
On the Expressive Power of Klaim-based

Calculi 1

Rocco De Nicola2

Dip. di Sistemi ed Informatica, Univ. di Firenze, Italy

Daniele Gorla3

Dip. di Informatica, Univ. di Roma “La Sapienza”, Italy
Dip. di Sistemi ed Informatica, Univ. di Firenze, Italy

Rosario Pugliese4

Dip. di Sistemi ed Informatica, Univ. di Firenze, Italy

Abstract

In this work, we study the expressive power of variants of Klaim, an experimental language with
programming primitives for global computing that combines the process algebra approach with
the coordination-oriented one. Klaim has proved to be suitable for programming a wide range of
distributed applications with agents and code mobility, and has been implemented on the top of
a runtime system based on Java. The expressivity of its constructs is tested by distilling from it
some (more and more foundational) calculi and studying the encoding of each of the considered
languages into a simpler one. An encoding of the asynchronous π-calculus into one of these calculi
is also presented.

Keywords: Global Computing, Code Migration, Tuple Spaces, Expressivity, Encodings.

1 This work has been partially supported by EU FET – Global Computing initiative,
projects MIKADO IST-2001-32222. The funding body is not responsible for any use that
might be made of the results presented here.
2 Email: denicola@dsi.unifi.it
3 Email: gorla@di.uniroma1.it
4 Email: pugliese@dsi.unifi.it

Electronic Notes in Theoretical Computer Science 128 (2005) 117–130

1571-0661/$ – see front matter © 2005 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.11.032

mailto:denicola@dsi.unifi.it
mailto:gorla@di.uniroma1.it
mailto:pugliese@dsi.unifi.it
http://www.elsevier.com/locate/entcs

1 Introduction

In the design of programming languages for global computing, a key research
challenge is devising theoretical models and calculi with a clean formal seman-
tics for specifying, programming and reasoning about global computing appli-
cations. These calculi could provide a basis for the design of systems which are
“sound by construction” and behave in a predictable and analysable manner.
The crux is to identify the more appropriate abstractions and to supply foun-
dational and effective tools to support the development of global computing
applications.

A suitable abstraction is mobility. This feature deeply increases flexibil-
ity and, thus, expressivity of programming languages. An evidence of the
success gained by this programming style is given by the design of new com-
mercial/prototype programming languages with suitable constructs. This ac-
tivity has involved in the last years several important industrial and academic
research institutions.

The first foundational calculus dealing with mobility has been the π-
calculus [12], a simple and expressive calculus representing the essence of name
passing with no redundant operation. The only operators of the π-calculus
are the empty process, output and input prefix, parallel composition, name
restriction and process replication; the exchanged values of the calculus are
just names. From a global computing perspective, what π-calculus misses is
an explicit notion of locality or of environment where computation takes place.

To deal with this deficiency several foundational languages, presented as
process calculi or strongly based on them, have been developed and have im-
proved the formal understanding of global computing systems. We mention,
among the others, the Ambient calculus [4], the Dπ-calculus [11] and Klaim

[5]. As usual, a major problem in the development of a foundational lan-
guage is to come out with abstractions that are a good compromise between
expressivity, elegance and implementability. A paradigmatic example is the
Ambient calculus: it is very elegant and expressive, but lacks of a reasonable
distributed implementation.

We have been long working with Klaim, an experimental language with
programming constructs for global computing that combines the process alge-
braic paradigm with the coordination-oriented one. Klaim has been specif-
ically designed to program distributed systems consisting of several mobile
components that interact through multiple distributed tuple spaces. Klaim

primitives allow programmers to distribute and retrieve data and processes to
and from the nodes of a net. Moreover, localities are first-class citizens that
can be dynamically created and communicated over the network. Compo-
nents, both stationary and mobile, can explicitly refer and control the spatial

R. De Nicola et al. / Electronic Notes in Theoretical Computer Science 128 (2005) 117–130118

structures of the network. Communication takes place through distributed
repositories (a very flexible model that well fits requirements of global com-
puting) and remote operations (to supply a realistic abstraction level and
avoid heavily resorting to code mobility).

