
A Java Middleware for Guaranteeing Priva
yof Distributed Tuple Spa
es?Lorenzo Bettini Ro

o De Ni
olaDipartimento di Sistemi e Informati
a, Universit�a di FirenzeVia Lombroso 6/17, 50134 Firenze, Italyfbettini,deni
olag�dsi.unifi.itAbstra
t. The tuple spa
e
ommuni
ation model, su
h as the one usedin Linda, provides great
exibility for modeling
on
urrent, distributedand mobile pro
esses. In a distributed setting with mobile agents, par-ti
ular attention is needed for prote
ting sites and information. We havedesigned and developed a Java middleware, Klava, for implementingdistributed tuple spa
es and operations to support agent intera
tion andmobility. In this paper, we extend the Klava middleware with
rypto-graphi
 primitives that enable en
ryption and de
ryption of tuple �elds.We des
ribe the a
tual implementation of the new primitives and providea few examples. The proposed extension is general enough to be appliedto similar Java frameworks using multiple distributed tuples spa
es pos-sibly dealing with mobility.1 Introdu
tionA su

essful approa
h to
on
urrent programming is the one relying on theLinda
oordination model [10℄. Pro
esses
ommuni
ate by reading and writingtuples in a shared memory
alled tuple spa
e. Control of a

esses is guaranteed byrequiring that tuples sele
tion be asso
iative, by means of pattern mat
hing. The
ommuni
ation model is asyn
hronous, anonymous, and generative, i.e., tuple'slife-time is independent of produ
er's life time.The Linda model has been adopted in many
ommuni
ation frameworks su
has, e.g., JavaSpa
es [1℄ and T Spa
es [9℄, and for adding the tuple spa
e
ommu-ni
ation model to existing programming languages. More re
ently, distributedvariants of tuple spa
es have been proposed to exploit the Linda model forprogramming distributed appli
ations over wide area networks [6, 2℄, possiblyexploiting
ode mobility [7, 11℄. As shown in [8℄, where several messaging mod-els for mobile agents are examined, the bla
kboard approa
h, of whi
h the tuplespa
e model is a variant, is one of the most favorable and
exible.Sharing data over a wide area network su
h as Internet,
alls for very strongse
urity me
hanisms. Computers and data are exposed to eavesdropping and? This work has been partially supported by EU within the FET { Global Computinginitiative proje
t MIKADO IST-2001-32222, by MIUR proje
t NAPOLI and byMi
rosoft proje
t NAPI. The funding bodies are not responsible for any use thatmight be made of the results presented here.

manipulations. Dealing with these issues is even more important in the
ontextof
ode mobility, where
ode or agents
an be moved over the di�erent sitesof a net. Mali
ious agents
ould seriously damage hosts and
ompromise theirintegrity, and may tamper and brainwash other agents. On the other hand,mali
ious hosts may extra
t sensible data from agents,
hange their exe
utionor modify their text [16, 12℄.The
exibility of the shared tuple spa
e model opens possible se
urity holes;it basi
ally provides no a

ess prote
tion to the shared data. Indeed there is noway to determine the issuer of an operation to the tuple spa
e and there is noway to prote
t data: a pro
ess may (even not intentionally) retrieve/erase datathat do not belong to it and shared data
an be easily modi�ed and
orrupted.In spite of this, within the Linda based approa
hes, very little attention has beendevoted to prote
tion and a

