
 1

Optimal design of auxetic hexachiral metamaterials  
with local resonators 

 
 

Andrea Bacigalupo1, Marco Lepidi2, Giorgio Gnecco1, Luigi Gambarotta2 
 

1IMT Institute for Advanced Studies Lucca, Italy 
2Department of Civil, Chemical and Environmental Engineering,  

University of Genoa, Italy 

 

 

Abstract 

A parametric beam lattice model is formulated to analyse the propagation properties of 

elastic in-plane waves in an auxetic material based on a hexachiral topology of the periodic 

cell, equipped with inertial local resonators. The Floquet-Bloch boundary conditions are 

imposed on a reduced order linear model in the only dynamically active degrees-of-

freedom. Since the resonators can be designed to open and shift band gaps, an optimal 

design, focused on the largest possible gap in the low-frequency range, is achieved by 

solving a maximization problem in the bounded space of the significant geometrical and 

mechanical parameters. A local optimized solution, for a the lowest pair of consecutive 

dispersion curves, is found by employing the globally convergent version of the Method of 

Moving asymptotes, combined with Monte Carlo and quasi-Monte Carlo multi-start 

techniques.  
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1 Introduction 

Auxetic materials possess the counterintuitive property of offering transversal expansions 

in response to longitudinal stretches. Such an unusual behaviour can be described, in the 

solid mechanics, by negative values of the Poisson ratios (Evans 1991, Lakes 1991, Evans 

and Alderson 2000, Alderson and Alderson 2007, Prawoto 2012). Although exceptionally 

experimented in natural materials, the artificial auxeticity has nowadays become a feasible 

manufactured achievement, by virtue of the recent extraordinary advances in the chemical 

engineering and structural micro-engineering fields. Indeed, negative Poisson ratios have 

been clearly documented in polymeric and metallic foams, mainly based on disordered 

open-cell bubble assemblies (Lakes 1987, Bianchi et al. 2008, Crichley et al. 2013), as 

well as in cellular periodic solids, primarily based on soft (possibly empty) matrices 

embedding ordered microstructures properly shaped as re-entrant honeycombs or rolling-

up chiral patterns (Prall and Lakes 1997, Alderson et al. 2010, Spadoni and Ruzzene 2012, 

Dirrenberger et al. 2013).  

 The increasing research efforts towards the development of optimal design solutions, 

reliable mechanical models and efficient manufacture processes for auxetic materials are 

essentially motivated by a variety of challenging (and sometimes futuristic) applications in 

the chemical, marine, aerospace, nuclear, biomedical engineering fields, among the others. 

The reasons of such a growing success can be attributed to the high-performances of 

auxetic materials, not only in terms of non-conventional elastic properties, but also in 

respect to other functional qualities, including – for instance – augmented resistance to 

indentation and fracture, increased damping and effective passive filtering for vibrations.  

 With focus on micro-structured periodic materials, at least two major research issues 

can be recognized. On the one hand, a certain attention has been paid over the last years on 

defining homogeneous elastica (first and second order continua, Koiter and Cosserat 

continua), in which the overall elastic tensors are determined by means of standard or 

generalized macro-homogeneity conditions (Bazant and Christensen 1972, Kumar and 

McDowell 2004, Gonnella and Ruzzene 2008a, 2008b, Liu et al. 2012, Chen et al. 2013, 

Chen et al. 2014, Bacigalupo and Gambarotta 2014a, Bacigalupo and De Bellis 2015). On 

the other hand, an increasing interest has been recently attracted by the analysis of the 

transmission and dispersion properties of the elastic waves propagating across the material 

domain, either in its original periodic micro-structure (Phani et al. 2006, Tee et al. 2010, 

Spadoni et al. 2009, Bacigalupo and Lepidi 2015a) or in its equivalent homogenized form 
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(Bacigalupo and Gambarotta 2014b, Bacigalupo and De Bellis 2015). Employing the 

Floquet-Bloch theory (Brillouin 1953), as it can be applied for instance to infinitely-

periodic chains of elastically-coupled adjacent cells (Mead 1973, Romeo and Luongo 

2002), several studies have been developed to parametrically assess the dispersion curves 

characterizing the wave frequency spectrum and, therefrom, the boundaries of frequency 

band-gaps lying between pairs of consecutive non-intersecting curves. In this respect, a 

promising improvement of the traditional chiral and antichiral systems, realized by a 

regular distribution of stiff disks/rings connected by flexible ligaments, consists in adding 

inter-ring massive inclusions, working as auxiliary oscillators elastically coupled to the 

microstructure (Liu et al. 2011, Tan et al. 2012, Bigoni et al. 2013, Bacigalupo and 

Gambarotta 2015). If properly tuned, these oscillators (resonators) may allow the 

adjustment and enhancement of the material performances, creating challenging 

perspectives in the optimal design of the frequency spectrum for specific purposes, such as 

opening, enlarging, closing or shifting band-gaps in target frequency ranges. Once 

completed, this achievement should potentially allow the realization of a novel class of 

fully customizable mechanical filters. In the practice, alternative feasible approaches 

consist in either seeking for an explicit, although approximate, parametric form of the 

dispersion curves (Craster et. al. 2010, Bacigalupo and Lepidi 2015b), suited to state an 

inverse eigenproblem, or formulating and solving an optimization problem, based on a 

suited objective function defined in the parameter space.  

According to the latter solution, this paper employs a parametric, low-order dynamic 

model of the hexagonal unitary cell to state the linear eigenproblem governing the wave 

propagation in a hexachiral cellular material equipped with auxiliary resonators. Therefore, 

a set of design physical parameters is selected and their bounded range of technical values 

is employed as existence domain for seeking the solution of an optimization problem 

finalized to maximize the normalized angular frequency band-gap between two 

consecutive dispersion curves, particularly in the case of low frequencies. In the second 

part of the paper, the focus is on the formulation of such band gap optimization problem, 

the presentation of some approaches to solve it, and their numerical comparison.    

The paper is organized as follows. Section 2 described the physical model. Section 3 

formulates the band gap optimization problem and describes the main solution approach 

adopted. Section 4 reports and discusses the related numerical results, comparing the 

approach approach with another one. Extensions of the band gap optimization problem of 
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Section 3 are presented in Section 4. Finally, Section 5 presents some conclusions. To 

make the paper self-consistent, some technical details are reported in Appendices A.1 and 

A.2. 

 

2 Beam lattice model  

A linear mechanical model is formulated to describe the free Hamiltonian dynamics of the 

micro-structured elementary cell tessellating a composite cellular material featured by a 

planar honeycomb geometry. The internal microstructure of each hexagonal cell, as well as 

the elastic coupling between adjacent cells, are determined by a periodic pattern of central 

rings connected to each other by six transcellular ligaments, spatially organised according 

to a hexachiral geometric topology (Figure 1a). From an intuitive perspective, the auxetic 

material behaviour can be physically justified by the particular ligament-ring arrangement, 

which tends to produce the same-sign iso-amplitude rotation of all the rings if the material 

is stretched along one of the ring alignments. 

