaneous computer crashes may
easily lead to failure of remote execution or process movement, while spurious
network hick ups may cause loss of code fragments or unpredictable delays.
The presence of such random phenomena implies that correctness of practical
global programs and their privacy guarantees are no longer rigid notions (“ei-
ther it is safe or it is not”), but have a less absolute nature (“in 97% of the
cases, privacy can be ensured”). The intrinsic complexity of global comput-
ers, though, complicates the assessment of these issues severely. Systematic
methods, techniques and tools are therefore needed to establish performance
and dependability requirements and guarantees.

This paper reports on our initial attempts towards such systematic meth-
ods. We consider an extension of the core subset of Klaim [4] with random
delays, as proposed in [13]. This yields an integrated specification language
supporting major global computing paradigms such as process mobility, pro-
cess distribution, asynchronous communication of node names and processes
through shared local repositories (i.e., tuple spaces), and dynamic node cre-
ation, as well as randomly delayed activities. For the sake of simplicity we
restrict to exponential delays. This facilitates the use of existing numerical
techniques and software tools. The generalization of our approach toward
general distributions can be performed along the lines of [10].

The main contribution of this paper is a state and action-based, branching-
time temporal logic that permits the specification of properties of stochastic
core Klaim terms. The logic permits to consider the mobile and distributed
aspects of global computing, its performance and dependability requirements,
and their combination. It allows, for instance, to state that “in equilibrium,
the probability that a piece of code currently at site l eventually ends up at site
l′ exceeds 0.9” and “a certain network configuration can be reached without
ever dynamically creating a new site”. The syntax and semantics of the logic
are detailed. It is shown that a large fragment of the proposed logic can be
mapped onto action-based CSL (aCSL [19]). Due to space limitations, the
details of the mapping are not shown in the present paper. The interested
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reader is referred to [12] for the complete definition of the mapping as well
as the formal proof of its correctness. Our mapping facilitates the use of
the existing model checker ETMCC [20] for the automated verification of
StocKlaim programs. ETMCC provides efficient algorithms to check an
aCSL formula against a continuous time Markov chain (CTMC). It has been
used for the validation of a number of real-life applications. We illustrate
our approach by modelling the spreading of a virus through a network and
verifying stochastic properties such as “the probability that the virus is spread
to location l within t time-units is less than 10−4”. Several (temporal) logics
have been proposed which aim at describing properties of systems related
either to mobility ([3,14,5,8,16,22] among others) or to stochastic behaviour
(e.g. [17,18,1,2,19]). To the best of our knowledge, the present paper is the
first approach towards a probabilistic logic for mobility.

The paper is further organized as follows. Section 2 presents the StocKlaim

language and its semantics in terms of action-labelled CTMCs. Section 3 in-
troduces the “performobility” logic, its syntax and its semantics. The issues
of translating the logic into aCSL are also briefly discussed. Section 4 presents
the virus spreading case study and its verification results. Section 5 concludes
the paper.

2 StocKlaim

In the following we briefly recall the StocKlaim language. In [13] the def-
inition of the language is dealt with in full detail and a thorough discussion
of the motivations for all design choices is presented. We refer the interested
reader to the above mentioned paper.

Let L, ranged over by l, l′, l1, . . ., be a set of localities, U , ranged over by
u, u′, u1, . . ., a set of locality variables, A, ranged over by A, A′, A1, . . . a set
of process variables, and R, ranged over by r, r′, r1, . . . a set of rate names.
We assume that the above sets are mutually disjoint. Moreover, we let �, �′

range over L∪U . The syntax of StocKlaim, is given in Table 1. A network

node l :: 〈l′〉 intuitively models that value 〈l′〉 is stored, or located, in node,
or locality, l. Similarly, for process P , l :: 〈P 〉 means that P is stored in
l as a piece of data 1 . On the other hand, l :: P indicates that process P
is running at locality l. Complex networks are built from simpler ones by
means of the network parallel operator ||. Given network N , the set of values
located at locality l consists of those l′ and P such that l :: 〈l′〉 or l :: 〈P 〉
occurs in N . The set of processes running at locality l coincides with all P