ess
ontrol.In this paper we present a Java middleware for building distributed andmobile
ode appli
ations intera
ting through tuple spa
es, by means of
ryptog-raphy. In this middleware,
lassi
al Linda operations are extended for handlingen
rypted data. Primitives are also supplied for en
rypting and de
rypting tuple
ontents. This �ner granularity allows mobile agents (that are not supposed to
arry private keys with them when migrating) to
olle
t en
rypted data, whileexe
uting on remote sites, and de
rypt them safely when ba
k at the home site.The proposed extension, while targeted to our middleware for mobile agentsintera
ting through distributed tuple spa
es, Klava [3℄, is still general enoughto be applied to similar Java frameworks using multiple distributed tuples spa
espossibly dealing with mobility, su
h, e.g., [11, 1, 6℄. Indeed, this extension rep-resents a
ompromise between the
exibility and open nature of Linda and ofmobile
ode, and the priva
y of data in a distributed
ontext.2 Distributed Private Generative Communi
ationsThe Linda
ommuni
ation model [10℄ is based on the notion of tuple spa
e that isa multiset of tuples. These are just sequen
es of items,
alled �elds that are of twokinds: a
tual �elds, i.e., values and identi�ers, and formal �elds, i.e., variables.Synta
ti
ally, a formal �eld is denoted with !ide, where ide is an identi�er. Tuples
an be inserted in a tuple spa
e with the operation out and retrieved from atuple spa
e with the operations in and read (read does not withdraw the tuplefrom the tuple spa
e). If no mat
hing tuple is found, both in and read blo
k thepro
ess that exe
ute them, until a mat
hing tuple be
omes available. Pattern-mat
hing is used to sele
t tuples from the tuple spa
e; two tuples mat
h if theyhave the same number of �elds and
orresponding �elds do mat
h: a formal �eldmat
hes any value of the same type, and two a
tual �elds mat
h only if theyare identi
al (but two formals never mat
h). For instan
e, if Val is an integervariable, then tuples (\foo"; \bar"; !Val) and (\foo"; \bar"; 300) do mat
h. Aftermat
hing, the variable of a formal �eld gets the value of the mat
hed �eld; inthe previous example, after mat
hing, Val will
ontain the integer value 300.The middleware we are presenting is based on Klava [3℄, a Java frameworkimplementing Klaim (Kernel Language for Agent Intera
tion and Mobility) [7℄

that provides features for programming distributed appli
ations with mobile
ode and mobile agents, relying on
ommuni
ation via multiple distributed tuplespa
es. Klaim extends Linda by handling multiple distributed tuple spa
es:tuple spa
es are pla
ed on nodes (or sites), whi
h are part of a net. Ea
h node
ontains a tuple spa
e and a set of pro
esses, and
an be a

essed through itslo
ality. Thus,
lassi
al Linda operations are indexed with the lo
ality of the nodethey have to be performed at. A reserved lo
ality, self,
an be used to a

essthe
urrent exe
ution site. Moreover in Klaim pro
esses are �rst
lass data, inthat they
an be transmitted and ex
hanged among sites, so that mobile
odeand mobile agent appli
ations
an be easily programmed.For guaranteing priva
y of data stored in tuple spa
es we have extendedKlava with some
ryptographi
 primitives. In our view, this extension is agood tradeo� between the open nature of Linda (and of mobile
ode) and datapriva
y. In parti
ular we aim at having this extension as smooth as possible, sothat the original model is not perverted.The basi
 idea is that a tuple may
ontain both
lear text �elds and en
rypted�elds. All the en
rypted �elds of a spe
i�
 tuple are en
rypted with a single key.This
hoi
e simpli�es the overall design and does not harm usability of thesystem; it would be unusual that di�erent �elds of the same tuple are en
ryptedwith di�erent keys. En
rypted �elds
ompletely hide the en
rypted
ontentsthat they embody: they even hide the type of the
ontents. This strengthens these
re
y of data (it is not even possible to know the type of sensible information).In line with the open nature of the Linda model, our main intention is not toprohibit pro
esses to retrieve data belonging to other pro
esses, but to guaranteethat these data be read and modi�ed only by entitled pro
esses. A shared tuplespa
e is basi
ally a shared
ommuni
ation
hannel: in su
h a
hannel information
an be freely read and modi�ed.At the same time one of our aims is avoiding that wrong data be retrieved bymistake. Clear text �elds of a tuple
an be used as identi�ers for �ltering tuples(as in the Linda philosophy), but if a mat
hing tuple
ontains en
rypted �elds,whi
h a pro
ess is not able to de
rypt, it is also sensible that the tuple is putba
k in the tuple spa
e if it was withdrawn with an in. Moreover, in su
h
ases,a pro
ess may want to try to retrieve another mat
hing tuple, possibly until theright one is retrieved (i.e., a tuple for whi
h it has the appropriate de
ryptionkey), and to be blo
ked until one is available, in
ase no su
h tuple is found.Within our framework it is possible to{ use tuple �elds with en
rypted data;{ en
rypt tuple �elds with spe
i�
 keys;{ de
rypt a tuple with en
rypted �elds;{ use variants of the operations in and read (ink and readk) to atomi
allyretrieve a tuple and de
rypt its
ontents.The modi�ed versions of the retrieving operations, ink and readk, are basedon the following pro
edure:1. look for and possibly retrieve a mat
hing tuple,