 Focusing on the planar microstructure with unit thickness of the generic cell (Figure 1b), 

the central massive and highly-stiff ring is modelled as a rigid body, characterized by mean 

radius R  and width w . The light and highly-flexible ligaments are modelled as massless, 

linear, extensible, unshearable beams, characterized by natural length L  (between the ring-

beam joints), transversal width w  and inclination   (with respect to the line connecting 

the centres of adjacent rings of length a ). By virtue of the periodic symmetry, the cell 

boundary crosses all the ligaments at midspan, halving their natural length. A heavy 

internal circular inclusion with external radius r , shown in Figure 1b (as a white circle), is 

located inside the ring through a soft elastic annulus (in grey). This inclusion, modelled as 

a rigid disk, plays the role of low-frequency (undamped) resonator. 

 The beam material is supposed linearly elastic, with Young’s modulus sE  and uniform 

mass density s  assigned to the ring material. The soft coating inside the resonator is 

considered as homogeneous, linearly elastic, isotropic material and has Young’s modulus 

rE  and Poisson’s ratio r .  

 The major simplifying assumptions, introduced with the aim of reducing the dynamic 

model complexity without compromising its mechanical representativeness (according to 

Liu et al. 2011 and Bacigalupo and Gambarotta 2014a, 2014b, 2015), have a twofold 

justification. On the one hand, the rigidity of the rings and the disks is a technological 
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requirement that can be easily accomplished. On the other hand, the neglection of the small 

inertia of the coating and ligaments can be considered acceptable in the present study, 

since their high-frequency natural vibrations are uninfluential on the analyses, finalized to 

the optimization of the low-frequency band gaps. 

 

Figure 1: Hexachiral cellular material equipped with resonators: (a) pattern, (b) periodic hexagonal 
cell in the condition of maximal auxeticity (tangent ligaments, or  arcsin 2 R a  ), (c) beam lattice 

model with nodal forces and displacements. 

  
 According to the mechanical assumptions and without further approximations related to 

the nodal discretization of the beam structure, a multi-degree-of-freedom lattice model, 

referred to a seven-node configuration for each cell, governs the undamped free dynamics 

of the periodic material. Focusing on the single cell model (Figure 1c), the generic j-th 

node (with 1..7j  ) is employed as reference pole for three time-dependent generalized 

displacements of the structural elements, including the horizontal and vertical translations 

( 1 2,j ju u  for the beams/ring, 1 2,v v  for the resonator) and the in-plane rotation ( j for the 

beams/ring,   for the resonator). Depending on the specific mass distribution and with 

reference to Figure 1c, the full node set can be conveniently classified into 

 a single-element subset composed of the only massive internal node (node 1), located 

at the coincident centroids of the ring and the resonator, which serves as common 

reference pole for all their active generalized displacements, collected in the six-by-

one column-vector 1 1 1
1 2 1 2( , ) ( , , , , , )s r

a a a u u v v  q q q , joining column-wise the ring 

subvector 1 1 1
1 2( , , )s

a u u q  and the resonator subvector 1 2( , , )r
a v v q  

 a six-element subset of massless external nodes (nodes 2-7), located at the midspan 

of the ligaments, whose passive displacements are collected in the 18-by-one 
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column-vector    2 2 2 3 3 3 7 7 7
2 7 1 2 1 2 1 2, , ( , , , , , ,..., , , )p u u u u u u    q q q , casting 

column-wise the j -th node subvector 1 2( , , )j j j
j u u q  

The classification highlights that the local equilibrium of the active nodes is dynamically 

governed by the balance of elastic ( , )s r
a a aσ σ σ  and inertial forces ( , )s r

a a af f f , whereas 

the local equilibrium of the passive nodes is quasi-statically established by the equality 

between the elastic forces pσ  and the reactive forces pf  transferred by the adjacent cells. 

 By virtue of the active/passive decomposition of the displacement and force vectors, the 

undamped free vibrations of the cell model are governed by the equilibrium equation  

 

s s
a a
r r
a a

p p

     
     

      
    
    

f σ 0

f σ 0

0 σ f

,  (1) 

where s
af  and r

af  are the inertial forces developed by the ring and the resonator, 

respectively. Making the inertial and elastic forces explicitly dependent on the respective 

accelerations and displacements, the equilibrium equation reads 

 

 

 

 

s sr ss s
aa aa ap a

r rs r

s

r
aa aa a

s
p pp

a

r

a

a

ppp

                                           

K K KM O O q 0

O M O K K O q 0

O O O

q

q fO K

q

q K






,  (2) 

where dot indicates differentiation with respect to the time, while O  stands for different-

size empty matrices. The three-by-three positive definite diagonal submatrices 

diag( )s
s s sM ,M ,JM  and diag( )r

r r rM ,M ,JM  collect the translational and rotational 

masses of the ring ( sM  and sJ ) and the resonator ( rM  and rJ ), which depend on the 

structural geometry and the material properties as reported in Appendix A.1. The stiffness 

matrix in (2) is symmetric and positive definite. Its symmetric three-by-three submatrix 

s
aaK  (mainly) accounts for the stiffening effects of the six beams on the active 

displacements of the ring, whereas the 18-by-18 submatrix ppK  describes the stiffness of 

the passive external nodes. The coupling between the internal and external nodes (global 

coupling) is expressed by the submatrix T( )s s
ap paK K . The resonator essentially behaves 

as a triad of independent linear (undamped) oscillators, each attached to the ring centroid 
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by an elastic spring. The diagonal entries of the submatrix diag( , , )r
aa d dk k kK  define 

the equivalent spring Hookean constants, which depend on the structural geometry R , r  

and the material properties rE , r , namely ( , ), ,r rd d R r Ek g   and , ), ,( r rR rk Eg    

as reported in dimensionless form d sk E  and  2
sk a E  in Appendix A.1. Consequently, 

the internal ring-resonator coupling (or local coupling) is expressed by the submatrix 

T ( )sr rs r
aa aa aa  K K K . 

 

2.1 Free wave propagation 

The free wave propagation along the cell domain spanned by  1 2,x x -coordinates of the 

central reference system can be studied according to the Floquet-Bloch theory (Brillouin 

1953). Accordingly, the following representations of the active and passive generalized 

displacements and passive force vectors, in the k -transformed space, are introduced 

   ,                           exp  ,   ,a a a p k p p k pi  q p k x q F p f F b   (3) 

where 2 1i   ,  1 2,k kk  is the wave vector,  1 1
1 2,a x xx  is the position vector of node 1, 

( , )s r
a aa  pp p ,  2 7, ,p  p p p  and  2 7, ,p  b b b  are auxiliary vectors and the 18-by-

18 block diagonal matrix kF  reads 

 

 

 

2 3

7 3

exp

exp
k

i

i

 
   
  

k x I 0 0

F 0 0

0 0 k x I





,  (4) 

being  1 2,j j
j x xx  the position vector of node j (with 1..7j  ) and 3I  the three-by-three 

identity matrix.  