Klaim rests on an extension of the basic Linda coordination model [9]
with multiple distributed tuple spaces. A tuple space is a multiset of tuples
that are sequences of information items. Tuples are anonymous and associa-
tively selected from tuple spaces by means of a pattern-matching mechanism.
Tuples can contain both values and code that can be subsequently accessed
and evaluated. An allocation environment (associating logical and physical
localities) is used to avoid the programmers to know the precise physical allo-
cation of the distributed tuple spaces.

Klaim has been upgraded to a full fledged programming language X-

Klaim [2] by relying on the implementation of a run-time system developed
in Java for the sake of portability [3]. The linguistic constructs of Klaim

have proved to be very useful for programming a wide range of distributed
applications with agents and code mobility [5,6] that, once compiled in Java,
can be run over different platforms.

The main aim of our work is understanding the expressive power of tuple
based communications and evaluating the theoretical impact of the linguistic
primitives proposed for the language Klaim. This task is carried on by distill-
ing from Klaim a few, more and more, foundational calculi and by studying
the possibility of encoding each of the calculi in a more basilar one. A tight
comparison between one of these calculi and the asynchronous π-calculus, see
e.g. [14], is also provided. The first calculus we consider is µKlaim [10]; it is
obtained by eliminating from Klaim the distinction between logical and phys-
ical localities (no allocation environment) and the possibility of higher order
communication (no process code in tuples). The second calculus, cKlaim,
is obtained from µKlaim by only considering monadic communications and
by removing one of the basic actions (read). The last calculus, l-cKlaim,
is obtained by removing also the possibility of performing remote inputs and
outputs; communications is only local and process migration is needed to use
remote resources.

The rest of this extended abstract is organized as follows. Klaim and the
three calculi derived from it are presented in Section 2, while Section 3 briefly
sums up the expressivity related results of our work. The formal developments
of the latter Section are not reported in this extended abstract; the formal
encodings and the actual proofs of their adequacy can be found in [7].

R. De Nicola et al. / Electronic Notes in Theoretical Computer Science 128 (2005) 117–130 119

N ::= 0

˛
˛
˛ l ::ρ C

˛
˛
˛ N1 ‖ N2

˛
˛
˛ (νl)N

C ::= 〈t〉
˛
˛
˛ P

˛
˛
˛ C1 | C2

P ::= nil

˛
˛
˛ a.P

˛
˛
˛ P1 | P2

˛
˛
˛ X

˛
˛
˛ recX.P

a ::= in(T)@u
˛
˛
˛ read(T)@u

˛
˛
˛ out(t)@u

˛
˛
˛ eval(P)@u

˛
˛
˛ new(l)

t ::= u
˛
˛
˛ P

˛
˛
˛ t1, t2

T ::= u
˛
˛
˛ ! x

˛
˛
˛ ! X

˛
˛
˛ T1, T2

Table 1
Klaim syntax

2 A Family of Process Languages

2.1 Klaim: Kernel Language for Agents Interaction and Mobility

The syntax of Klaim is given in Table 1. We assume two disjoint countable
sets: L of locality names l, l′, . . . and V of variables x, y, . . . , X, Y, . . . , self,
where self is a reserved variable (see below). Notationally, we prefer letters
x, y, . . . when we want to stress the use of a variable as a basic variable, and
X, Y, . . . when we want to stress the use of a variable as a process variable.
We will use u for basic variables and locality names.

Processes, ranged over by P , are the Klaim active computational units
and may be executed concurrently either at the same locality or at differ-
ent localities. Processes are built from the terminated process nil and from
basic actions by using action prefixing, parallel composition and recursion.
Actions, ranged over by a, permit removing/accessing/adding data from/to
node repositories, activating new threads of execution and creating new nodes.
Action new is not indexed with an address because it always acts locally; all
the other actions explicitly indicate the (possibly remote) locality where they
will take effect. Tuples, t, are the communicable objects: they are sequences
of names and processes. Templates, T , are patterns used to retrieve tuples
and the pattern matching underlying the communication mechanism is the
one used for Linda [9].