2. attempt a de
ryption of the en
rypted �elds of the retrieved tuple3. if the de
ryption fails:(a) if the operation was an ink then put the retrieved tuple ba
k in the tuplespa
e,(b) look for alternative mat
hing tuples,4. if all these attempts fail, then blo
k until another mat
hing tuple is available.Thus the programmer is relieved from the burden of exe
uting all these internaltasks, and when a readk or an ink operation su

eeds it is guaranteed that theretrieved tuple has been
orre
tly de
rypted. Basi
ally the original Linda patternmat
hing me
hanism is not modi�ed: en
rypted �elds are seen as ordinary �eldsthat have type KCipher (as shown in Se
tion 3). It
an be seen as an extendedpattern mat
hing me
hanism that, after the stru
tural mat
hing, also attemptsto de
rypt en
rypted �elds.In
ase mobile
ode is used, the above approa
h may be unsafe. Indeed,symmetri
 and asymmetri
 key en
ryption te
hniques rely on the se
re
y of thekey (in asymmetri
 en
ryption the private key must be kept se
ret). Thus, afundamental requirement is that mobile
ode and mobile agents must not
arryprivate keys when migrating to a remote site (\Software agents have no hopesof keeping
ryptographi
 keys se
ret in a realisti
, eÆ
ient setting" [16℄). Thisimplies that the above introdu
ed operations ink and readk
annot be used bya mobile agent exe
uting on a remote site, be
ause they would require
arryingover a key for de
ryption.For mobile agents it is then ne
essary to supply a �ner grain retrieval me
h-anism. For this reason we introdu
ed also operations for the expli
it de
ryptionof tuples: a tuple,
ontaining en
rypted �elds, will be retrieved by a mobile agentby means of standard in and read operations and no automati
 de
ryption willbe attempted. The a
tual de
ryption of the retrieved tuples
an take pla
e whenthe agent is exe
uting at the home site, where the key for de
ryption is availableand
an be safely used. Typi
ally a mobile agent system
onsists of stationaryagents, that do not migrate, and mobile agents that visit other sites in the net-work, and, upon arrival at the home site,
an
ommuni
ate with the stationaryagents.Thus the basi
 idea is that mobile agents
olle
t en
rypted data at remotesites and
ommuni
ate these data to the stationary agents, whi
h
an safelyde
rypt their
ontents. Obviously, if some data are retrieved by mistake, it is upto the agents to put it ba
k on the site from where they were withdrawn. Thisrestri
tion of the proto
ol for fet
hing tuples is ne
essary if one wants to avoidrunning the risk of leaking private keys. On the
ontrary, publi
 keys
an besafely transported and
ommuni
ated. By using publi
 keys mobile agents areable to en
rypt the data
olle
ted along their itinerary.Noti
e that there is no guarantee that a \wrong" tuple is put ba
k: ourframework addresses priva
y, not se
urity, i.e., even if data
an be stolen, stillit
annot be read. Should this be not a

eptable, one should resort to a se
ure
hannel-based
ommuni
ation model, and give up the Linda shared tuple spa
e