 First, the passive displacement/force vectors (and the auxiliary passive 

displacement/force vectors) can be conveniently decomposed as ( , )p p p
 q q q , 

( , )p p p
 f f f   (and as ( , )p p p

 p p p , ( , )p p p
 b b b ), in order to distinguish the nine nodal 

variables p
q , p

f  (and p
p , p

b ) of the left boundary    (composed by the external even 

nodes 2,4,6) from the nine nodal variables p
q , p

f  (and p
p , p

b ) of the right boundary    
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(composed by the external odd nodes 3,5,7). Therefore, the second and third equations of 

the (3) takes the following forms 

                            , , , ,  p k p p k p p k p p k p
              q F p q F p f F b f F b   (5) 

where, assuming for the sake of convenience that the displacement and force vectors (and 

auxiliary displacement and force vectors) are sorted as 3 5 7( , , )p
 q q q q , 2 4 6( , , )p

 q q q q  

and 3 5 7( , , )p
 f f f f , 2 4 6( , , )p

 f f f f  (and as 3 5 7( , , )p
 p p p p , 2 4 6( , , )p

 p p p p  and 

3 5 7( , , )p
 b b b b , 2 4 6( , , )p

 b b b b ), the 9-by-9 block diagonal matrices k
F  and k

F  reads   

 

 
 

 
 

 
 

2 3

4 3

6 3

3 3

5 3

7 3

exp

exp ,

exp

exp

exp .

exp

k

k

i

i

i

i

i

i





 
   
  
 
   
  

k x I 0 0

F 0 k x I 0

0 0 k x I

k x I 0 0

F 0 k x I 0

0 0 k x I











  (6) 

Moreover, via the following periodic conditions on the auxiliary vectors 

 ,                p p p p
     p p b b  , (7) 

the quasi-periodicity conditions enabling the free wave propagation throughout the cell 

domain between the two complementary boundaries, by recalling the equations (5) and (6), 

can be imposed by requiring 

 ,                p p p p
     q Lq f Lf ,  (8) 

where the nine-by-nine transfer matrix L  reads 

 

 
 

 

23 3

45 3

67 3

exp  

exp  

exp  

i

i

i

 
   
  

k d I 0 0

L 0 k d I 0

0 0 k d I






 

 

 

, (9) 

where  1 2,k kk  is the wave vector and jij i x xd  is the periodicity vector along the 

direction connecting the   -belonging i-th node to the   -belonging j-th node (Figure 2b 

in the dimensionless spaces). 
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Figure 2: Periodic hexagonal cell: (a) central reference system, (b) periodicity vectors, (c) first 

irreducible Brillouin zone (with vertices 0 1 2(0,0),  (0,4 / 3 ),  ( , 3 / 3 )    k k k , identified 

by the values of the curvilinear coordinate   equal to 0 , 1 , and 2 , respectively). 

  

 

Consistently with the passive displacement and force decomposition, and imposing the 

quasi-periodicity conditions (8), the lower (quasi-static) part of equation (2) reads 

 9 9
#     

s
pa pp pps

a p ps
pa pp pp

 
 

 

       
                  

K K K I I  
q q q

K K K L L

    
, (10) 

where 9I  stands for the nine-by-nine identity matrix. This equation can be solved to 

express the passive variables as slave functions of the master active displacements, 

yielding 

     s s s
p pa pa a
   q R K LK q ,  (11) 

        s s s s
p pa pp pp pa pa a
       f K K L K R K LK q ,  (12) 

where the auxiliary nine-by-nine matrix R is defined as  

  1#  pp pp pp pp

     R LK L LK K K L . 

Similarly, the imposition of the quasi-periodicity conditions to the upper (dynamic) part 

of the equation (2), leads to the coupled equation 
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s srr
aa aa ap ap

prs rs
aa a

s s
a a

r r
a aa

 


            
                                

q K K qM O I  0K K
q

L 0q K K q O OO M




 

,  (13) 

which can be decoupled by employing the master-slave relation (11) to quasi-statically 

condense the auxiliary passive displacements p
q , yielding 
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ˆ s srr

aa a
s

a

rs rs
aa a

s
a a

r r
a aa

       
                      

q qK KM O 0

0q qK KO M




, (14) 

being T ( )sr rs r
aa aa aa  K K K  and where the condensed submatrix 

   ˆ  s s s s s s
aa aa ap ap pa pa

      K K K K L R K LK  and the full stiffness matrix can be proved to 

be Hermitian. 

Finally, imposing the  -angular frequency harmonically oscillating solution for all the 

active variables s
aq  and r

aq , i.e. 

 
     
     

 exp

 

exp exp ,

exp p x ,e e px

s s s
a a a

a

a a

r r r
a a a a

i ii

i t i

t

i





 

 

q p k x k x

q p k x k x

 

 

ψ

ψ
  (15) 

with 2 1i   , eliminating the t  time-dependence and posing 2  , a linear eigenproblem 

is stated in the non-standard form 

 
ˆ ss sr s

aaa aa

rrs r r
aaa aa


       
                    

K K M O 0

0K K O M

ψ

ψ
, (16) 

whose eigensolutions are composed by six eigenvalues    and the corresponding six 

complex-valued eigenvectors   6,s r
a a a ψ ψ ψ  in the ,k -transformed space, including 

six active eigencomponents each. The passive eigencomponents can be determined by 

applying the quasi-static relation      s s s
p pa pa a
   R K LKψ  ψ   and the quasi periodicity 

condition  .p p
  Lψ ψ  In particular, each eigenvectors aψ  is the polarization vector of the 

plane harmonic wave travelling along k  with angular frequency  .  

Therefore, the wave propagation in the cellular material can be fully characterized by 

following the eigenvalues   under variation of the wave vector k  in the irreducible 

Brillouin B-range analogous (Brillouin 1953) to the one illustrated in Figure 2c. These 

eigenvalues are obtained by solving the characteristic equation 

  det 0 K M  ,  (17) 

associated to equation (16) where the two matrices are 

 ,      
ˆ

 
s sr s
aa aa

rs r r
aa aa

   
    

     

K K M O
K M

K K O M
  ,  (18) 
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where it is worth recalling that T ( )sr rs r
aa aa aa  K K K . 

Since the ligament natural length L  is a ( , ,a R )-dependent parameter obeying to the 

relation  2 2cos 2 sinL a R a     
 

, the physical properties of the cell 

microstructure are completely defined by assessing the following set of parameters 

  , , , , , , , , ,s s r r ra w R r E E   μ  . (19) 

In particular, a triangular beam lattice is obtained for the limit case 0   and for this 

geometry the microstructure is no longer chiral.  

In terms of the dimensionless wave vector ak k , the dimensionless eigenvalues 

2
s

s

a

E

 
 , the dimensionless angular frequency 

s s

a

E




  and the minimal set of 

seven independent dimensionless parameters (see Appendix A.1) 

 , , , , , ,r r
r

s s

w R r E

a a a E

 


 
  
 

μ   (20) 

the linear eigenproblem (16) takes the following equivalent dimensionless form 

     , a K Mμ k μ 0ψ ,  (21) 

being aψ  the dimensionless eigenvector. Its characteristic equation is 

     ,det 0 μ k μK M ,  (22) 

where the  ,μ k - dimensionless dependent matrices are 

    
ˆ

, ,       
ss sr

aa aa
rrs r

aa aa

   
    
     

M OK K
K μ k M μ

O MK K
,  (23) 

with T ( )sr rs r
aa aa aa  K K K  and their components are extensively reported in Appendix A.2. 

For fixed μ , the i-th dimensionless angular frequency locus  , ( )i μ k  along the closed 

boundary B of the Brillouin B-range, spanned anticlockwise by the dimensionless 

curvilinear coordinate  Ξ (shown in Figure 2c), is the i-th dispersion curve of the Floquet-

Bloch spectrum. In particular, the B -vertices (of the first irreducible Brillouin zone) are 
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scanned in the order  0 1 2 0(0,0),  (0, 4 / 3 ),  ( , 3 / 3 ),  (0,0)     k k k k  and are 

identify of the increasing  -values 0 0  , 1
4

3
  , 2 2   and  0 2 1 3 3    , 

respectively. 