1 Localities and processes are the only data available in the core language we consider in
this paper.
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N ::= Networks

l :: 〈l′〉

| l :: 〈P 〉

| l :: P

| N || N

P ::= Processes

nil

| (a, r).P

| P + P

| P | P

| A

a ::= Actions

out �′ @ �

| out P @ �

| in T @ �

| eval P @ �

| newloc u

T ::= Templates

l

| !u

| !A

Table 1
Syntax of StocKlaim

such that l :: P occurs in N . The intuition behind the action prefix (a, r).P
is that the execution time of action a is exponentially distributed with rate
specified by rate name r. Rate names are mapped to rate values by means
of binding functions, which are (partial) functions from R to IR+. Actions
can be used for uploading (out) or downloading (in) data to or from specific
localities. Such localities can also be expressed by means of variables. The
only templates which can be used in download actions are locality constants

or locality and process variables, that are prefixed by exclamation mark thus
playing the role of parameters to be bound to values by the in action. Remote
process evaluation (eval) is possible as well as the creation of new localities
(newloc). Compound processes are built using the usual operators like choice
(+), interleaving (|), and instantiation.

The operational semantics definition characterizes a transition relation over
(network) configurations. A configuration is a triple (L, β, N)—henceforth
also written as L, β � N—where L is the finite set of localities occurring in
N , β : R �→ IR+ is a mapping from rate names to rates, with (dom β)—the
domain of β—finite, and N a network expression. We use Lc (resp. βc and
Nc) for L (resp. β and N) in configuration c = L, β � N . Besides all the usual
static semantics constraints (e.g. process names must be defined before usage
and no variables must be free in the top-level network expression), we require
that all rate names occurring in N are elements of (dom β) and distinct. Rate
name uniqueness ensures that whenever there is more than one way to perform
the same action, the total rate for such action—i.e. that obtained considering
the contribution of all the different ways to perform the action—will be taken
into account, as discussed in [13].

We refer the reader to [12] for the formal definition of the transition relation
−→ . Here it suffices to say that the relation is essentially the same as in [13],
with the only difference that every transition is now labeled not only with the
rate name of the action which takes place by the transition, but also with the
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action itself as well as the locality where it is executed. For example, the rule
for uploading (in node l) the piece of data l′′ to node l′ is the following one:

L, β � l :: (out l′′ @ l′, r).P || l′ :: P ′ (l,out l′′ @ l′,r)
−−−−−−−−−−−→L, β � l :: P || l′ :: P ′ || l′ :: 〈l′′〉

The action information in the transitions allows to refer to these activities in
the logic. In order to apply the rules defining the transition relation, it is often
necessary to rearrange configurations according to the structural congruence
≡ defined in [13,12], which will be used also in the definition of the satisfaction
relation of the logic. The laws which characterize such congruence include the
usual axioms for associativity, commutativity and nil-neutrality for choice and
parallel composition, Klaim specific process cloning, and proper (rate name)
renaming.

Let ACT denote the set of all ground actions (i.e. actions which do not
contain variables) according to the syntax of Table 1. Let (Loc N) be the set
of localities occurring in N . The operational semantics of a network specifi-
cation (N, β) is defined, like in [13], as the labeled transition system (LTS)

TS(N, β)
def
= (C, Λ, −→ , c0) where C is the set of (the representatives under

≡ of) the configurations reachable from (the representative under ≡ of) the

initial state c0
def
= (Loc N), β � N , via the transition relation −→ ⊆ C ×Λ×C

defined as mentioned above, with Λ ⊆ L× ACT ×R.