model. Indeed the fun
tionalities of our framework are similar to the one pro-vided, e.g., by PGP [17℄ that does not avoid e-mails be eavesdropped and stolen,but their
ontents are still private sin
e they are unreadable for those that donot own the right de
ryption key.An alternative approa
h
ould be that of physi
ally removing an en
ryptedtuple, retrieved with an in, only when the home site of the agent that performedthe in, noti�es that the de
ryption has taken pla
e su

essfully. Su
h a tuplewould be restored if the de
ryption is a
knowledged to have failed or after aspe
i�
 timeout expired. However, this approa
h makes a tuple's life time de-pendent on that of a mobile agent, whi
h, by its own nature, is independentand autonomous: agents would be expe
ted to a

omplish their task within aspe
i�
 amount of time. Moreover, in
onsisten
ies
ould arise in
ase su

essfulde
ryption a
knowledgments arrive after the timeout has expired.3 ImplementationKlava [3℄ is deployed as an extensible Java pa
kage, Klava, that de�nes the
lasses and the run-time system for developing distributed and mobile
ode ap-pli
ations a

ording to the programming model of Klaim. In Klava pro
essesare instan
es of sub
lasses of
lass KlavaPro
ess and
an use methods for a
-
essing a tuple spa
e of a node: out(t,l), for inserting the tuple t into thetuple spa
e of the node at lo
ality l, read(t,l) and in(t,l), for, respe
tively,reading and withdrawing a tuple mat
hing with t from the tuple spa
e of thenode at lo
ality l. Moreover the method eval(P,l)
an be used for spawninga KlavaPro
ess P for remote exe
ution on site l. Some wrapper
lasses aresupplied for tuple �elds su
h as KString, KInteger, et
.The extension of this pa
kage, CryptoKlava, provides the
ryptographyfeatures des
ribed in the previous se
tion. We have used the Java Cryptogra-phy Extension (JCE) [13℄, a set of pa
kages that provide a framework and im-plementations for en
ryption, key generation and key agreement, and MessageAuthenti
ation Code (MAC) algorithms. JCE de�nes a set of standard API,so that di�erent
ryptography algorithms
an be plugged into a system or anappli
ation, without modifying the existing
ode. Keys and
erti�
ates
an besafely stored in a Keystore, an en
rypted ar
hive.CryptoKlava is implemented as a subpa
kage of the pa
kage Klava, namelyKlava.
rypto, so that it is self-
ontained and does not a�e
t the main pa
k-age. In the rest of this se
tion we will des
ribe the main
lasses of the pa
kageKlava.
rypto, implementing
ryptographi
 features.The
lass KCipher is introdu
ed in order to handle formal and a
tual �elds
ontaining en
rypted data (it follows theKlava
onvention that wrapper
lassesfor tuple items start with a K). Basi
ally it
an be seen as a wrapper for standardKlava tuple �elds. This
lass in
ludes the following �elds:prote
ted byte[℄ en
Item; // en
rypted dataprote
ted Obje
t ref; // referen
e to the real tuple itemprote
ted String alg; // en
�de
 algorithm type

The referen
e ref will be null when the �eld is a formal �eld, or the �eldhas not yet been de
rypted. After retrieving a mat
hing tuple, en
Item will
ontain the en
rypted data (that is always stored and manipulated as an arrayof bytes). After the de
ryption, ref will refer to the de
rypted data. Conversely,upon
reation of an a
tual �eld, ref will
ontain the data to be en
rypted; afteren
ryption, en
Item will
ontain the en
rypted data, while ref will be set tonull (so that the garbage
olle
tor
an eventually erase su
h
lear data also fromthe memory). alg stores information about the algorithm used for en
ryptionand de
ryption.An a
tual en
rypted tuple �eld
an be
reated by �rstly
reating a standardKlava tuple �eld (in the example a string) and then by passing su
h �eld to aninstan
e of
lass KCipher:KString s = new KString("foo");KCipher ks = new KCipher(s);Similarly the following
ode
reates an en
rypted string formal tuple �eld (InKlava a formal �eld is
reated by instantiating an obje
t from a Klava
lass fortuple �elds { su
h as KString, KInteger, et
. { through the default
onstru
tor):KString s = new KString();KCipher ks = new KCipher(s);KCipher supplies methods en
 and de
 for respe
tively en
rypting and de-
rypting data represented by the tuple �eld. These methods re
eive, as param-eter, the Key that has to be used for en
ryption and de
ryption, and en
 alsoa