Nets, ranged over by N , are finite collections of nodes. A node is a triple
l ::ρ C, where locality l is the address of the node, ρ is the allocation environ-
ment (a finite partial mapping from variables to names, used to implement
dynamic binding of variables) and C is the program and data component lo-
cated at l. For the sake of simplicity, we assume that allocation environments
act as the identity on locality names. Components, ranged over by C, can
be either processes or data, denoted by 〈t〉. In the net (νl)N , the scope of
the name l is restricted to N ; the intended effect is that if one considers the

R. De Nicola et al. / Electronic Notes in Theoretical Computer Science 128 (2005) 117–130120

net N1 ‖ (νl)N2 then locality l of N2 cannot be immediately referred to from
within N1. We say that a net is well-formed if for each node l ::ρ C we have
that ρ(self) = l, and, for any pair of nodes l ::ρ C and l′ ::ρ′ C ′, we have that
l = l′ implies ρ = ρ′. Hereafter, we will only consider well-formed nets.

Names and variables occurring in Klaim processes and nets can be bound.
More precisely, prefix new(l).P binds name l in P , and, similarly, net restric-
tion (νl)N binds l in N . Prefix in(. . . , ! , . . .)@u.P binds variable in P ;
this prefix is similar to the λ-abstraction of the λ-calculus. Finally, recX.P
binds variable X in P . A name/variable that is not bound is called free. The
sets fn(·) and bn(·) (respectively, of free and bound names of a term) and fv(·)
and bv(·) (of free/bound variables) are defined accordingly. As usual, we say
that two terms are alpha-equivalent, written =α, if one can be obtained from
the other by renaming bound names/variables.

Remark. The language presented so far slightly differs from [5]: the two
differences are the absence of values and expressions, and the use of recursion
instead of process definitions. Values (integers, strings, ...) and expressions
are not included only to simplify reasoning: they can be easily encoded by
following the classical translations in the π-calculus [14]. Recursion is easier
than process definitions to deal with in a theoretical framework because the
syntax of a recursive term already contains all the code needed to properly
run the term itself.

The operational semantics relies on a structural congruence relation, ≡,
bringing the participants of a potential interaction to contiguous positions,
and a reduction relation, �−→, expressing the evolution of a net. The structural
congruence is the least congruence closed under the axioms given in the upper
part of Table 2; the reduction relation is given in the lower part of the same
Table. There, we use two auxiliary functions:

(i) A tuple/template evaluation function, E [[]]
ρ
, to evaluate variables ac-

cording to the allocation environment of the node performing the action
whose argument is . The main clauses of its definition are given below:

E [[u]]ρ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u if u ∈ L

ρ(u) if u ∈ dom(ρ)

UNDEF otherwise

E [[P]]ρ = P{ρ}

where P{ρ} denotes the process obtained from P by replacing any free
occurrence of a variable x that is not within the argument of an eval with
ρ(x). Clearly, E [[P]]ρ is UNDEF if ρ(x) is undefined for some of these
x. We shall write E [[t]]ρ = t′ to denote that the evaluation of t using ρ

R. De Nicola et al. / Electronic Notes in Theoretical Computer Science 128 (2005) 117–130 121

Axioms for Structural Congruence:

Monoid laws for “‖”, i.e.

N ‖ 0 ≡ N , N1 ‖ N2 ≡ N2 ‖ N1 , (N1 ‖ N2) ‖ N3 ≡ N1 ‖ (N2 ‖ N3)

(Alpha) N ≡ N ′ if N =α N ′

(Ext) N1 ‖ (νl)N2 ≡ (νl)(N1 ‖ N2) if l �∈ fn(N1)

(Abs) l ::ρ C ≡ l ::ρ (C |nil)

(Clone) l ::ρ C1|C2 ≡ lρ :: C1 ‖ l ::ρ C2

(Rec) l ::ρ recX.P ≡ l ::ρ P [recX.P/X]

Reduction Relation:

(Red-Out)
ρ(u) = l′ E [[t]]ρ = t′

l ::ρ out(t)@u.P ‖ l′ ::ρ′ nil �−→ l ::ρ P ‖ l′ ::ρ′ 〈t′〉

(Red-Eval)
ρ(u) = l′

l ::ρ eval(P2)@u.P1 ‖ l′ ::ρ′ nil �−→ l ::ρ P1 ‖ l′ ::ρ′ P2

(Red-In)
ρ(u) = l′ match(E [[T]]ρ, t) = σ

l ::ρ in(T)@u.P ‖ l′ ::ρ′ 〈t〉 �−→ l ::ρ Pσ ‖ l′ ::ρ′ nil

(Red-Read)
ρ(u) = l′ match(E [[T]]ρ, t) = σ

l ::ρ read(T)@u.P ‖ l′ ::ρ′ 〈t〉 �−→ l ::ρ Pσ ‖ l′ ::ρ′ 〈t〉

(Red-New) l ::ρ new(l′).P �−→ (νl′)(l ::ρ P ‖ l′ ::ρ[l′/self] nil)

(Red-Par)
N1 �−→ N ′

1

N1 ‖ N2 �−→ N ′

1 ‖ N2

(Red-Res)
N �−→ N ′

(νl)N �−→ (νl)N ′

(Red-Struct)
N ≡ M �−→ M ′ ≡ N ′

N �−→ N ′

Table 2
Klaim Operational Semantics

succeeds and returns t′.

(ii) A pattern matching function, match(·, ·), to verify the compliance of a
tuple w.r.t. a template and to associate values (i.e. names and processes)
to variables bound by the template. Intuitively, a tuple matches against
a template if they have the same number of fields, and corresponding

R. De Nicola et al. / Electronic Notes in Theoretical Computer Science 128 (2005) 117–130122

N ::= 0

˛
˛
˛ l :: C

˛
˛
˛ N1 ‖ N2

˛
˛
˛ (νl)N C ::= as in Table 1

t ::= u
˛
˛
˛ t1, t2 P ::= as in Table 1

T ::= u
˛
˛
˛ ! x

˛
˛
˛ T1, T2 a ::= as in Table 1

Table 3
µKlaim Syntax

fields match. Formally, it is defined by the following rules:

match(l, l) = ε match(!x, l) = [l/x]

match(!X, P) = [P/X]
match(T1, t1) = σ1 match(T2, t2) = σ2

match(T1, T2 , t1, t2) = σ1 ◦ σ2

where we let ‘ε’ to be the empty substitution and ‘◦’ to denote substi-
tutions composition. Here, a substitution σ is a mapping of names and
processes for variables; Pσ denotes the (capture avoiding) application of
σ to P . Moreover, we assume that Pσ yields a process written according
to the syntax of Table 1.

The intuition beyond the operational rules of Klaim is the following. In
rule (Red-Out), the local allocation environment is used both to determine
the name of the node where the tuple must be placed and to evaluate the
argument tuple. Notice that processes in a tuple are transmitted after the
interpretation of their free variables through the local allocation environment.
This corresponds to having a static scoping discipline for the (possibly remote)
generation of tuples. A dynamic linking strategy is adopted for the eval

operation, rule (Red-Eval). In this case the free variables of the spawned
process are not interpreted using the local allocation environment: the linking
of variables is done at the remote node. Rules (Red-In) and (Red-Read)
require existence of a matching tuple in the target node. The tuple is then
used to replace the free occurrences of the variables bound by the template
in the continuation of the process performing the action. With action in,
the matched tuple is consumed while with action read it is not. Finally, in
rule (Red-New), the environment of a new node is derived from that of the
creating one with the obvious update for the self variable. Therefore, the
new node inherits all the bindings of the creating node.