The LTS associated to a network specification (N, β) can easily be trans-
lated to a CTMC, as we will show in the sequel. CTMCs have been extensively
studied in the literature; a comprehensive treatment can be found in [21]. For
the purposes of the present paper we will use the notion of action-labelled

CTMC, as defined for instance in [19]:

Definition 2.1 An action-labelled CTMC (AMC) M is a triple (S, Act, −→ )
where S is a set of states, Act is a set of actions, and −→ ⊆ S×(Act×IR+)×S
is the transition relation.

In the sequel we consider only finite AMCs, i.e. finitely branching AMCs
with a finite number of states. Moreover, Act, ranged over by γ, γ′, γ1, is
a set of located actions (l, a) where a is a ground action and l the locality
where a takes place (we omit the word “located” when this will not cause

confusion). Transition s γ,λ−−→ s′ means that the process can move from state
s to state s′ while performing action γ with an execution time determined by
an exponential distribution with rate λ. We say that s ∈ S is absorbing if and

only if there is no s′, γ and λ such that s γ,λ−−→ s′. Notice that according to the
above definition AMCs can have self-loops. The presence of such transitions
does not affect standard CTMC measures and allows for a natural definition
of the action-based temporal operators in the logic. The AMC associated to a
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StocKlaim network specification is defined below, where the LTS associated
to the specification is assumed to be finite, i.e. it is finitely branching and has
a finite number of states 2 .

Definition 2.2 Given a network specification (N, β) with TS(N, β) = (C, Λ,
−→ , c0) finite, the AMC (S, Act, −→ ) associated to the specification and
denoted by AMC(N, β), is such that S = C, Act ⊆ (L×ACT )× IR+ and for

all c, c′ ∈ S, c (l,a),λ−−−−→ c′ if and only if 0 �= λ =
∑

c
(l,a,r)−−−−→ c′

(βc r).

We close this section with the definition of paths which we will use in the next
section. Given AMC (S, Act, −→ ), Γ ⊆ Act, and s, s′ ∈ S, let RΓ(s, s′),

be defined as follows: RΓ(s, s′)
def
=

∑
γ∈Γ{λ | s γ,λ−−→ s′} The definition of

(maximal) Paths over an AMC follows:

Definition 2.3 Given AMC M = (S, Act, −→ ), an infinite path σ over M is
a sequence s0(γ0, t0)s1(γ1, t1)s2(γ2, t2) . . . such that, for all i � 0, si ∈ S, γi ∈
Act, ti ∈ IR+ and R{γi}(si, si+1) > 0. For i � 0, we let σ[i] = si, α(σ, i) = γi,

and δ(σ, i) = ti. For t ∈ IR�0 and i the smallest index such that t �
∑i

j=0 tj
we let σ(t) = σ[i]. Finite paths are defined similarly; the ending state is an
absorbing state.

We let len σ denote the length of path σ and define it to be ∞ when σ is
infinite. For any state s of an AMC M, let Paths(s) denote the set of all (finite
and infinite) paths s0(γ0, t0)s1(γ1, t1)s2(γ2, t2) . . . over M with s0 = s. A Borel
space can be defined over Paths(s), together with its associated probability
measure Pr, which is a slight extension of that defined in [2] in order to take
both states and actions into consideration [12].

3 MoSL: a logic for StocKlaim

In this section, we present MoSL, a logic for the integrated specification
of functional—i.e. qualitative—as well as quantitative—e.g. performance—
properties of mobile systems modeled using StocKlaim. We also briefly
discuss the translation of the logic to aCSL.

2 There are several ways for assuring finiteness of the LTSs that are automatically generated
from higher level specifications, like process algebras. Some rely on syntactical restrictions,
like avoiding certain (combinations of) operators. Others, typically used in the context of
verification tools design, are based on the introduction of constraints on certain kinds of
resources.
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Φ ::= State Formulae

tt

| ℵ

| ¬Φ

| Φ ∨ Φ

| S��p(Φ)

| P��p(ϕ)