epts the spe
i�
ation of the algorithm. These methods
an be invoked onlyby the
lasses of the pa
kage.The
lass Tuplex extends the standard Klava
lass Tuple, in order to
on-tain �elds of
lass KCipher, besides standard tuple �elds; apart from provid-ing methods for
ryptographi
 primitives, it also serves as a �rst �lter duringmat
hing: it will avoid that ordinary tuples (
ontaining only
lear text data)be mat
hed with en
rypted tuples. On
e tuple �elds are inserted into a Tuplexobje
t, the KCipher �elds
an be en
rypted by means of the method en
ode.For instan
e, the following
odeKString ps = new KString("
lear");KCipher ks = new KCipher(new KString("se
ret"));Tuplex t = new Tuplex();t.add(ps); t.add(ks);t.en
ode();
reates a tuple where the �rst �eld is a
lear text string, and the se
ond is a�eld to be en
rypted, and then a
tually en
rypts the KCipher �eld by
allingen
ode. Also en
ode
an re
eive parameters spe
ifying the key and the algorithmfor the en
ryption; otherwise the default values are used. en
ode basi
ally
allsthe previously des
ribed method en
 on every KCipher tuple �eld, thus ensuringthat all en
rypted �elds within a tuple rely on the same key and algorithm.As for the retrieval operation, this
an be performed either with the newintrodu
ed operations, ink and readk, if they are exe
uted on the lo
al site

KString s = new KString();KString se
 = new KString();KCipher ks = new KCipher(se
);Tuplex t = new Tuplex();t.add(s); t.add(ks);ink(t, l);Print("en
rypted data is: " + se
);or by �rst retrieving the tuple and then manually de
oding en
rypted �elds:... // as abovein(t, l);...t.de
ode();Print("en
rypted data is: " + se
);Noti
e that in both
ases referen
es
ontained in an en
rypted �eld (su
h as se
)are automati
ally updated during the de
ryption. The ink in the former exampleis performed at a remote site but this does not mean that the key travels in thenet: as explained in the previous se
tion, the mat
hing me
hanism is impli
itlysplit into a retrieve phase (whi
h takes pla
e remotely) and a de
ryption phase(whi
h takes pla
e lo
ally).Operations ink and readk are provided as methods in the
lass Klava-Pro
essx, whi
h extends the
lass KlavaPro
ess for standard pro
esses. Klava-Pro
essx also keeps information about the KeyStore of the pro
ess and thedefault keys to be used for en
ryption and de
ryption. Obviously these �eldsare transient so that they are not delivered together with the pro
ess, shouldit migrate to a remote site. All these extended
lasses make the extension ofKlava
ompletely modular: no modi�
ation was made to the original Klava
lasses.Finally, let us observe that, thanks to abstra
tions provided by the JCE, allthe introdu
ed operations are independent of the spe
i�

ryptography me
ha-nism, so both symmetri
 and asymmetri
 en
ryption s
hemes
an be employed.4 An En
rypted Chat SystemThe
hat system we present in this se
tion is simpli�ed, but it implements thebasi
 features that are
ommon to several real
hat systems. The system
onsistsof a ChatServer and many ChatClients and it is a variant of the one presentedin [3℄ with the new
ryptographi
 primitives. When a
lient sends a message,the server has to deliver the message to all
onne
ted
lients. If a message is\private", it will be delivered only to the
lients spe
i�ed in the list sent alongwith the message.Messages are normally delivered through the network as
lear text, so they
an be read by everyone:{ an eavesdropper
an inter
ept the messages and read their
ontents;{ a misbehaving
hat server
an examine
lients' messages.