 

3 Band gap optimization problem 

A research issue of major theoretical and applied interest in the rapidly-evolving field of 

engineered composite materials consists in the detection, quantification and – as a final 

target – design of the normalized angular frequency band-gap between two consecutive 

dispersion curves (see, e.g., Ruzzene and Scarpa 2005, in which a periodic auxetic lattice 

was optimized with respect to one design parameter). Mostly oriented to strongly 

promising applications of these materials as fully mechanical filters, the strongest research 

efforts are currently devoted to the fine adjustment of the design parameters in order to 

maximize the amplitude of the low-frequency band-gaps. 

3.1 Problem formulation 

The maximization of the normalized angular frequency band gap between a pair of 

consecutive dispersion curves can be based on the definition of a suited μ -dependent 

objective function  hk μ , and thus formulated as a constrained optimization problem: 

 

 
min max

min max
2

min max
2 2

maximize

subject to ,  1,..., ,  3, 4

                ( ),  3

                ( ) ( ),  4

hk

i i i

i i i

i i i

i d i

i

i

  

   

 



  



   

  

  

μ
μ

  (24) 

where 7d  , dμ  is the vector of dimensionless design parameters i  (with i=1..d) to 

be optimally assessed, min
i (which is min

2( )i   for 4i  ) is a lower bound on the design 

variable i , and max
i  (which is max

2( )i   for 3,4i  ) is an upper bound on the design 

variable i . The lower/upper bounds on each parameter i  are established in Table 1, 

according to geometrical, physical or technological requirements. 

Recalling that 2k  is the dimensionless wave vector, sorting the dimensionless 

angular eigenfrequencies i  in ascending order and denoting HB a uniform discretization 
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(with H  equispaced points) of the boundary of the first irreducible Brillouin zone (see 

Figure 2c), the objective function is defined as 

   min ( , ) max ( , )
HHhk h B kB     kkμ μ k μ k ,  (25) 

measuring the positive (even if possibly null, or even negative) band-gap amplitude 

 ,hk μ k  between the h-th and k-th consecutive dispersion curves (where 1h k  ). 

Finally, the bound on the design parameters to be optimized are reported in Table 1. 

 

Table 1: lower and upper bounds on the optimizable parameters  

 i  w a  R a    r a  a  r sE E  r s   

min
i  

3

50
 

1

10
 0 

1

2

R

a
 

2

10
 

1

10
 

1

10
 

max
i  

1

10
 

1

5
 arcsin 2

R

a
 
 
 

 
9

10

R

a
 

4

10
 10 10 

 

Although the problem can be specified for any pair of consecutive dispersion curves, it 

is desirable to seek maxima of the objective function in the lowest possible spectrum band, 

for which a positive band gap exist between the corresponding dispersion curves, for 

suitable choices of the parameters. As far as the bounded variation of the design 

parameters does not alter the centro-symmetric geometry, all the eigenvalues are verified 

to attain positive values (   ), corresponding to real-valued positive frequencies. 

Furthermore, the lowest frequency pair is systematically found to coincide and vanish 

( 1 2 0   ) for k 0 , independently of the particular μ -assignment within the 

established bounds (Bacigalupo and Gambarotta 2015). Consequently, stating the 

optimization problem for 2h  , 1k   (that is, adopting the function  21 μ ) turns out 

useless, because the first and second dispersion curves are expected to intersect to each 

other at least in the origin k 0 . Therefore, the amplitude of the lowest frequency band-

gap  32 μ  (setting 3h  , 2k  ) is investigated in the following, where 30H   to have 

a sufficiently dense investigation range. 

It is clear from formulas (21)-(23) and the expressions of the matrices  ,K μ k and 
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 M μ , reported in Appendix A.2, that the band gap optimization problem (24) is a 

nonlinear programming problem. Moreover, its objective function ( )hk μ  is not a 

concave function. Hence, the optimization problem (24) cannot be treated as a concave 

maximization problem, and this makes challenging finding its globally optimal solution. 

Therefore, a locally optimal solution is sought in the following.  

3.2 Solution with GCMMA optimization method 

To solve locally the band gap optimization problem for the auxetic hexachiral structure, 

the Globally Convergent version of the Method of Moving Asymptotes (GCMMA) 

(Svanberg 2002) is exploited in the following. Such a method has been often used in the 

structural optimization literature to solve similar band gap optimization problems, for both 

phononic and photonic structures (Sigmund 2003 and Diaz et al. 2004), since such 

problems have a similar mathematical formulation. Then, to improve the quality of the 

obtained solution, in the paper the method is also combined with suitable multi-start 

techniques (which allow to apply the method multiple times, starting from different 

suitably selected initializations). In the following, a short description of both is provided. 

GCMMA is an extension of the Method of Moving Asymptotes (MMA) (Svanberg 

1987) which searches for a locally optimal solution of a nonlinear programming problem 

by solving a sequence of simpler maximization sub-problems, at each iteration m . These 

are obtained by approximating the objective and constraint functions of the original 

optimization problem around the current vector ( )mμ  of design variables, and updating 

such variables after solving each sub-problem. In particular, the focus here is on its 

application to the optimization problem (24), a case for which each sub-problem 

approximates the functions ( )hk μ , min
2( )i   for 4i  , and max

2( )i   for 3,4i  . From 

an optimization perspective, each sub-problem has the following nice properties (see, e.g., 

Christensen and Klarbring 2004): 

1) the approximations   ( )hk
m μ , 

min,( )

2( )
m

i  , and 
max,( )

2( )
m

i  of ( )hk μ , min
2( )i  , 

and max
2( )i  , respectively, are first-order approximations, in the sense that, for all 

these functions, when the function to be approximated is locally differentiable, 

there is no error in the approximation of the function value and of its gradient when 

evaluated at the current design variables (for the objective function, local non-
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differentiability may occur in case the band gap at the current design variables is 0, 

if this is due to the second and third dispersion curves being tangent at one point of 

the domain); 

2) such approximations are concave functions; 

3) the approximation   ( )hk
m μ  is separable, in the sense they it is the sum of 

functions of one variable (one function for each design variable), which makes each 

optimization sub-problem quite easy to solve through standard Lagrange multiplier 

techniques (of course, the approximations 
min,( )

2( )
m

i   and 
max,( )

2( )
m

i   are 

separable by definition, since 2  is a single design variable). 

Besides MMA, the properties 1), 2), and 3) above are satisfied also by other 

optimization methods that are often used in structural optimization, such as sequential 

linear programming and convex linearization (CONLIN) (Christensen and Klarbring 2004). 

The difference is that MMA is based on a more flexible approximation, which is generated 

using a technique named of “moving asymptotes”. This means, e.g., that each 

approximation   ( )hk
m μ  has the form 

    
,( ) ,( )

( ) ( )
1 1

( ) ( )
i iU m L md d

hk hk
hk hk m m

i ii i i

m

i

m

U L

  
  

 
    

  μ μ
  ,  (26) 

where, for each iteration, ,( )iU m
hk  , ,( )iL m

hk  , ( )m
iU  and ( )m

iL  are suitable constants (see 

Svanberg 1987), and, to get a bounded approximation, one also adds the constraints 

 ( ) ( ) ( ) ( ) ( )m m m m m
i i i i iL a b U    ,  (27) 

for other suitable constants ( )m
ia and ( )m

ib  (see Svanberg 1987). The name of the method 

derives from the fact that the vertical lines ( )m
i iL  and ( )m

i iU  are asymptotes for the 

approximation (26), which move (i.e., they are updated in a suitable way) from each 

iteration to the successive one. It is worth mentioning that, among other reasons, the larger 

flexibility of MMA with respect to sequential linear programming and CONLIN is also 

motivated by the fact that both are obtained as limit cases of MMA, for limit choices of its 

asymptotes (Christensen and Klarbring 2004). It is also worth remarking that MMA may 

not always converge to a stationary point of the original optimization problem. For this 

reason, its variation GCMMA was presented in Svanberg 2002 as a globally convergent 

version of MMA, in which the convergence of the modified method to a stationary point of 
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the original problem is guaranteed. However, due to the high nonlinearity of that problem, 

such a point is not guaranteed to be its global minimizer. 