ℵ ::= Atomic Propositions

A@�

| 〈�〉@�

| 〈A〉@�

ϕ ::= Path Formulae

Φ ξU
<t
ξ Φ

| Φ ξU
<t Φ

ξ ::= Action Formulae

| tt

| ¬ ξ

| ξ ∨ ξ

| � : out � @ �

| � : out A @ �

| � : in � @ �

| � : in A @ �

| � : eval A @ �

| � : newloc u

Table 2
Syntax of MoSL

3.1 Syntax of MoSL

Let L, U , and A be defined as in Sect. 2, p ∈ [0, 1] a probability value,
	
 ∈ {<, �, �, >}, and t ∈ IR+ ∪ {∞}. The syntax of MoSL is defined
in Table 2. The main difference between MoSL and aCSL is that besides
the trivial proposition tt, state formulae include those built from A@l (resp.
〈l′〉@l, 〈A〉@l) modeling the fact that process A is executing at locality l (resp.
value l′ or process A is stored at locality l). Locality variables will be bound
by means of action formulae of the form � : newloc u, as we will see later.
Moreover, requirements on actions are expressed as boolean combinations of
action propositions directly reflecting the actions of StocKlaim processesw
and not as sets of symbolic actions. For instance, under the assumption that A
is a specific process (i.e. there is a definition for A), action formula l : in A @ l′

states that in locality l an input action is being performed by means of which
A is downloaded from repository l′.

We recall from [1,2] that P��p(ϕ) asserts that the probability measure of
the set of paths satisfying ϕ meets the bound 	
 p while S��p(Φ) means that the
steady-state probability for the set of states satisfying Φ meets the bound 	
 p.
The path formula Φ ξU

<t Φ′ is fulfilled by a path if a Φ′-state is eventually
reached by passing only through Φ-states before, while taking only transitions
whose actions satisfy ξ; moreover, the Φ′-state should be reached within t time
units. The formula Φ ξU

<t
ξ′ Φ′ requires moreover that (i) a move to a Φ′-state

is actually made and that (ii) this transition is labeled by an action satisfying
ξ′.

As it is clear from the syntactical definition of MoSL, formulae may con-
tain both locality variables and process variables. While process variables
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Fr(tt)
def
= ∅

Fr(A@�)
def
= Fr(�)

Fr(〈�′〉@�)
def
= Fr(�′) ∪ Fr(�)

Fr(〈A〉@�)
def
= Fr(�)

Fr(¬Φ)
def
= Fr(Φ)

Fr(Φ ∨ Ψ)
def
= Fr(Φ) ∪ Fr(Ψ)

Fr(S��p(Φ))
def
= Fr(Φ)

Fr(P��p(ϕ))
def
= Fr(ϕ)

Fr(ξ ∨ η)
def
= Fr(ξ) ∪ Fr(η)

Fr(� : out �′ @ �′′)
def
= Fr(�) ∪ Fr(�′) ∪ Fr(�′′)

Fr(� : out A @ �′)
def
= Fr(�) ∪ Fr(�′)

Fr(� : in �′ @ �′′)
def
= Fr(�) ∪ Fr(�′) ∪ Fr(�′′)

Fr(� : in A @ �′)
def
= Fr(�) ∪ Fr(�′)

Fr(� : eval A @ �′)
def
= Fr(�) ∪ Fr(�′)

Fr(� : newloc u)
def
= Fr(�)

Fr(Φ ξU
<t
η Ψ)

def
= Fr(Φ) ∪ Fr(ξ) ∪ Fr(η)∪

Fr(Ψ) \ (Bnd(ξ) ∪ Bnd(η))

Fr(Φ ξU
<t Ψ)

def
= Fr(Φ) ∪ Fr(ξ) ∪ (Fr(Ψ) \ (Bnd(ξ)))

where we let Fr(l)
def
= ∅ for all localities l ∈ L, Fr(u)

def
= {u} for all locality variables

u ∈ U . Function Bnd is such that Bnd(� : newloc u)
def
= {u}, Bnd(ξ ∨ η)

def
=

Bnd(ξ) ∩ Bnd(η), and Bnd(ξ)
def
= ∅ in all other cases.