Moreover, the messages might also be modi�ed so that a
lient believes he isre
eiving messages from another
lient, while it would be reading messages forgedby a \man in the middle".While this is normally a

eptable, due to the open nature of a
hat system,nonetheless there
ould be situations when the priva
y and integrity of messagesis a major
on
ern; for instan
e if two
lients want to engage a private
ommu-ni
ation. This is a typi
al s
enario where
ryptography
an solve the problem ofpriva
y (through en
ryption).In this example we implement a
hat server and a
hat
lient,
apable ofhandling private en
rypted messages:{ when the
lient wants to send a private message to a spe
i�
 re
eiver, iten
rypts the body of the message with a key;{ the server re
eives the message and simply forwards it to the re
eiver;{ the re
eiver will re
eive the message with the en
rypted body and it
ande
rypt it with the appropriate key.Noti
e that
lients that want to
ommuni
ate privately must have agreed aboutthe spe
i�
 key to be used during the private message ex
hange; this is de�nitelythe
ase with symmetri
 keys. As for publi
 and private key en
ryption there
eiver
an simply use its private key, to de
rypt a message en
rypted with itsown publi
 key.A private message is represented by a tuple with the following format:("PERSONAL", <body>, <re
ipient>, <sender>)where <re
ipient> and <sender> are, respe
tively, the lo
ality of the
lient themessage is destined to and the lo
ality of the issuer of the message. Basi
ally,when a
lient wants to send a message with an en
rypted body, it will have toperform the following steps:Tuplex t = new Tuplex() ;KCipher
ryptMessage = new KCipher(message) ;t.add(new KString("PERSONAL"));t.add(
ryptMessage) ;t.add(sele
tedUser) ;t.add(self) ;t.en
ode();out(t, server) ;where message is the a
tual message body.The server handles en
rypted messages by retrieving them through the fol-lowing a
tions (it will deliver the tuple without the �eld <re
ipient>, whi
h isuseless at this time):KString message = new KString() ;KCipher
ryptMessage = new KCipher(message) ;Lo
ality to = new Physi
alLo
ality() ;Lo
ality from = new Physi
alLo
ality() ;

Tuplex t = new Tuplex() ;t.add(new KString("PERSONAL"));t.add(
ryptMessage) ;t.add(to) ;t.add(from) ;in(t, self) ;and it delivers the message to the re
ipient as follows:out(new Tuplex(new KString ("PERSONAL"),
ryptMessage, from), to);On the other hand, the re
eiver, whi
h is always waiting for in
oming mes-sages, will read and de
rypt a message (in one atomi
 step), by means of theoperation ink:KString message = new KString() ;KCipher
ryptMessage = new KCipher(message) ;KString from = new KString() ;Tuplex t = new Tuplex() ;t.add(new KString("PERSONAL")) ;t.add(
ryptMessage) ;t.add(from) ;ink(t, self) ;Print("Re
eived message: " + message);Both the server and the
lients exe
ute these operations within the loop forhandling in
oming messages.5 Con
lusions and Related WorkSin
e tuple spa
e operations
an be used both by lo
al pro
esses and by mo-bile agents, the extended operations, presented in this paper, address both thepriva
y of hosts and of mobile agents. We did not deal with key distributionexpli
itly that
an be seen as an orthogonal problem. Digital signatures
anbe smoothly integrated in our framework and the pattern mat
hing extendeda

ordingly.The work that is
loser to ours is [4℄, whi
h introdu
es the Se
ure Obje
t Spa
e(Se
OS) model. This model is intended to extend Linda with �ne-grained a
-
ess
ontrol semanti
s. In Se
OS all tuple �elds are lo
ked with a key, and ea
h�eld must be lo
ked with a di�erent key. The basi
 idea is that a pro
ess, uponretrieving a tuple,
an see only the �elds for whi
h he owns the
orrespondingkey. The stru
ture of a tuple does not in
uen
e pattern mat
hing: due to an in-trodu
ed subsumption rule, a template
an mat
h also a bigger tuple, and �elds
an be reordered during the mat
hing. [5℄ proposes a similar, but ri
her frame-work, Se
Spa
es, where also resour
e a

