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Abstract. The tuple space communication model, such as the one used
in Linda, provides great flexibility for modeling concurrent, distributed
and mobile processes. In a distributed setting with mobile agents, par-
ticular attention is needed for protecting sites and information. We have
designed and developed a Java middleware, KLAVA, for implementing
distributed tuple spaces and operations to support agent interaction and
mobility. In this paper, we extend the KLAVA middleware with crypto-
graphic primitives that enable encryption and decryption of tuple fields.
We describe the actual implementation of the new primitives and provide
a few examples. The proposed extension is general enough to be applied
to similar Java frameworks using multiple distributed tuples spaces pos-
sibly dealing with mobility.

1 Introduction

A successful approach to concurrent programming is the one relying on the
Linda coordination model [10]. Processes communicate by reading and writing
tuples in a shared memory called tuple space. Control of accesses is guaranteed by
requiring that tuples selection be associative, by means of pattern matching. The
communication model is asynchronous, anonymous, and generative, i.e., tuple’s
life-time is independent of producer’s life time.

The Linda model has been adopted in many communication frameworks such
as, e.g., JavaSpaces [1] and T Spaces [9], and for adding the tuple space commu-
nication model to existing programming languages. More recently, distributed
variants of tuple spaces have been proposed to exploit the Linda model for
programming distributed applications over wide area networks [6,2], possibly
exploiting code mobility [7,11]. As shown in [8], where several messaging mod-
els for mobile agents are examined, the blackboard approach, of which the tuple
space model is a variant, is one of the most favorable and flexible.

Sharing data over a wide area network such as Internet, calls for very strong
security mechanisms. Computers and data are exposed to eavesdropping and
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manipulations. Dealing with these issues is even more important in the context
of code mobility, where code or agents can be moved over the different sites
of a net. Malicious agents could seriously damage hosts and compromise their
integrity, and may tamper and brainwash other agents. On the other hand,
malicious hosts may extract sensible data from agents, change their execution
or modify their text [16,12].

The flexibility of the shared tuple space model opens possible security holes;
it basically provides no access protection to the shared data. Indeed there is no
way to determine the issuer of an operation to the tuple space and there is no
way to protect data: a process may (even not intentionally) retrieve/erase data
that do not belong to it and shared data can be easily modified and corrupted.
In spite of this, within the Linda based approaches, very little attention has been
devoted to protection and access control.

In this paper we present a Java middleware for building distributed and
mobile code applications interacting through tuple spaces, by means of cryptog-
raphy. In this middleware, classical Linda operations are extended for handling
encrypted data. Primitives are also supplied for encrypting and decrypting tuple
contents. This finer granularity allows mobile agents (that are not supposed to
carry private keys with them when migrating) to collect encrypted data, while
executing on remote sites, and decrypt them safely when back at the home site.

The proposed extension, while targeted to our middleware for mobile agents
interacting through distributed tuple spaces, KLAVA [3], is still general enough
to be applied to similar Java frameworks using multiple distributed tuples spaces
possibly dealing with mobility, such, e.g., [11,1, 6]. Indeed, this extension rep-
resents a compromise between the flexibility and open nature of Linda and of
mobile code, and the privacy of data in a distributed context.

2 Distributed Private Generative Communications

The Linda communication model [10] is based on the notion of tuple space that is
a multiset of tuples. These are just sequences of items, called fields that are of two
kinds: actual fields, i.e., values and identifiers, and formal fields, i.e., variables.
Syntactically, a formal field is denoted with lide, where ide is an identifier. Tuples
can be inserted in a tuple space with the operation out and retrieved from a
tuple space with the operations in and read (read does not withdraw the tuple
from the tuple space). If no matching tuple is found, both in and read block the
process that execute them, until a matching tuple becomes available. Pattern-
matching is used to select tuples from the tuple space; two tuples match if they
have the same number of fields and corresponding fields do match: a formal field
matches any value of the same type, and two actual fields match only if they
are identical (but two formals never match). For instance, if Val is an integer
variable, then tuples (“foo”, “bar”,!Val) and (“foo”, “bar”, 300) do match. After
matching, the variable of a formal field gets the value of the matched field; in
the previous example, after matching, Val will contain the integer value 300.
The middleware we are presenting is based on KLAVA [3], a Java framework
implementing KLAM (Kernel Language for Agent Interaction and Mobility) [7)