Fig. 1. Free locality variables in MoSL

will act as non-interpreted symbols in MoSL semantics, an action formula
like l : newloc u may bind the locality variable u, when interpreted over an
action of a path. Function Fr, defined in Fig.1, characterizes the set of free
(locality) variables of MoSL formulae.

In the following only well-formed formulae will be considered. A formula Φ is
well-formed if and only if it contains no free variables (i.e. Fr(Φ) = ∅).

A few comments on the definition of functions Fr and Bnd are in order.
First, notice that free occurrences of u in Φ remain free also in Φ ξU

<t
η Ψ (and

Φ ξU
<t Ψ), even if they are bound by ξ (i.e. they are elements of Bnd(ξ)).

As we will see in the definition of the semantics of MoSL, a path formula of
the logic will be interpreted, via relation |=, over a path σ. Now, for defining
σ |= Φ ξU

<t Ψ it is necessary to know if σ[0] |= Φ; on the other hand, any
binding of u by means of a sub-formula of ξ of the form � : newloc u will
take effect only from σ[1] on, i.e. after the ”first transition” has taken place.
Similarly, we get u ∈ Fr(Φ ξU

<t
η Ψ) if u ∈ Fr(η), even in the case u ∈ Bnd(ξ).

Another issue which deserves some attention is the definition of Bnd(ξ ∨ η).
Consider the formula tt ttU

<∞
ξ Φ, where ξ is the formula (l : newloc u) ∨ (l :

out l @ l) which informally means that a state where Φ holds will eventually
be reached via a transition corresponding to the execution of action newloc u
or out l @ l (in locality l); in the latter case, no binding occurs for u and
this would make it wrong to use the variable in Φ. Consequently, in such
cases Bnd returns the empty set. Conversely, u can safely occur in Φ in the
above formula if ξ stands for l1 : newloc u ∨ l2 : newloc u. Finally, notice
that Bnd(¬ ξ) is the empty set since variables u occurring in formulae like
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l : newloc u in ξ are actually not bound if ¬ ξ is satisfied. Strictly speaking,
if for instance ¬l : newloc u is satisfied, then u should be bound to the
locality l′ appearing in the transition. A proper study of the contexts where
the binding should take place and those in which this is not the case could allow
for a more refined definition of Bnd. Another issue could be the requirement
of Bnd(ξ) = Bnd(η) for all action formulae ξ ∨ η. This requirement forbids for
instance the formula l : newloc u1 ∨ l : newloc u2. A possible alternative
could be to drop the requirement, defining Bnd(ξ ∨ η)

def
= if (Bnd(ξ) �= ∅) ∧

(Bnd(η) �= ∅) then (Bnd(ξ)∪ Bnd(η)) else ∅. At the semantics level, when
the formula is matched against l : newloc l′ the substitution [l′/u1, l

′/u2] will
be generated. On the other hand, one should still take care that formulae like
l1 : newloc u1 ∨ l2 : newloc u2 are not allowed since whatever substitution
will be generated at the semantics level, this would bind at most one of u1 or
u2. In the present paper we adopt simpler, but safe solutions for both issues.

3.2 Semantics of MoSL

State formulae are interpreted over the states of AMC(N, β) = (S, Act, −→ )
obtained from a StocKlaim network specification (N, β) as described in
Sect. 2. Recall that the states of such AMC are StocKlaim configura-
tions. MoSL formulae may contain locality variables which are instanti-
ated by proper substitutions as described in the definition of the satisfac-
tion relation below. Such substitutions are generated whenever an action
(l,newloc l′) in a path of AMC(N, β) satisfies an action formula of the form
l : newloc u, for some u ∈ U . The associated substitution is [l′/u]. By
Φ[l1/u1, . . . , ln/un] we denote the formula obtained from Φ by replacing all
free locality variables u1, . . . , un of Φ by the corresponding localities l1, . . . , ln.
Let [] denote the empty substitution and, without loss of generality, for Θ1 =
[l1/u1, . . . , ln/un, l′1/u