ess
ontrol and tuple spa
e partitioningfa
ilities are provided (orthogonal and
omplementary to our approa
h).All these features tend to alter the original Linda model, while our prin
ipalaim is to provide an extension of the Linda
ommuni
ation model that
an besmoothly integrated into the existing features, without signi�
antly
hanging the

original model. Moreover, neither Se
OS nor Se
Spa
es handle
ode mobility,whi
h is one of our main
on
erns.Mobility imposes additional restri
tions on the underlying model, e.g., re-quiring that agents do not
arry private keys during migrations, and
alls foralternatives su
h as expli
it en
ryption and de
ryption me
hanisms and a two-stage pattern mat
hing. Indeed the problem of prote
ting an agent against amali
ious host is even more
ompli
ated than that of prote
ting a host from amali
ious agent (we refer to the papers in [14, 15℄).Referen
es1. K. Arnold, E. Freeman, and S. Hupfer. JavaSpa
es Prin
iples, Patterns and Pra
-ti
e. Addison-Wesley, 1999.2. K. Arnold, B. O'Sullivan, R. S
hei
er, J. Waldo, and A. Wollrath. The Jini Spe
-i�
ation. Addison-Wesley, 1999.3. L. Bettini, R. De Ni
ola, and R. Pugliese. Klava: a Java Framework for Distributedand Mobile Appli
ations. Software { Pra
ti
e and Experien
e, 2002. To appear.4. C. Bry
e, M. Oriol, and J. Vitek. A Coordination Model for Agents Based on Se
ureSpa
es. In P. Cian
arini and A. Wolf, editors, Pro
. 3rd Int. Conf. on CoordinationModels and Languages, number 1594 in LNCS, pages 4{20. Springer-Verlag, 1999.5. N. Busi, R. Gorrieri, R. Lu

hi, and G. Zavattaro. Se
Spa
es: a Data-drivenCoordination Model for Environments Open to Untrusted Agents. In Pro
. ofFOCLASA'02, ENTCS. Elsevier, 2002.6. P. Cian
arini and D. Rossi. Jada - Coordination and Communi
ation for JavaAgents. In J. Vitek and C. Ts
hudin, editors, Mobile Obje
t Systems - Towardsthe Programmable Internet, number 1222 in LNCS, pages 213{228. Springer, 1997.7. R. De Ni
ola, G. Ferrari, and R. Pugliese. Klaim: a Kernel Language for AgentsIntera
tion and Mobility. IEEE Transa
tions on Software Engineering, 24(5):315{330, 1998.8. D. Deugo. Choosing a Mobile Agent Messaging Model. In Pro
. of ISADS 2001,pages 278{286. IEEE, 2001.9. D. Ford, T. Lehman, S. M
Laughry, and P. Wy
ko�. T Spa
es. IBM SystemsJournal, pages 454{474, August 1998.10. D. Gelernter. Generative Communi
ation in Linda. ACM Transa
tions on Pro-gramming Languages and Systems, 7(1):80{112, 1985.11. G. Pi

o, A. Murphy, and G.-C. Roman. Lime: Linda Meets Mobility. In D. Garlan,editor, Pro
. ICSE'99, pages 368{377. ACM Press, 1999.12. T. Sander and C. Ts
hudin. Prote
ting Mobile Agents Against Mali
ious Hosts.In Vigna [14℄.13. Sun Mi
rosystems. Java Cryptography Extension (JCE), Refen
e Guide, 2001.14. G. Vigna, editor. Mobile Agents and Se
urity. Number 1419 in LNCS. Springer,1998.15. J. Vitek and C. Jensen, editors. Se
ure Internet Programming: Se
urity Issues forMobile and Distributed Obje
ts, number 1603 in LNCS. Springer-Verlag, 1999.16. B. Yee. A San
tuary For Mobile Agents. In Vitek and Jensen [15℄, pages 261{273.17. P. Zimmermann. The OÆ
ial PGP User's Guide. MIT Press, 1995.