that provides features for programming distributed applications with mobile
code and mobile agents, relying on communication via multiple distributed tuple
spaces. KLAIM extends Linda by handling multiple distributed tuple spaces:
tuple spaces are placed on nodes (or sites), which are part of a net. Each node
contains a tuple space and a set of processes, and can be accessed through its
locality. Thus, classical Linda operations are indexed with the locality of the node
they have to be performed at. A reserved locality, self, can be used to access
the current execution site. Moreover in KLAIM processes are first class data, in
that they can be transmitted and exchanged among sites, so that mobile code
and mobile agent applications can be easily programmed.

For guaranteing privacy of data stored in tuple spaces we have extended
Krava with some cryptographic primitives. In our view, this extension is a
good tradeoff between the open nature of Linda (and of mobile code) and data
privacy. In particular we aim at having this extension as smooth as possible, so
that the original model is not perverted.

The basic idea is that a tuple may contain both clear text fields and encrypted
fields. All the encrypted fields of a specific tuple are encrypted with a single key.
This choice simplifies the overall design and does not harm usability of the
system; it would be unusual that different fields of the same tuple are encrypted
with different keys. Encrypted fields completely hide the encrypted contents
that they embody: they even hide the type of the contents. This strengthens the
secrecy of data (it is not even possible to know the type of sensible information).

In line with the open nature of the Linda model, our main intention is not to
prohibit processes to retrieve data belonging to other processes, but to guarantee
that these data be read and modified only by entitled processes. A shared tuple
space is basically a shared communication channel: in such a channel information
can be freely read and modified.

At the same time one of our aims is avoiding that wrong data be retrieved by
mistake. Clear text fields of a tuple can be used as identifiers for filtering tuples
(as in the Linda philosophy), but if a matching tuple contains encrypted fields,
which a process is not able to decrypt, it is also sensible that the tuple is put
back in the tuple space if it was withdrawn with an in. Moreover, in such cases,
a process may want to try to retrieve another matching tuple, possibly until the
right one is retrieved (i.e., a tuple for which it has the appropriate decryption
key), and to be blocked until one is available, in case no such tuple is found.

Within our framework it is possible to

— use tuple fields with encrypted data;

— encrypt tuple fields with specific keys;

— decrypt a tuple with encrypted fields;

— use variants of the operations in and read (ink and readk) to atomically
retrieve a tuple and decrypt its contents.

The modified versions of the retrieving operations, ink and readk, are based
on the following procedure:

1. look for and possibly retrieve a matching tuple,



2. attempt a decryption of the encrypted fields of the retrieved tuple
3. if the decryption fails:
(a) if the operation was an ink then put the retrieved tuple back in the tuple
space,
(b) look for alternative matching tuples,
4. if all these attempts fail, then block until another matching tuple is available.

Thus the programmer is relieved from the burden of executing all these internal
tasks, and when a readk or an ink operation succeeds it is guaranteed that the
retrieved tuple has been correctly decrypted. Basically the original Linda pattern
matching mechanism is not modified: encrypted fields are seen as ordinary fields
that have type KCipher (as shown in Section 3). It can be seen as an extended
pattern matching mechanism that, after the structural matching, also attempts
to decrypt encrypted fields.

In case mobile code is used, the above approach may be unsafe. Indeed,
symmetric and asymmetric key encryption techniques rely on the secrecy of the
key (in asymmetric encryption the private key must be kept secret). Thus, a
fundamental requirement is that mobile code and mobile agents must not carry
private keys when migrating to a remote site (“Software agents have no hopes
of keeping cryptographic keys secret in a realistic, efficient setting” [16]). This
implies that the above introduced operations ink and readk cannot be used by
a mobile agent executing on a remote site, because they would require carrying
over a key for decryption.