′
1, . . . , l

′
m/u′

m] and Θ2 = [l′′1/u
′
1, . . . , l

′′
m/u′

m, l′′m+1/u
′
m+1, . . .

l′′m+h/u
′
m+h], with {u′

m+1, . . . , u
′
m+h}∩{u1, . . . , un} = ∅ let Θ1 
 Θ2 be defined

as the substitution

[l1/u1, . . . , ln/un, l′′1/u
′
1, . . . , l

′′
m/u′

m, l′′m+1/u
′
m+1, . . . , l

′′
m+h/u

′
m+h]

The satisfaction relation for state-formulae is given in Table 3 and is self-
explanatory. The definition of the satisfaction relation for path-formulae of
the form Φ ξU

<t Ψ is given in Table 4. The satisfaction relation for Φ ξU
<t
η Ψ

can be found in [12]; the only difference between such a formula and Φ ξU
<t Ψ

is that the Ψ-state must be reached by a η-transition (and consequently it
cannot be the initial state). Table 4 makes use of the substitution generator

function SBS, where SBS((l,newloc l′), l : newloc u)
def
= [l′/u], SBS(γ, ξ∨η)

def
=

SBS(γ, ξ)
SBS(γ, η), and SBS(γ, ξ)
def
= [] in all other cases. Note that the well-
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s |= tt

s |= ¬Φ iff not s |= Φ

s |= Φ ∨ Ψ iff s |= Φ or s |= Ψ

s |= A@l iff Ns ≡ N ′ || l :: A

s |= 〈l′〉@l iff Ns ≡ N ′ || l :: 〈l′〉

s |= 〈A〉@l iff Ns ≡ N ′ || l :: 〈A〉

s |= S��p(Φ) iff limt→∞ Pr{σ ∈ Paths(s) | σ(t) |= Φ} �	 p

s |= P��p(ϕ) iff Pr{σ ∈ Paths(s) | σ |= ϕ} �	 p

Table 3
Satisfaction relation for state-formulae.

σ |= Φ ξU
<t Ψ iff σ[0] |= Ψ or there exists k : 0 < k � (lenσ) such that

the following three conditions hold:

- σ[k] |= ΨΘk

- t >
∑k−1

i=0 δ(σ, i)

- σ[i] |= ΦΘi andα(σ, i) |= ξΘi, for all i with 0 � i < k

where Θ0
def
= []

Θi
def
= Θi−1 	 SBS(α(σ, i − 1), ξ) for all i > 0

Table 4
Satisfaction relation for path-formulae.

γ |= tt

γ |= ¬ ξ iff not γ |= ξ

γ |= ξ ∨ η iff γ |= ξ or γ |= η

γ |= l : out l′ @ l′′ iff γ = (l,out l′ @ l′′)

γ |= l : out A @ l′ iff γ = (l,out A @ l′)

γ |= l : in l′ @ l′′ iff γ = (l, in l′ @ l′′)

γ |= l : in A @ l′ iff γ = (l, in A @ l′)

γ |= l : eval A @ l′ iff γ = (l, eval A @ l′)

γ |= l : newloc u iff there exists l′ ∈ L s.t.

γ = (l,newloc l′)

Table 5
Satisfaction relation for action-formulae.

formedness of (action) formulae guarantees that SBS generates a substitution,
which binds at most one locality variable. As it should be clear from the formal
definition, as soon as an action in a path satisfies an action formula of the form
newloc u, variable u is properly bound and the substitution thus generated is
used for binding the free variables in the scope of the action formula. The in-
terpretation of action formulae is given in Table 5. The operators of MoSL can
be used for defining some useful derived operators e.g. Φ ξUη Ψ

def
= Φ ξU

<∞
η Ψ,

Xξ
<t Φ

def
= tt ffU

<t
ξ Φ, or P��p( A�

<t
B Φ)