In order to improve the quality of the solution obtained by GCMMA, in the following 

such a method is combined with a multi-start technique. This means that the method is 

applied repeatedly a number S  of times, with different initializations, and the best design 

vector found in all the repetitions is taken as a surrogate of a globally optimal design 

vector. As for the specific choice of the multi-start technique, the following two 

approaches are considered in the following: 

1) a Monte Carlo initialization of the design variables, with i , for 3,4i  , taken as 

realizations of independent uniformly distributed random variables with supports 

min max,i i    , respectively, and 3 4,  sampled subsequently and independently 

according to two uniform probability distributions with supports min max
3 3 2, ( )      

and min max
4 2 4 2( ), ( )      , respectively; 

2) a quasi-Monte Carlo initialization, obtained at first generating a quasi-random 

Sobol’ sequence (see, e.g., Niederreiter 1992 for its definition) on the 7-

dimensional unit cube 7
0,1 , then, applying to every vector belonging to such a 

sequence the mapping 7 7:[0,1] h  , with ( )h y being defined as 

 

min max min
1 1 1 1

1
min max min
2 2 2 22
min max min
3 3 2 2 3 33

min max min
4 4 4 2 2 4 2 2 4

min max min
5 5 5 5 5

min
6 6

7

( )( )
( )( )

( ( ( )) )( )

( ) ( ) ( ( ( )) ( ( )))

( ) ( )
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( )

y

y

y y

y y y

y

  
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     
   
  


  
   
 
   
 

    
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  
 
 

y
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y
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y

y

y

max min
6 6 6
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7 7 7 7

)

( )

y

y



  

 
 
 
 
 
 
 
 
 

 
   

,  (28) 

Compared with the Monte Carlo initialization method, the quasi-Monte Carlo 

approach has the advantages of being exactly replicable, and of generating more 

uniform sequences of initial points, whereas with the Monte Carlo approach there 

is in principle the possibility of generating the same initial point (or very similar 

initial points) more than once in the sequence. 

In the following, the combination of the GCMMA algorithm with the Monte Carlo 
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initialization 1) and the quasi-Monte Carlo initialization 2) are referred, respectively, as 

GCMMA/MC and GCMMA/QMC. 

4 Results and discussion 

 
The following Subsection 4.1 reports the results of the comparison between the 

GCMMA algorithm combined with the two initialization methods, and a less-sophisticated 

(and less efficient) optimization approach, known in the literature as brute-force approach.  

It is shown therein that all the methods are able to find similar solutions, but with 

GCMMA/MC and GCMMA/QMC requiring a much smaller number of objective function 

evaluations, and a larger best value of the objective function than the brute-force approach. 

Then, Subsection 4.2 investigates in more detail the best solution obtained by all the 

methods (which is the one found by GCMMA/QMC), analysing the coupling between the 

ring and the resonator for the associated values of the design parameters.   

4.1 Comparison of GCMMA/MC and GCMMA/QMC with the brute-force approach 

In order to assess the quality of the solution produced by the combination of the GMMA 

algorithm with the multi-start technique, in the following a comparison with the brute-

force approach is reported. Applied to the present context, this approach is characterized 

by the fact that the design variables i , for 3,4i  , are uniformly discretized on 

min max,i i     using a number iN  of discretization levels each, then 3  and 4  are 

uniformly discretized on min max
3 3 2, ( )      and min max

4 2 4 2( ), ( )      , respectively, using 

3N  and 4N  discretization levels (here, the discretization step, i.e., the distance between 

two consecutive levels, depends on the choice of 2 ). Finally, the band gap is evaluated 

and maximized (by explicit enumeration) on the resulting grid of vectors of design 

parameters. Of course, such an approach cannot be practically extended to problems with a 

sufficiently larger number of design variables, and has to be limited, in any case, to coarse 

grids, as being subject to the curse of dimensionality (see Bellman 1957). In other words, 

in the general case, being d the number of design variables and iN  the number of 

discretization levels for each of them, the brute-force approach requires 1
d
i iN  

evaluations of the band gap (one for each choice of the set of discretized design variables, 
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forming the optimization grid), which is exponential in the number of design variables 

when iN N  for all i . Nevertheless, for an optimization problem of small size (e.g., with 

a small number of optimization variables), simple constraints, and a sufficiently smooth 

objective function (like problem (24)), the brute-force approach can provide a good 

approximation of the optimal value of the objective function (even though, likely, with a 

computational effort larger than other methods), hence providing a benchmark for the 

evaluation of other more efficient algorithms. 

First of all, the brute-force approach provides a motivation for the introduction of the 

resonator to obtain a positive band gap. Without the resonator, indeed, the brute-force 

approach makes it possible to obtain a very good approximation of the optimal value of the 

objective, since the number of design variables is reduced to three, i.e., 
w

a
, 

R

a
 and   (the 

other four design variables are set to zero, and all the constraints for 4,5,6,7i   are 

removed from the problem formulation (24)), and a fine discretization is possible with a 

reasonably small computational burden. Then, by selecting 10iN   discretization steps for 

1,2,3i  , the objective function has been evaluated for 310 1000  different choices of this 

reduced design vector, obtaining zero as its largest value. This, combined with the 

smoothness of the objective function (illustrated in Figure 3, which plots the objective as a 

function of 
w

a
 and  , for several values of 

R

a
) allows to conclude that without the 

resonator there is no positive band gap. 
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Figure 3: Hexachiral lattice without resonator: band gap 3,2  as a function of w a  and  , 

for several values of R a .  

 

Figure 4 shows the first three dispersion curves at the best solution obtained by the 

brute-force approach in case there is no resonator, denoted as (3)BF , since there are only 

three parameters to optimize (in the figure, the dimensionless wave number denotes the 

dimensionless curvilinear coordinate along the boundary of the first irreducible Brillouin 

zone, see Figure 2 c; moreover, without the resonator, the total number of dispersion 

curves is exactly 3). Such a solution is 0.06
w

a
 , 0.1111

R

a
 , 0.1494 rad   (i.e., 

8.56   ), and the corresponding band gap is 32 0  . In this and in the following 

figures, the functions ( , )h μ k and ( , )k μ k are plotted when varying k  on HB with 

300H  , i.e., at a larger resolution than in the definition of the objective function (25). 