For mobile agents it is then necessary to supply a finer grain retrieval mech-
anism. For this reason we introduced also operations for the explicit decryption
of tuples: a tuple, containing encrypted fields, will be retrieved by a mobile agent,
by means of standard in and read operations and no automatic decryption will
be attempted. The actual decryption of the retrieved tuples can take place when
the agent is executing at the home site, where the key for decryption is available
and can be safely used. Typically a mobile agent system consists of stationary
agents, that do not migrate, and mobile agents that visit other sites in the net-
work, and, upon arrival at the home site, can communicate with the stationary
agents.

Thus the basic idea is that mobile agents collect encrypted data at remote
sites and communicate these data to the stationary agents, which can safely
decrypt their contents. Obviously, if some data are retrieved by mistake, it is up
to the agents to put it back on the site from where they were withdrawn. This
restriction of the protocol for fetching tuples is necessary if one wants to avoid
running the risk of leaking private keys. On the contrary, public keys can be
safely transported and communicated. By using public keys mobile agents are
able to encrypt the data collected along their itinerary.

Notice that there is no guarantee that a “wrong” tuple is put back: our
framework addresses privacy, not security, i.e., even if data can be stolen, still
it cannot be read. Should this be not acceptable, one should resort to a secure
channel-based communication model, and give up the Linda shared tuple space



model. Indeed the functionalities of our framework are similar to the one pro-
vided, e.g., by PGP [17] that does not avoid e-mails be eavesdropped and stolen,
but their contents are still private since they are unreadable for those that do
not own the right decryption key.

An alternative approach could be that of physically removing an encrypted
tuple, retrieved with an in, only when the home site of the agent that performed
the in, notifies that the decryption has taken place successfully. Such a tuple
would be restored if the decryption is acknowledged to have failed or after a
specific timeout expired. However, this approach makes a tuple’s life time de-
pendent on that of a mobile agent, which, by its own nature, is independent
and autonomous: agents would be expected to accomplish their task within a
specific amount of time. Moreover, inconsistencies could arise in case successful
decryption acknowledgments arrive after the timeout has expired.

3 Implementation

Krava [3] is deployed as an extensible Java package, Klava, that defines the
classes and the run-time system for developing distributed and mobile code ap-
plications according to the programming model of KLAIM. In KLAVA processes
are instances of subclasses of class KlavaProcess and can use methods for ac-
cessing a tuple space of a node: out(t,1), for inserting the tuple t into the
tuple space of the node at locality 1, read(t,1) and in(t,1), for, respectively,
reading and withdrawing a tuple matching with t from the tuple space of the
node at locality 1. Moreover the method eval(P,1) can be used for spawning
a KlavaProcess P for remote execution on site 1. Some wrapper classes are
supplied for tuple fields such as KString, KInteger, etc.

The extension of this package, CRYPTOKLAVA, provides the cryptography
features described in the previous section. We have used the Java Cryptogra-
phy Eztension (JCE) [13], a set of packages that provide a framework and im-
plementations for encryption, key generation and key agreement, and Message
Authentication Code (MAC) algorithms. JCE defines a set of standard API,
so that different cryptography algorithms can be plugged into a system or an
application, without modifying the existing code. Keys and certificates can be
safely stored in a Keystore, an encrypted archive.

CryPTOKLAVA is implemented as a subpackage of the package Klava, namely
Klava.crypto, so that it is self-contained and does not affect the main pack-
age. In the rest of this section we will describe the main classes of the package
Klava.crypto, implementing cryptographic features.

The class KCipher is introduced in order to handle formal and actual fields
containing encrypted data (it follows the KLAVA convention that wrapper classes
for tuple items start with a K). Basically it can be seen as a wrapper for standard
KrAVA tuple fields. This class includes the following fields:

protected byte[] encltem; // encrypted data
protected Object ref; // reference to the real tuple item
protected String alg; // enc—dec algorithm type



The reference ref will be null when the field is a formal field, or the field
has not yet been decrypted. After retrieving a matching tuple, encItem will
contain the encrypted data (that is always stored and manipulated as an array
of bytes). After the decryption, ref will refer to the decrypted data. Conversely,
upon creation of an actual field, ref will contain the data to be encrypted; after
encryption, encItem will contain the encrypted data, while ref will be set to
null (so that the garbage collector can eventually erase such clear data also from
the memory). alg stores information about the algorithm used for encryption
and decryption.