R. De Nicola et al. / Electronic Notes in Theoretical Computer Science 128 (2005) 117–130 123

(Red-Out) l :: out(t)@l′.P ‖ l′ :: nil �−→ l :: P ‖ l′ :: 〈t〉

(Red-Eval) l :: eval(P2)@l′.P1 ‖ l′ :: nil �−→ l :: P1 ‖ l′ :: P2

(Red-In)
match(T, t) = σ

l :: in(T)@l′.P ‖ l′ :: 〈t〉 �−→ l :: Pσ ‖ l′ :: nil

(Red-Read)
match(T, t) = σ

l :: read(T)@l′.P ‖ l′ :: 〈t〉 �−→ l :: Pσ ‖ l′ :: 〈t〉

(Red-New) l :: new(l′).P �−→ (νl′)(l :: P ‖ l′ :: nil)

Table 4
µKlaim Distinctive Reduction Rules

2.2 µKlaim: micro Klaim

The calculus µKlaim has been derived in [10] from Klaim by removing al-
location environments and the possibility of having pieces of code as tuple
fields (and, then, process variables as template fields). Its syntax is given in
Table 3. The removal of allocation environments makes it possible to merge
together names and variables. Thus, we only assume a countable set N of
names l, l′, . . . , u, . . . , x, y, . . . , X, Y, Like before, we prefer using letters
l, l′, . . . when we want to stress the use of a name as a locality, x, y, . . . when
we want to stress the use of a name as a locality variable, and X, Y, . . . when
we want to stress the use of a name as a process variable. We will use u for lo-
cality variables and localities. Process variables will be used only for defining
recursive processes.

Notice that µKlaim can be considered as the largest sub-calculus of
Klaim where tuples do not contain any process, templates do not contain
any process variable, allocation environments are empty and all processes are
closed. These modifications sensibly simplifies the operational semantics of
the language. The structural congruence is readily adapted from Table 2; the
key laws to define the reduction relation are given in Table 4. Notice that now
tuples/templates evaluation function is useless and substitutions are (stan-
dard) mappings of names for names. Hence, the definition of function match
is given by the following laws:

match(l, l) = ε match(!x, l) = [l/x]
match(Ti, ti) = σi (i = 1, 2)

match(T1, T2 , t1, t2) = σ1 ◦ σ2

R. De Nicola et al. / Electronic Notes in Theoretical Computer Science 128 (2005) 117–130124

N ::= as in Table 3

C ::= as in Table 3

P ::= as in Table 3

a ::= in(T)@u
˛
˛
˛ out(t)@u

˛
˛
˛ eval(P)@u

˛
˛
˛ new(l)

t ::= u

T ::= u
˛
˛
˛ !x

Table 5
cKlaim Syntax

2.3 cKlaim: core Klaim

The calculus cKlaim has been introduced in [8] by eliminating from µKlaim

the action read and by only considering monadic communications (i.e. tuples
and templates containing only one field). The formal syntax of cKlaim is
given in Table 5. Notice that cKlaim is a sub-calculus of µKlaim and thus
it inherits from µKlaim the operational semantics.

2.4 l-cKlaim: local core Klaim

l-cKlaim is the version of cKlaim where actions out and in can be only
performed locally, i.e. the only remote primitive is the action eval. This
calculus is introduced here for the first time and permits only local (intra-
node) communications. Communication between processes at different nodes
would have to be implemented by moving processes. The syntax of l-cKlaim

can be derived from the syntax of cKlaim given in Table 5 by replacing the
productions for process actions with

a ::= in(T)
∣∣∣ out(t)

∣∣∣ eval(P)@u

The operational semantics of l-cKlaim is obtained by replacing rules
(Red-Out) and (Red-In) of Table 4 with

(Red-Out) l :: out(l′).P �−→ l :: P | 〈l′〉

(Red-In) l :: in(T).P | 〈l′〉 �−→ l :: Pσ if match(T, l′) = σ

R. De Nicola et al. / Electronic Notes in Theoretical Computer Science 128 (2005) 117–130 125

3 Expressivity: An Overview of the Results

In the full paper [7], we describe encodings between the languages presented so
far, and discuss their relations with the asynchronous π-calculus [14], written
πa-calculus in the sequel. Here, we only sum up the results obtained and
briefly comment upon them.