The choice of a coarser discretization in the latter is due to the need of limiting the 

computational burden required to solve the optimization problem (24). In the case 

considered in Figure 4, one can notice a crossing point between the second and third 
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dispersion curves. Interestingly, the obtained result does not mean that the band gap 

vanishes for all possible choices of the reduced vector of design variables. Indeed, there 

exist also other choices for which the band gap is negative. Figure 5 refers to the worst 

such choice, i.e., the one that minimizes the band gap (obtained still using the brute-force 

approach described above, with three optimization variables), which is 
3

,
50

w

a
  

1

5

R

a
 , 

0 rad   (i.e., 0   ). The associated band gap is 32 1.4828   . The figure shows 

that, in this case, starting from the left, one meets at first a crossing point between the 

second and third dispersion curves, followed by a veering between the first and second 

dispersion curves, then a second crossing point between the second and third dispersion 

curves, a second veering between the first and second dispersion curves, and finally 

another crossing point between the second and third dispersion curves. 

 

 

Figure 4: Floquet-Bloch spectrum of the hexachiral lattice without resonator in the boundary of the 

first irreducible Brillouin zone computed at the best solution found by the brute-force approach. 





0 1 2 0
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Figure 5: Floquet-Bloch spectrum of the hexachiral lattice without resonator in the boundary of the 

first irreducible Brillouin zone computed at the worst solution found by the brute-force approach in 

case there is no resonator. 

 

Next, the case in which all the seven design variables are optimized is considered, 

corresponding to the situation in which the resonator is introduced in the model. In that 

case, to apply the brute-force approach, to limit the computational burden, a coarser 

discretization is needed with respect to the situation above. Figure 6 shows the first three 

dispersion curves obtained in correspondence of the best choice  , 7BFμ  of the design 

parameters found by the brute-force approach with seven parameters, using 5iN   for the 

design variables 
w

a
, 

R

a
,   (the same parameters optimized in the first numerical 

experiment above), and 3iN   for the other four design variables, hence evaluating 

3 45 2 2000   times the objective function  32 μ . In this case, one obtains 

    , 7 0.1,0.1,0.2014,0.05,0.2,0.1,10BF μ ,  (29) 

and the largest value of the objective found by the brute-force approach is 

  , 7
32 ( ) 0.8507BF  μ ,  (30) 

Hence, in this case, there exists a positive band gap. Of course, in such a case, there is no 

intersection between the second and third dispersion curves. 

 





0 1 2 0
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Figure 6: first three dispersion curves of the Floquet-Bloch spectrum of the hexachiral lattice with 

resonators in the boundary of the first irreducible Brillouin zone computed at the best solution 

found by the brute-force approach. 

 

Figures 7 and 8 illustrate, instead, for each repetition, the evolution in time of the 

value of the objective function during the iterations of the adopted optimization 

method, i.e., the GCMMA algorithm combined with a suitable multi-start technique. 

In the figures, 0m  refers to the initialization, where a positive value for m  refers to 

the solution obtained in the corresponding iteration of GCMMA. One can also notice 

that some plots in the two figures are not distinguishable because they almost overlap, 

as they correspond to a nearly zero-valued objective. The first figure refers to the 

Monte Carlo initialization, the second one to the quasi-Monte Carlo initialization. One 

can notice that, during the first iterations, the objective tends sometimes to decrease rather 

than increase. This is likely due to the fact that, after the initialization of the GCMMA 

algorithm, the parameters ( )m
iL , ( )m

ia , ( )m
ib , ( )m

iU in formula (27) need some iterations before 

reaching proper values. The solution produced as output by the adopted optimization 

method (denoted by , /GCMMA MCμ for the Monte Carlo initialization, and by , /GCMMA QMCμ  for 

the quasi-Monte Carlo initialization) is the best of all solutions found in this process, i.e., 

the one associated with the largest value of the objective. In the simulations, the number of 

iterations in each repetition has been fixed to 24M   (excluding the initialization), and 

10S   repetitions have been considered. So, a total of 25  choices for the vector of design 

variables has been generated in each repetition. The best solution found by the repetitions 

of the GCMMA algorithm combined with the Monte Carlo initialization is 





0 1 2 0
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 , / (0.1,0.1,0.1992,0.052,0.22,0.1,10)GCMMA MC μ ,  (31) 

and its objective value is 

  , /
32 0.8596GCMMA MC  μ ,  (32) 

whereas the best solution found by the GCMMA algorithm combined with the quasi-

Monte Carlo initialization is 

 , / (0.1,0.1,0.1991,0.052,0.22,0.1,10)GCMMA QMC μ ,  (33) 

and its objective value is 

  , /
32 0.8597GCMMA QMC  μ ,  (34) 

Hence, in this case, , /GCMMA QMC μ μ  is the better of the two solutions, and provides a 

larger band gap than the one obtained by the brute-force approach with seven design 

parameters. 

 

Figure 7: evolution in time of the value of the objective function during the iterations of the 

GCMMA algorithm combined with the Monte Carlo initialization, for each of the ten repetitions.  
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Figure 8: evolution in time of the value of the objective function during the iterations of the 

GCMMA algorithm combined with the quasi-Monte Carlo initialization, for each of the ten 

repetitions. 

 

Table 2 reports the best values of the design parameters found by all the optimization methods 

and considered in the comparison, i.e.: the brute-force approach with three parameters; the brute-

force approach with seven parameters; the GCMMA algorithm combined with the Monte Carlo 

initialization; the GCMMA algorithm combined with the quasi-Monte Carlo initialization. 

 

Table 2: best parameters found by the various optimization methods , and associated objective values 

Method w a  R a    r a  a  a sE E a s   32  

BF(3) 0.06 0.1111 0.1494 - - - - 0 

BF(7) 0.1 0.1 0.2014 0.05 0.2 0.1 10 0.8507

GCMMA/MC 0.1 0.1 0.1992 0.052 0.22 0.1 10 0.8596

GCMMA/QMC 0.1 0.1 0.1991 0.052 0.22 0.1 10 0.8597

 

Concluding, both GCMMA/MC and GCMMA/QMC are able to obtain a quite 

satisfactory approximation of the optimal objective (at least as good as the one obtained by 
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the brute-force approach with seven design parameters) with a much smaller number of 

objective function evaluations, as compared to the brute-force approach BF(7). Moreover, 

the best solutions found by all these three methods are similar (see formulas (29), (32), and 

(33)) but, when compared with the brute-force approach BF(7), the GCMMA algorithm 

combined with a suitable multi-start technique allows to obtain even larger values of the 

objective function, since it does not discretize the design variables. Of course, larger values 

could be also obtained by increasing the number of iterations, still keeping the best 

solution found in each repetition. 

4.2 Ring-resonator coupling at the best solution found by the adopted optimization method 

In the following, the best solution , /GCMMA QMC μ μ  found by the adopted optimization 

method is investigated in more detail. Figure 9 shows all its associated 6 dispersion curves. 

Here, the coupling between the ring and the resonator is evidenced from the fact that there 

are no horizontal dispersion curves, which would have been obtained in the presence of the 

resonator only (or of a resonator completely decoupled from the ring). Moreover, this 

coupling is also evidenced by the presence, in the same unit-norm eigenvectors (using the 

Euclidean norm on the vector space 6  to do the normalization, where   denotes the set 

of complex numbers), of components related to both the ring and the resonator, in case of 

dimensionless wave vectors k  for which the non-negative dimensionless angular 

eigenfrequencies are separated, ensuring that each eigenvalue has unit multiplicity. Figure 

10 reports all such eigenfrequencies, evaluated on the whole hexagonal Brillouin zone. 