An actual encrypted tuple field can be created by firstly creating a standard
Krava tuple field (in the example a string) and then by passing such field to an
instance of class KCipher:

KString s = new KString("foo");
KCipher ks = new KCipher(s);

Similarly the following code creates an encrypted string formal tuple field (In
KrAvaA a formal field is created by instantiating an object from a KLAVA class for
tuple fields — such as KString, KInteger, etc. — through the default constructor):

KString s = new KString();
KCipher ks = new KCipher(s);

KCipher supplies methods enc and dec for respectively encrypting and de-
crypting data represented by the tuple field. These methods receive, as param-
eter, the Key that has to be used for encryption and decryption, and enc also
accepts the specification of the algorithm. These methods can be invoked only
by the classes of the package.

The class Tuplex extends the standard K1L.AVA class Tuple, in order to con-
tain fields of class KCipher, besides standard tuple fields; apart from provid-
ing methods for cryptographic primitives, it also serves as a first filter during
matching: it will avoid that ordinary tuples (containing only clear text data)
be matched with encrypted tuples. Once tuple fields are inserted into a Tuplex
object, the KCipher fields can be encrypted by means of the method encode.
For instance, the following code

KString ps = new KString("clear");

KCipher ks = new KCipher(new KString("secret"));
Tuplex t = new Tuplex();

t.add(ps); t.add(ks);

t.encode();

creates a tuple where the first field is a clear text string, and the second is a
field to be encrypted, and then actually encrypts the KCipher field by calling
encode. Also encode can receive parameters specifying the key and the algorithm
for the encryption; otherwise the default values are used. encode basically calls
the previously described method enc on every KCipher tuple field, thus ensuring
that all encrypted fields within a tuple rely on the same key and algorithm.

As for the retrieval operation, this can be performed either with the new
introduced operations, ink and readk, if they are executed on the local site



KString s = new KString();

KString sec = new KString();
KCipher ks = new KCipher(sec);
Tuplex t = new Tuplex();

t.add(s); t.add(ks);

ink(t, 1);

Print("encrypted data is: " + sec);

or by first retrieving the tuple and then manually decoding encrypted fields:

.. // as above
in(t, 1);

t.decode();
Print("encrypted data is: " 4+ sec);

Notice that in both cases references contained in an encrypted field (such as sec)
are automatically updated during the decryption. The ink in the former example
is performed at a remote site but this does not mean that the key travels in the
net: as explained in the previous section, the matching mechanism is implicitly
split into a retrieve phase (which takes place remotely) and a decryption phase
(which takes place locally).

Operations ink and readk are provided as methods in the class Klava-
Processx, which extends the class KlavaProcess for standard processes. Klava-
Processx also keeps information about the KeyStore of the process and the
default keys to be used for encryption and decryption. Obviously these fields
are transient so that they are not delivered together with the process, should
it migrate to a remote site. All these extended classes make the extension of
KrAvA completely modular: no modification was made to the original KLAvA
classes.

Finally, let us observe that, thanks to abstractions provided by the JCE, all
the introduced operations are independent of the specific cryptography mecha-
nism, so both symmetric and asymmetric encryption schemes can be employed.

4 An Encrypted Chat System

The chat system we present in this section is simplified, but it implements the
basic features that are common to several real chat systems. The system consists
of a ChatServer and many ChatClients and it is a variant of the one presented
in [3] with the new cryptographic primitives. When a client sends a message,
the server has to deliver the message to all connected clients. If a message is
“private”, it will be delivered only to the clients specified in the list sent along
with the message.

Messages are normally delivered through the network as clear text, so they
can be read by everyone:

— an eavesdropper can intercept the messages and read their contents;
— a misbehaving chat server can examine clients’ messages.



Moreover, the messages might also be modified so that a client believes he is
receiving messages from another client, while it would be reading messages forged
by a “man in the middle”.