def
= P��p(tt AU<t

B Φ) besides the usual
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ones like ∨, ⇒, etc. 3 . In [12] a translation T from a large fragment of MoSL
to aCSL is presented together with a transformation of the AMC model to be
checked, for network specification (N, β). A formal proof of their correctness
is provided as well. The fragment MoSL− includes all MoSL formulae except
those which contain sub-formulae of the form � : newloc u. The logic aCSL
does not provide atomic propositions different from tt. Consequently, given a
MoSL formula Φ, the model transformation consists in enriching the labels
of all those transitions emanating from any state s of AMC(N, β) with (a
coding of) the information on which atomic propositions occurring in Φ are
satisfied by s, and which ones are not; we let FAMC(N, β) denote such a
transformed AMC. Similarly T(Φ) will be constructed by moving all informa-
tion on states—expressed by (combinations of) atomic propositions—forward
to the index-labels of until operators. Notice that the translation is linear in
the size of Φ. The correctness of the translation is shown by the following
theorem, proved in [12], where M, s |=L F means that state s of AMC M
satisfies formula F of logic L.

Theorem 3.1

For MoSL− formula Φ, and a network specification (N, β), the following

holds: for all states s of AMC(N, β), AMC(N, β), s |=MoSL− Φ if and only if

FAMC(N, β), s |=aCSL T(Φ). �

4 Modeling and analysis of the spreading of a virus

In this section we show how StocKlaim can be used for modeling the spread-

ing of a virus in a network. We also give examples of interesting qualitative
and quantitative properties of the model that can be expressed in MoSL.
This example has been inspired by a similar one in [15] and used also in [13].

We model a network as a set of nodes and the virus running on a node can
move arbitrarily from the current node to a subset of adjacent nodes, infecting
them. At each node, an operating system runs, which upon receiving the virus,
can either run it or suppress it. In this paper, for the sake of simplicity we
consider simple networks which are in fact grids of n×m nodes. Each node is
connected with its four neighbors (north, south, east, west), except for border
nodes, which lack some connections in the obvious way (e.g. the nodes on the
east border have no east connection). Moreover, we assume that the virus can
move only to one adjacent node. Finally, we refrain from modeling aspects of
the virus other than the way it replicates in the network. In particular we do
not consider the local effects of the virus and we let the virus die as soon as

3 See [12] for the complete set of derived operators.
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Vij
Δ
= (out Vi−1j @ li−1j , nij).nil +

/* alternative present only for i > 1 */
(out Vi+1j @ li+1j , sij).nil +
/* alternative present only for i < n */
(out Vij+1 @ lij+1, eij).nil +
/* alternative present only for j < m */
(out Vij−1 @ lij−1, wij).nil

/* alternative present only for j > 1 */

Oij
Δ
= (in !C @ lij , uij).Xij +

/* the received virus is undetected and will run */
(in !C @ lij , dij).Oij

/* the received virus is detected and suppressed */

Xij
Δ
= (eval C @ lij , rij).Oij

/* the virus is activated */

Fig. 2. Specification of an infected network

it has infected one of the neighbors of its locality. The specification scheme
of the virus and the operating system running at each node is given in Fig. 2,
where a network is conventionally represented as a n × m matrix of localities
lij. For the verification, we chose n = m = 3 with the following initial state
N0: l11::O11 || l11::〈V11〉, while lij ::Oij for 1 � i, j � 3 with i �= 1 or j �= 1. The
resulting AMC is not shown for space reasons; it consists of 28 states and 52
transitions.