To study the correspondences established by the encodings, we consider a
variety of semantic equivalences based on barbed bisimilarity. The latter is a
uniform notion of equivalence among language terms, whose definition only
relies on the existence of a reduction relation and of an observation predicate.
Starting from barbed bisimilarity, more refined notions of equivalence can be
“uniformly” obtained. In fact, given a family F of language contexts, we
can declare two processes F -equivalent if they are barbed bisimilar whenever
plugged in any context of F .

We start by introducing barbed bisimilarity and congruence for the Klaim-
based process description languages presented so far. The observation predi-
cate, or barb, for our languages is N ↓ l which is defined as follows

N ↓ l iff N ≡ (νl̃)(N ′ ‖ l ::ρ 〈t〉) for some l̃, N ′, ρ and t s.t. l
∈ l̃

where, of course, a non empty ρ is present only in the case of Klaim. As
usual, N ⇓ l stands for ∃N ′ : N �−→∗ N ′ ↓ l, where �−→∗ is the reflexive and
transitive closure of �−→. A context C[·] is a net with a hole [·] to be filled with
any net. 5 Formally,

C[·] ::= [·]
∣∣∣ N ‖ C[·]

∣∣∣ (νl)C[·]

Finally, we say that a binary relation between nets is

• barb preserving, if N M and N ↓ l imply M ⇓ l;

• reduction closed, if N M and N �−→ N ′ imply M �−→∗ M ′ and N ′ M ′;

• F-context closed, if N M implies C[N] C[M] for every context C[·] of F .

Definition 3.1 Barbed bisimilarity, ∼̇=, is the largest symmetric, barb pre-
serving and reduction closed relation between nets.

Definition 3.2 Barbed congruence, ∼=, is the largest symmetric, barb pre-
serving, reduction and context closed relation between nets.

The main results of our work are depicted in Table 6. There, a labelled

arrow between two calculi, X
P
−→Y , means that the language X can be encoded

5 In the case of Klaim, we implicitly assume that the hole of C[·] can be filled only with
those nets N that guarantee that C[N] is well-formed, i.e. allocation environments of nodes
having the same address do coincide.

R. De Nicola et al. / Electronic Notes in Theoretical Computer Science 128 (2005) 117–130126

Klaim
Semantically Equivalent wrt ∼̇=

−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Operational Correspondent

µKlaim

Fully Abstract wrt ∼=tr

↓

πa-calculus
Fully Abstract wrt ∼=tr

−−−−−−−−−−−−−−−−−−→ cKlaim

Semantically Equivalent wrt ∼=↓

l-cKlaim

Table 6
Overview of the Results

in the language Y and the encoding enjoys property P. The main properties
we shall consider for the encodings will be based on the following two notions:

Operational Correspondence: An encoding enc(·) of language X into lan-
guage Y satisfies this property if for every reduction of an X -term T1 into a
X -term T2 there exists a (possibly weak) reduction from the Y-term enc(T1)
leading to the Y-term enc(T2). Viceversa, for every reduction of a Y-term
enc(T1) into a Y-term T there exists a reduction from the X -term T1 leading
a X -term T ′ such that T can be reduced (or even better, is equivalent) to
enc(T ′).

Full Abstraction w.r.t. EQ: An encoding enc(·) of language X into lan-
guage Y satisfies this property if for every pair of X -terms T1 and T2 it
holds that T1 EQX T2 if and only if enc(T1) EQY enc(T2).

Semantical Equivalence w.r.t. EQ: An encoding enc(·) of language X
into language Y satisfies this property if for every X -term T it holds that
T EQZ enc(T), for some language Z containing both X and Y .

Notice that the equivalence EQ in the above definitions is not a specific equiv-
alence but a family of equivalences that has to be properly instantiated to the
various languages considered, yielding EQX , EQY and EQZ . The stronger
the equivalence the better the encoding, in that it more strongly attests that
the target language has similar expressive power to the source one. More-
over, if an encoding is semantical equivalent w.r.t. EQ then it is also fully
abstract w.r.t. the same equivalence. Thus, an encoding enjoying semantical
equivalence is ‘better’ than an encoding enjoying fully abstraction, once the
equivalence has been fixed. Finally, in the definition of semantical equivalence,
the language Z is useless whenever Y is a sub-language of X . In this case, it
sufficies to require that T EQX enc(T) for every X -term T .