While this is normally acceptable, due to the open nature of a chat system,
nonetheless there could be situations when the privacy and integrity of messages
is a major concern; for instance if two clients want to engage a private commu-
nication. This is a typical scenario where cryptography can solve the problem of
privacy (through encryption).

In this example we implement a chat server and a chat client, capable of
handling private encrypted messages:

— when the client wants to send a private message to a specific receiver, it
encrypts the body of the message with a key;

— the server receives the message and simply forwards it to the receiver;

— the receiver will receive the message with the encrypted body and it can
decrypt it with the appropriate key.

Notice that clients that want to communicate privately must have agreed about
the specific key to be used during the private message exchange; this is definitely
the case with symmetric keys. As for public and private key encryption the
receiver can simply use its private key, to decrypt a message encrypted with its
own public key.

A private message is represented by a tuple with the following format:

("PERSONAL", <body>, <recipient>, <sender>)

where <recipient> and <sender> are, respectively, the locality of the client the
message is destined to and the locality of the issuer of the message. Basically,
when a client wants to send a message with an encrypted body, it will have to
perform the following steps:

Tuplex t = new Tuplex() ;

KCipher cryptMessage = new KCipher( message ) ;
t.add( new KString( "PERSONAL" ) );

t.add( cryptMessage ) ;

t.add( selectedUser ) ;

t.add( self ) ;

t.encode();

out( t, server ) ;

where message is the actual message body.

The server handles encrypted messages by retrieving them through the fol-
lowing actions (it will deliver the tuple without the field <recipient>, which is
useless at this time):

KString message = new KString() ;

KCipher cryptMessage = new KCipher( message ) ;
Locality to = new PhysicalLocality() ;

Locality from = new PhysicalLocality() ;



Tuplex t = new Tuplex() ;

t.add( new KString( "PERSONAL" ) );
t.add( cryptMessage ) ;

t.add( to ) ;

t.add( from ) ;

in( 6, self ) ;

and it delivers the message to the recipient as follows:
out( new Tuplex(new KString ("PERSONAL"), cryptMessage, from), to );

On the other hand, the receiver, which is always waiting for incoming mes-
sages, will read and decrypt a message (in one atomic step), by means of the
operation ink:

KString message = new KString() ;

KCipher cryptMessage = new KCipher( message ) ;
KString from = new KString() ;

Tuplex t = new Tuplex() ;

t.add( new KString( "PERSONAL" ) ) ;

t.add( cryptMessage ) ;

t.add( from ) ;

ink( t, self ) ;

Print("Received message: " + message);

Both the server and the clients execute these operations within the loop for
handling incoming messages.

5 Conclusions and Related Work

Since tuple space operations can be used both by local processes and by mo-
bile agents, the extended operations, presented in this paper, address both the
privacy of hosts and of mobile agents. We did not deal with key distribution
explicitly that can be seen as an orthogonal problem. Digital signatures can
be smoothly integrated in our framework and the pattern matching extended
accordingly.

The work that is closer to ours is [4], which introduces the Secure Object Space
(SECOS) model. This model is intended to extend Linda with fine-grained ac-
cess control semantics. In SECOS all tuple fields are locked with a key, and each
field must be locked with a different key. The basic idea is that a process, upon
retrieving a tuple, can see only the fields for which he owns the corresponding
key. The structure of a tuple does not influence pattern matching: due to an in-
troduced subsumption rule, a template can match also a bigger tuple, and fields
can be reordered during the matching. [5] proposes a similar, but richer frame-
work, SecSpaces, where also resource access control and tuple space partitioning
facilities are provided (orthogonal and complementary to our approach).

All these features tend to alter the original Linda model, while our principal
aim is to provide an extension of the Linda communication model that can be
smoothly integrated into the existing features, without significantly changing the



original model. Moreover, neither SECOS nor SecSpaces handle code mobility,
which is one of our main concerns.

Mobility imposes additional restrictions on the underlying model, e.g., re-
quiring that agents do not carry private keys during migrations, and calls for
alternatives such as explicit encryption and decryption mechanisms and a two-
stage pattern matching. Indeed the problem of protecting an agent against a
malicious host is even more complicated than that of protecting a host from a
malicious agent (we refer to the papers in [14,15]).
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