Finally, Figures 11 and 12 report the components of the unit-norm eigenvectors associated, 

respectively, with the second and third dispersion surface (such surfaces are obtained by 

solving the eigenvalue problem (21) on the whole hexagonal Brillouin zone), 

demonstrating the coupling just discussed, for both the translational and rotational 

components of the motion of the ring and of the resonator. In particular, the first three 

components are associated with degree-of-freedom of the ring and the last three are 

associated with those of the resonator. 
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Figure 9: Floquet-Bloch spectrum of the hexachiral lattice with resonators in the boundary of the 

first irreducible Brillouin zone computed at the best solution found by the GCMMA algorithm 

combined with the quasi-Monte Carlo initialization. 
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Figure 10: Floquet-Bloch spectrum of the hexachiral lattice with resonators in the hexagonal 

Brillouin zone computed for the best solution found by the GCMMA algorithm combined with the 

quasi-Monte Carlo initialization. (a) 1st eigenvalue; (b) 2nd eigenvalue; (c) 3rd eigenvalue;              

(d) 4th  eigenvalue; (e) 5th eigenvalue; (f) 6th  eigenvalue. 
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Figure 11: absolute values of the components of the eigenvector associated at the second dispersion 

surface, computed at the best solution found by the GCMMA algorithm combined with the quasi-

Monte Carlo initialization. (a) 1st component; (b) 2nd component; (c) 3rd  component;                      

(d) 4th component; (e) 5th  component; (f) 6th component. 
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Figure 12: absolute values of the components of the eigenvector associated with the third 

dispersion surface, computed at the best solution found by the GCMMA algorithm combined with 

the quasi-Monte Carlo initialization. (a) 1st component; (b) 2nd  component; (c) 3rd  component;     

(d) 4th  component; (e) 5th component; (f) 6th component. 

 

5 Generalizations of the band gap optimization problem 

The optimization problem (24) can be extended in various ways. First, instead than 

maximizing the band gap between two consecutive dispersion curves, one can maximize 
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the weighted sum (with positive weights) of the band gaps associated with several pairs of 

consecutive dispersion curves, or maximize the minimum of such band gaps. These 

alternative formulations are suitable for the multiple optimization in the presence of one or 

more target band gaps. Moreover, in all the formulations of the band gap optimization 

problem, one can replace each band gap 

 max ( , ) min ( , )
H Hh kB B  k kμ k μ k ,  (35) 

with the associated relative band gap, which is defined as the ratio 

 
max ( , ) min ( , )

1
min ( , ) max ( , )

2

H H

H H

h kB B

h kB B

 

 

 

 



  

k k

k k

μ k μ k

μ k μ k
, (36) 

in which, given the same gap amplitude, low-frequency band gaps have higher weight.  

Such an approach has been considered, e.g., in Men et al. 2010 and Men et al. 2013. 

Another generalization deals with the presence in the objective function of an additional 

term, related to the robustness of the optimal choice of the design variables. Indeed, close 

to an optimal solution of the (generalized) optimization, the objective function may exhibit 

high local sensitivity to the design parameter changes. This particular case may occur if the 

optimal solution lies on the boundary of the parameter domain, as far as the first-order 

optimality condition cannot be applied in its unconstrained form, so the gradient of the 

objective function (in case of its local differentiability) is not necessarily a vector of all 

zeros. Therefore, it may be preferable to look for a solution with a smaller value of the 

objective, but less sensitive to changes in the design variables. To reach this goal, one can 

modify the objective function of the problem (1.1), adding a robustness term, such as 

 
2

( )f  μ ,  (37) 

where 0   is an upper bound on the maximum admissible variation of the Euclidean 

norm of the vector of design variables with respect to its nominal value. A similar idea was 

considered in Men et al. 2014.  

As final remark, the band gap optimization problem and its generalizations has been 

tackled with different techniques. In some works (for instance, in Huang et al. 2014), 

suitable evolutionary algorithms were used to the purpose. Besides the already mentioned 

sequential linear programming and CONLIN, one could also make use of the recently 

proposed method by Men et al. 2010 (which replaces the original optimization problem 
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with a sequence of semidefinite programs), and of its extension by Men et al. 2013 (which 

approximates each such semidefinite program with a linear program). 

 

6 Conclusions 

A parametric beam lattice model has been formulated to analyse the propagation 

properties of elastic in-plane waves in an auxetic material based on a hexachiral topology 

of the periodic cell. The material micro-structure is characterized by an ordered assembly 

of stiff rings connected by flexible ligaments, in the absence of a soft embedding matrix. 

Inter-ring inclusions are described as linear undamped oscillators and functioning as 

inertial local resonators, and realize a highly-performant meta-material. A reduced order 

model in the only dynamically active degrees-of-freedom has been obtained thought the 

quasi-static condensation of the passive degrees-of-freedom at the periodic cell boundary, 

where the Floquet-Bloch conditions have been imposed. It has been verified how the 

introduction of the resonators, if properly tuned, may significantly alter the frequently band 

structure. From a design perspective, the desirable opening and shifting of band gaps can 

be obtained in the low-frequency range, paving the way for the realization of passive 

acoustic filters.    

As design testbed, a large space of design geometrical and mechanical parameters has 

been explored with the objective of opening the largest possible global band gap between 

the second acoustic branch and the first optical branch in the Floquet-Bloch spectrum. The 

amplitude maximization has been sought for by the statement of an optimization problem. 

The solution approach has been based on the Globally Convergent Method of Moving 

Asymptotes, combined with two suitable multi-start techniques, selected to improve the 

quality of the obtained locally optimal solution. The method has also been compared with a 

second, bruce-force approach, showing the larger effectiveness of the former. Finally, the 

coupling between the ring and the resonator at the best solution found by the adopted 

optimization method has been investigated. From a qualitative viewpoint, the main results 

show that, for a periodic cell with fixed characteristic length, the searched high-amplitude 

band gap can be obtained for small-radius rings and highly-slender, inclined but non-

tangent ligaments. Correspondingly, the optimized resonators are found to possess half the 

radius of the rings and be embedded in a highly-soft matrix. 
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Appendix A.1 – Inertial properties and translational and rotational stiffness of the 

local resonator 

 

 

Figure A-1. Rigid disk contained in a soft elastic and isotropic annulus inserted into an external 

rigid body. 

 

The translational and the rotatory inertia of the rings and the resonator in terms of the 

geometrical and mechanical properties are 2s sM Rw , 2
s sJ M R  and  2

r rM r  and 

21

2r rJ M r , respectively. 

According with Bacigalupo and Gambarotta 2015, the translational and rotational 

stiffness of the resonator shown in Figure A-1 is here derived. Let us consider first the 

translation u  under plane stress conditions of the rigid disk having radius r  surrounded by 

a homogeneous, elastic, isotropic annulus with Young’s modulus rE  and Poisson's ratio 

r , having external radius R  (Figure A-1). The translational stiffness of the inner disk is 

evaluated through a FEM analysis by applying a distribution of forces with resultant F  to 

the internal disk. From the displacement u , coaxial with F , the stiffness dk F u  is 

derived. In Figure A-2a the dimensionless translational stiffness d rk E  as a function of the 

ratio R r  is diagrammatically shown for different values of the Poisson’s ratio r , i.e. 