The equivalences we use in this paper are barbed bisimilarity and barbed
congruence; the first one does not prescribe any contextual property, while the

R. De Nicola et al. / Electronic Notes in Theoretical Computer Science 128 (2005) 117–130 127

second one requires that equivalences be preserved under all possible language
contexts. As usual, see e.g. [14], barbed bisimilarity is coarser then barbed
congruence. It often turns out that a ‘half-way’ solution between the two
notions above is the appropriate one; it relies on what we call translated barbed
congruence, written ∼=tr:

An encoding enc(·) from language X to language Y is fully abstract w.r.t.
∼=tr whenever the set of contexts in Y considered for context closure is
formed by the translation via enc(·) of contexts in X .

Indeed, if we consider the encoding as a protocol (i.e. a precise sequence of
message exchanges), translated contexts represent opponents conform to the
protocol. For most purposes, this result suffices since it precisely says that
the source language can be faithfully compiled in the target one.

We now briefly conclude by commenting on the obtained results.

• Klaim vs µKlaim. As we said, the latter language is obtained from the
former by removing higher-order data and dynamic binding of free locality
variables. The first feature has already been implemented in a first-order
language with name passing and restriction [13]. The encoding of the second
feature is an example of the compilation of a dynamic naming discipline into
a static one in presence of higher-order constructs, like the primitive eval.
As witnessed by [15], this is a very difficult task. Thus, it is reasonable
that the proposed encoding enjoys a property expressed only in terms of
barbed bisimilarity, that is quite coarse. However, since barbed bisimilarity
is a reduction closed relation, semantical equivalence implies operational
correspondence. Thus, our result states that a Klaim net and its encod-
ing can simulate each other step-by-step, without altering the observation
predicate.

• µKlaim vs cKlaim. The encoding has to properly implement actions read

and polyadic data exchanges. The fact that, in an asynchronous setting, a
read can be simulated by an in followed by an out of the datum accessed
should be not surprising (see [1]). On the other hand, the fact that, in a
Linda setting, polyadic tuples can be replaced by monadic ones is something
new; as far as we know, our result is the first one on this topic. The basic
idea for the encoding is the implementation of a polyadic tuple by means
a process that sequentially produces the fields of the tuple. The receiving
process accesses these (monadic) fields in an exclusive and ordered way. If
the i-th tuple field matches against the i-th template field, the retrieving
procedure goes on; otherwise, it stops and rolls back the involved processes.

Notice that, like in the π-calculus [16], the encoding is not fully abstract
w.r.t. barbed congruence. Indeed, since (atomic) polyadic actions are trans-

R. De Nicola et al. / Electronic Notes in Theoretical Computer Science 128 (2005) 117–130128

lated into sequences of monadic actions, contexts not abiding by the protocol
schema imposed in the encoding can usually acquire enough information to
distinguish two terms corresponding to the encoding of equivalent source
terms.

• cKlaim vs l-cKlaim. In this case, the encoding translates remote ac-
tions into a mixture of migrations and local actions. The fact that the
encoding enjoys semantical equivalence w.r.t. barbed congruence means
that remote actions, although notationally convenient, do not change the
expressive power of the considered calculi.

• πa-calculus vs cKlaim. To conclude, we compare one of our languages with
the asynchronous π-calculus [14]. The main idea is translating channels
into localities. Thus, the message passing paradigm of the πa-calculus can
be compiled in the shared memory paradigm underlying Linda. We could
not find an encoding enjoying full abstraction w.r.t. barbed congruence.
Although, we have not been able to exhibit impossibility result, proving
full abstraction is in our view a very hard task. The problem is that, in
the πa-calculus, each free name is always associated to a channel; thus, the
knowledge of a name implies that actions over a channel with that name
can be always performed. This is not the case of Klaim (and in the calculi
derived from it); it is possible that a free name is not associated to a locality.
Thus, since each Klaim action is executed only if the target locality exists
(see the operational rules for actions in/read/out/eval), full abstraction
can be violated.

