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Abstract

We briefly describe the motivations and the background behind the design of Klaim, a process description
language that has proved to be suitable for describing a wide range of distributed applications with agents
and code mobility. We argue that a drawback of Klaim is that it is neither a programming language, nor
a process calculus. We then outline the two research directions we have pursued more recently. On the
one hand we have evolved Klaim to a full-fledged language for distributed mobile programming. On the
other hand we have distilled the language into a number of simple calculi that we have used to define new
semantic theories and equivalences and to test the impact of new operators for network aware programming.
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Introduction

In the last decade, programming computational infrastructures available globally

for offering uniform services has become one of the main issues in Computer Sci-

ence. The challenges come from the necessity of dealing at once with issues like

communication, co-operation, mobility, resource usage, security, privacy, failures,

etc., in a setting where demands and guarantees can be very different for the many

different components. This has stimulated research on concepts, abstractions, mod-

els and calculi that could provide the basis for the design of systems “sound by

construction”, predictable and analyzable.

One of the abstractions that appears to be very important is mobility. This fea-

ture deeply increases flexibility and, thus, expressiveness of programming languages

for network-aware programming. Evidence of the success of this programming style

is provided by the recent design of commercial/prototype programming languages
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with primitives for moving code and processes, Java, T-Space, Oz, Pict, Oblique,

Odyssey . . . that have seen the involvement of several important industrial and aca-

demic research institutions.

The first foundational calculus dealing with mobility has been the π-calculus, a

simple and expressive calculus aiming at capturing the essence of name passing with

the minimum number of basic constructs. If considered from a network-aware per-

spective, one could say that π-calculus misses an explicit notion of locality and/or

domain where computations take place. To overcome this deficiency of π-calculus,

several foundational formalisms, presented as process calculi or strongly based on

them, have been developed. We want to mention, among the others, Ambient calcu-

lus, Dπ-calculus, DJoin, Nomadic Pict, . . . . A major problem that has been faced

in their development has been the search for the appropriate abstractions that can

be considered an acceptable compromise between expressiveness, elegance, and im-

plementability. A paradigmatic example is the Ambient calculus: it is very elegant

and expressive, but a reasonable distributed implementation is still problematic.

A Kernel Language for Agents Interaction and Mobility

Klaim (Kernel Language for Agents Interaction and Mobility) is a formalism specif-

ically designed to describe distributed systems made up of several mobile interacting

components that is positioned along the same lines of the above mentioned calculi.

The distinguishing features of the approach is the explicit use of localities for ac-

cessing data or computational resources. The choice of its primitives was heavily

influenced by CCS and π-calculus and by Linda. Indeed, Klaim stemmed from

our work on process algebras with localities [4] and our work on the formalization

of the semantics of Linda as a process algebra [10].

Linda is a coordination language that relies on an asynchronous and associa-

tive communication mechanism based on a shared global environment called tuple

space, a multiset of tuples. Tuples are ordered sequence of information items (called

fields). There can be actual fields (i.e., expressions, processes, localities, constants,

identifiers) and formal fields (i.e., variables). Tuples are anonymous and content-

addressable. The basic interaction mechanism is pattern–matching that is used to

select tuples from tuple spaces. Linda has four primitives for manipulating tuple

spaces: two blocking operations that are used for accessing and removing tuples

and two non-blocking ones that are used for adding tuples.

Klaim can be seen as an asynchronous higher–order process calculus whose

basic actions are the original Linda primitives enriched with explicit information

about the location of the nodes where processes and tuples are allocated. Commu-

nications take place through distributed repositories and remote operations. The

primitives allow programmers to distribute and retrieve data and processes to and

from the different localities (nodes) of a net. Localities are first-class citizens that

can be dynamically created and communicated. Tuples can contain both values

and code that can be subsequently accessed and evaluated. An allocation environ-

ment, associating logical and physical localities, is used to free the programmer from
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considering the precise physical allocation of the distributed tuple spaces.

The main drawback of Klaim is that it is neither an actual programming lan-

guage nor a process calculus. We have thus, more recently, worked along two di-

rections. On the one hand, we have evolved Klaim to a full-fledged language

(X-Klaim) to be used for distributed mobile programming. On the other hand, we

have distilled the language into a number of simpler calculi that we have used to

define new semantic theories and equivalences and to assess the expressive power of

tuple based communications and evaluate the theoretical impact of new linguistic

primitives.

A Programming Language based on Klaim

X-Klaim [1] is an experimental programming language that has bee specifically de-

signed to program distributed systems with several components interacting through

multiple tuple spaces and mobile code (possibly object-oriented). X-Klaim has

been implemented on the top of a run-time system that was developed in Java for

the sake of portability [2]. The linguistic constructs of Klaim have proved to be

appropriate for programming a wide range of distributed applications with agents

and code mobility that, once compiled in Java, can run over different platforms.

Klaim-based Calculi

From Klaim we have distilled μKlaim, cKlaim and lcKlaimand we have studied

the encoding of each of them into a simpler one [7]. μKlaim is obtained from Klaim

by eliminating from the distinction between logical and physical localities (i.e., no

allocation environment) and the possibility of higher order communication (i.e., no

process code in tuples). cKlaim, is obtained from μKlaim by only considering

monadic communications and by removing the read action, the non destructive

variant of the in basic actions. lcKlaim is obtained from cKlaim by removing

also the possibility of performing remote inputs and outputs; communications is

only local and process migration is needed to use remote resources.

This work on core calculi has also stimulated and simplified the search for other

variants of Klaim that better model more sophisticated settings for network aware

programming. In [6] and in [8] we have considered Topological-Klaim a vari-

ant of cKlaim that permits explicit creation of inter-node connections and their

destruction and thus considering two typical features of global computers, namely

dynamic inter-node connections and failures. In [9] we have developed more flexible

(but still easily implementable) forms of pattern matching.

For the simpler calculi we have been able to apply the theory developed in [3] and

to introduce two abstract semantics, barbed congruence and may testing. They are

obtained as the closure under operational reductions and/or language contexts of

the extensional equivalences induced by what can be considered a basic observation

for global computers that aims at testing whether

a specific site is up and running

R. De Nicola / Electronic Notes in Theoretical Computer Science 162 (2006) 159–162 161



and amounts to testing whether a site provides a data of any kind.

For the two equivalences obtained as context closures, we have also provided

alternative characterizations that permit a better appreciation of their discrimi-

nating power and the development of proof techniques that avoid universal quan-

tification over contexts. Indeed, we have established their correspondence with a

bisimulation-based and a trace-based equivalence over the labelled transition system

used to describe the semantics for the different variants of Klaim.

Information, software and papers related to Klaim and the Klaim Project can

be retrieved at: http://music.dsi.unifi.it/klaim.html.
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