 ,d r d rk E f R r  . Therefore, the dimensionless translational stiffness d sk E  in terms 

of ratios R r , r sE E , r  takes the form 

  ,d r
d r

s s

k E
f R r

E E
 .  (38) 

The rotation   of the rigid inner disk without translation u  is analysed by applying to 

r

R
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the disk a distribution of forces having resultant torque M  and vanishing resultant force 

F . The rotational stiffness is analytically determined in Bacigalupo and Gambarotta 2015  

and its dimensionless form in terms of ratios R r , R a , r sE E , r  reads 

 
   

2

2 2

2
=

1 1
r

s sr

k E R

E a E aR r
   

 
   

 . (39) 

In Figure A-2bthe dimensionless rotational stiffness 2
rk E r  as a function of the ratio 

R r  is diagrammatically shown for different values of the Poisson’s ratio r . 

 

 

Figure A-2: (a) Dimensionless translational stiffness rd Ek in terms of the ratio R r ;                   

(b) Dimensionless rotational stiffness 2
rk E R  of the ratio R r . Influence of the Poisson ratio r : 

blue line 0.2a  ; red line 0.3a   ; green line 0.4a  . 
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Appendix A.2 – Components of the dimensionless matrices M  and K   

 

The non vanishing components of the three-by-three positive definite diagonal submatrices 

sM  and rM , that make up the 6-by-6 dimensionless block diagonal matrix   M μ  (see 

equation (23)), are expressed in terms of the dimensionless parameter vector μ  and take 

the following forms 

  2 2
11 22 33

2 2 4

11 22 33

1
2 ,                 2 ,                1 cos ,

2

1
,            ,            ,

2

s s s

r r rr r r

s s s

R w R w R w
M M M

a a a a a a

r r r
M M M

a a a

   
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  

    
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     

 (40) 

where  
2

2cos 4 1
R

a
      

 
 .  

The non vanishing components of the three-by-three Hermitian submatrix ˆ s
aaK   and the 

components of the diagonal submatrices r
aaK , sr

aaK , rs
aaK , that make up the 6-by-6 

dimensionless Hermitian matrix  ,K μ k  (see equation (23)), are expressed in terms of the 

dimensionless wave vector k and the dimensionless parameter vector μ . The components 

of submatrix ˆ s
aaK  take the following forms 

 
3

_ 3 _1 _ 0
_ _ _ _

1ˆ ˆ ˆ ˆs s s s
aa ij aa ij aa ij aa ij

w w
K K K K

a a

          
 , (41) 

with , 1,2,3i j   being  

   3cos     , (42) 

and the components _ 3
_

ˆ s
aa ijK , _1

_
ˆ s

aa ijK , _ 0
_

ˆ s
aa ijK  are defined as follows 



 38

      

     

   

 

_ 3 21
2 1 1_11

1 1
2 2

_1 1
2 1_11

3ˆ 2cos cos 2cos cos 2cos 3
2 2

3 3
          2 3 sin sin cos sin cos cos ,

2 2 2 2

3ˆ 2cos cos 2cos
2 2

s
aa

s
aa

k
K k k k

k k
k k

k
K k k



 

    
             

      
                
    

          
 

     

     

4

31 1
2 2 1

2 21 1
2 2 1

cos

3 3
          2 3 sin sin sin 4 cos cos cos cos

2 2 2 2

3 3
          4 3 sin sin sin 2 3 cos cos 2 cos 3

2 2 2 2

k k
k k k

k k
k k k



 



        
                        
       

                         
 

   

     

2

1 1
2 2

2 1
2

_ 0 3 2 2 3
_11

cos

3 3
          2 3 sin sin sin 6cos cos 6 cos

2 2 2 2

3
          3 cos cos 1 ,

2 2

ˆ cos 3 cos 3 coss d d d d
aa

s s s

k k
k k

k
k

k k k k
K

E E E E



 

  





       
                      

    
           
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    

            
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  (45) 

 
 

                      

 

     

 

_ 3 21 1
2 2_12

1
2 1

_1 4 21
2 2_12

3 3ˆ 2 3 sin sin cos 3 sin sin
2 2 2 2

3
            2cos cos 2cos cos sin ,

2 2

3 3ˆ 2 3 sin sin cos 3 sin
2 2 2

s
aa

s
aa

k k
K k k

k
k k

k
K k k



 



      
                 
    

          
   

          

     

 

1

31 1
2 1 2

2 1 1
2 2

sin
2

3 3
            4 3 sin sin 2cos 2cos cos sin cos

2 2 2 2

3 3
           3 2 1 sin sin 4 cos cos cos

2 2 2 2

k

k k
k k k

k k
k k

 

  
    

        
                         

      
                    

     

     

2
1

1 1
1 2 2

_ 0
_12

sin cos

3 3
           2 cos cos cos sin 2 3 sin sin cos ,

2 2 2 2

ˆ 0,s
aa

k

k k
k k k

K

 

 

  
      
        
                         



  (46) 



 40

 

 

     

 

_ 3 21
2_13

1
2 1

_1 4 21 1
2 2_13

3ˆ 3 sin cos cos
2 2

3
            cos sin sin cos sin ,

2 2

3 3ˆ 3 sin cos cos 3 sin cos
2 2 2 2

            

s
aa

s
aa

k
K i k

k
i k k

k k
K i k i k



 



   
         

    
          

      
                  

     

       

31 1
2 1 2

2 21 1
2 2 1

3 3
2 3 sin cos sin cos sin sin cos

2 2 2 2

3 3
           3 1 sin cos 2 cos sin sin sin cos

2 2 2 2

   

k k
i k k k

k k
i k k k

 

 

        
                        
        
                         

     1 1
1 2 2

_ 0
_13

3 3
        sin cos sin sin 2 3 sin cos cos ,

2 2 2 2

ˆ 0,s
aa

k k
i k k k

K

 
        
                         



  (47) 

 

   

   

   

_ 3 21
2 1_ 23

1
2

_1 4 21 1
2 1 2_ 23

3ˆ cos sin sin cos
2 2

3
            3 sin cos sin cos ,

2 2

3 3ˆ cos sin sin cos cos sin si
2 2 2 2

s
aa

s
aa

k
K i k k

k
i k

k k
K i k k k



 



    
          

   
        
       

                     
 

     

   

1

31 1
2 2 1

2 1 1
2 1 2

n

3 3
            3 sin cos sin 2 cos sin sin cos

2 2 2 2

3 3
           1 cos sin sin 2 3 sin cos

2 2 2 2

k

k k
i k k k

k k
i k k k

 

 
  
 

        
                        

      
                     

   

     

2

1 1
2 2 1

_ 0
_ 23

sin cos

3 3
           3 sin cos sin 2cos sin 2sin cos ,

2 2 2 2

ˆ 0,s
aa

k k
i k k k

K

 

 

 
   
       

                      


  (48) 

    _ _ _ _ _ _
_ 21 _12 _ 31 _13 _ 32 _ 23

ˆ ˆ ˆ ˆ ˆ ˆ,            Im ,            Im ,s n s n s n s n s n s n
aa aa aa aa aa aaK K K i K K i K       (49) 

 

where  
2

2cos 4 1
R

a
      

 
, 0,1,3n  , 2 1i    and  Im z  denotes the imaginary 

part of the complex numbers z . 
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Finally, the non vanishing components of the diagonal submatrix r
aaK  are  

 _11 _ 22 _ 33 2
,           ,           ,r r rd d

aa aa aa
s s s

k k k
K K K

E E a E
     (50) 

whereas the diagonal submatrices sr
aaK , rs

aaK  satisfy the constraint  T ( )sr rs r
aa aa aa  K K K . 

 
 