There are several interesting issues of the spreading of the virus which
can be addressed using MoSL. The first property is an example of a purely
state-based quantitative property. The probability that the virus is running
at node lij within t time-units after the infection of node l11 is smaller than a
given upper bound p. This property becomes more interesting when we define
the rates associated to the detection (resp. lack of detection) of the virus
in such a way that the operating systems of the localities on the diagonal
from bottom-left to top-right—O31, O22, and O13—have a relatively high rate
of detection and can be considered as a firewall to protect the nodes l32,
l33, and l23. The property can be expressed in MoSL for locality l33 and
p = 0.2 as P�0.2(¬(V33@l33) ttU

<t
V33@l33). Fig. 3 shows the probability to

reach, from the initial state, a state where the virus is running in locality
l33. The measure is presented for time values ranging from 1 to 10 with
β0 eij = β0 nij = β0 sij = β0 wij = β0 rij = 2 for 1 � i, j � 3, β0 d31 =
β0 d22 = β0 d13 = 10, and β0 dij = 1 otherwise, β0 u31 = β0 u22 = β0 u13 = 1,
and β0 uij = 10 otherwise. The results have been computed by providing
ETMCC [20] with the aCSL translation of the formula and corresponding
AMC. We performed similar analyzes for different values of the detection
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Fig. 3. Results for Firewalls with different detection capability

(resp. lack of detection) rates of the firewall. In particular for d31, d22, d13 and
u31, u22, u13 ranging over [1, . . . , 10], with d(4−i)i +u(4−i)i constant for 1 � i � 3
(and equal to 11). For the sake of readability, in Fig. 3 we show the results only
for d31, d22, d13 ∈ {1, 6, 10} and u31, u22, u13 ∈ {1, 5, 10}. The results clearly
indicate that for high detection rates the probability for locality l33 to run the
virus within a certain time interval is lower.

Stochastic model-checking permits the verification of qualitative properties
as a degenerate case of quantitative ones. For instance, an interesting property
is: “Whenever a node is infected (i.e. a virus runs on it) the virus may move
to a neighbor in the next step”. For instance, in the case of node l33 the
property of interest is V33@l33 ⇒ 〈l33 : out V32 @ l32〉 tt. The model-checker
shows that this property holds in every state.

5 Conclusions and future work

In this paper MoSL, a stochastic logic for StocKlaim has been proposed.
StocKlaim is a stochastic extension of the core subset of Klaim, a prototype
language for modelling and programming global or network-aware computers.
StocKlaim addresses process mobility, process distribution, asynchronous
communication through shared local repositories (i.e., tuple spaces), and dy-
namic node creation, as well as randomly delayed activities.

The logic addresses both spatial and temporal notions to reflect both the
topological structure of systems and their evolution over time. In connection
with the duration attributes of StocKlaim process actions, the logic provides
probabilistic operators which naturally express steady-state probabilities as
well as probability measures of paths specified with typical until formulae. The
logic integrates both the state-based paradigm and the action-based one and
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provides specific atomic propositions addressing data and process distribution.
It also provides specific atomic propositions for actions in order to characterize
relevant activities taking place during executions.

The formal semantics of MoSL has been presented and a mapping from a
large fragment of the logic to aCSL, the action based Continuous Stochastic
Logic described in [19], has been discussed. Details on the mapping, included
its formal proof of correctness are reported in [12]. The availability of such
mapping(s) provides the possibility of model-checking systems modelled by
StocKlaim against requirements specified in MoSL using existing model-
checkers for aCSL, like ETMCC. Together with M. Loreti, we are currently
implementing the translation function between the two logics and the actual
associations of a transition system to StocKlaim processes that will represent
the model for the formulae to be checked.

The next research steps we intend to take are on one hand to complete
the implementation of the above mentioned mapping, and on the other to
investigate the possibility of extending ξ to deal also with formulae containing
newloc . Our conjecture is that, under the assumption of a finite number
of localities in the model—which is reasonable in the context of traditional
model-checking algorithms—a formula containing newloc can be translated
to proper disjunctions, each disjuct being obtained by substituting the free
locality variables with suitable combinations over the localities. We shall
also investigate feasibility and convenience to develop direct model-checking
algorithms. Another issue will be the extension of StocKlaim in order to
cover a larger subset of Klaim and the related extension of MoSL.

Finally, we shall also consider a more expressive logic that allows to reason
about (spontaneous) sites failures and shall study paradigmatic examples to
assess adequacy and expressiveness of the proposed logics.
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