Concluding Assessment

The results we have summarised in this paper show that some design choices
in a language are often driven by the aim of easing programming activity.
Indeed, most of the existing calculi or languages for mobile processes are
Turing complete (in particular, this applies to all the calculi presented in
this paper); they mostly differ in the way specific tasks can be described or
programmed. Moreover, some design choices greatly improve the possibilities
of developing encodings enjoying stronger properties, while others hinder this
possibility.

In our view, the present work improves the understanding of the language
Klaim and the appreciation of its specific design choices that make it signifi-
cantly different from the standard process calculi. We believe that the results
presented here can be exploited also for assessing expressiveness of other cal-
culi with a communication paradigm similar to the one of Klaim.

R. De Nicola et al. / Electronic Notes in Theoretical Computer Science 128 (2005) 117–130 129

References

[1] R. M. Amadio, I. Castellani, and D. Sangiorgi. On bisimulations for the asynchronous π-
calculus. Theoretical Computer Science, 195(2):291–324, 1998.

[2] L. Bettini, R. De Nicola, G. Ferrari, and R. Pugliese. Interactive Mobile Agents in X-Klaim.
In Proc. of the 7th Int. IEEE Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises, pages 110–115, 1998.

[3] L. Bettini, R. De Nicola, and R. Pugliese. Klava: a Java Package for Distributed and Mobile
Applications. Software — Practice and Experience, 32:1365–1394, 2002.

[4] L. Cardelli and A. D. Gordon. Mobile ambients. Theoretical Computer Science, 240(1):177–
213, 2000.

[5] R. De Nicola, G. Ferrari, and R. Pugliese. Klaim: a Kernel Language for Agents Interaction
and Mobility. IEEE Transactions on Software Engineering, 24(5):315–330, 1998.

[6] R. De Nicola, G. Ferrari, and R. Pugliese. Programming Access Control: The Klaim
Experience. In Proc. of CONCUR’00, volume 1877 of LNCS, pages 48–65. Springer-Verlag,
2000.

[7] R. De Nicola, D. Gorla, and R. Pugliese. On the Expressive Power of Klaim-based Calculi.
Research report, Dipartimento di Sistemi e Informatica, Università di Firenze, 2004. Available
at http://www.dsi.uniroma1.it/ ~gorla/papers/expr4k-full.pdf.

[8] R. De Nicola, D. Gorla and R. Pugliese. Basic Observables for a Calculus for Global
Computing. Research report, Dipartimento di Sistemi e Informatica, Università di Firenze,
2004. Available at http://www.dsi.uniroma1.it/ ~gorla/papers/bo4k-full.ps.

[9] D. Gelernter. Generative Communication in Linda. ACM Transactions on Programming
Languages and Systems, 7(1):80–112, 1985.

[10] D. Gorla and R. Pugliese. Resource access and mobility control with dynamic privileges
acquisition. In Proc. of ICALP’03, volume 2719 of LNCS, pages 119–132. Springer-Verlag,
2003.

[11] M. Hennessy and J. Riely. Resource Access Control in Systems of Mobile Agents. Information
and Computation, 173:82–120, 2002.

[12] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, part I/II. Journal of
Information and Computation, 100:1–77, Sept. 1992.

[13] D. Sangiorgi. Bisimulation in higher-order process calculi. Journal of Information and
Computation, 131:141–178, 1996.

[14] D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes. Cambridge
University Press, 2001.

[15] J. L. Vivas. Dynamic Binding of Names in Calculi for Mobile Processes. Ph.D. thesis, Royal
Institute of Technology, Sweden, 2001.

[16] N. Yoshida. Graph types for monadic mobile processes. In Proceedings of FSTTCS ’96, volume
1180 of LNCS, pages 371–386. Springer, 1996.

R. De Nicola et al. / Electronic Notes in Theoretical Computer Science 128 (2005) 117–130130

	Introduction
	A Family of Process Languages
	Klaim: Kernel Language for Agents Interaction and Mobility
	Klaim: micro Klaim
	cKlaim: core Klaim
	l-cKlaim: local core Klaim

	Expressivity: An Overview of the Results
	References

