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Abstract. This paper considers a steady-state crack propagating along an interface between
dissimilar orthotropic materials under an asymmetric load. Although most of the known results
so far deal with symmetric loading, it has been shown recently that a significant asymmetry in
the applied loading may lead to a pronounced effect in terms of the values of the SIFs. The aim
of the paper is to extend these results from the static case to a moving crack. In particular, we
show the significance of the asymmetry of the loading for computing the energy release rate.

1. Problem formulation and preliminary results
As a model, a semi-infinite crack propagating at a constant, subsonic speed, v, along a perfect
interface between two semi-infinite anisotropic materials is considered. In our model the crack
is said to occupy left hand portion of the interface whereas the materials are bonded along the
remaining region of the interface. The separation point (crack tip) is moving from left to right.
The material occupying the region above the interface will be referred to as material I and the
material occupying the region below the interface as material II. When applying the theory to
orthotropic materials the axes of orthotropy are assumed to be oriented in such a way that
one axis is parallel and another perpendicular to the interface between the two materials. The
results shown in this paper also hold for monoclinic materials if the plane of symmetry is the
plane spanned by the x1 and x5 coordinates. In the absence of body forces, the applied tractions
on the crack faces are self-balanced but distributed arbitrarily (continuously or as point forces)
and move with the same speed, v, in the direction of the crack propagation. An example of this
system for a given loading is shown in Fig. 1. For the purpose of this paper it is not necessary
for oF to vanish at infinity but we do have the condition that ¢® has to vanish in a region of
the crack tip.

To begin with we consider the static case, which has the governing equation defined by

Hooke’s law 5
Uk ..
Oij = Cijklekl = Cijklaixla for 1,7, kal = 1> 27 (1)

where the tensors of stress, o, and strain, €, are related via the stiffness tensor, C, for each
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Figure 1. Geometry
material. In the absence of body forces, the balance equation reads
2
9o+
> on = @)
=1 7Y
Combining (1) and (2) gives the Navier-Stokes equation for an arbitrary anisotropic material
aQ’U,k
C.. L 3
ELL 8.73]‘81'1 ( )

Following [3], a solution for the displacement field is sought in the form u; = A;f(x1 + pz2)
and this, in conjunction with (3), gives the following eigenvalue problem to find the respective
eigenvalues p:

(Q+p(R+R")+p"T)A =0, (4)

where Q, R and T all depend on elastic constants for the given material. The matrix A consists
of the two eigenvectors A;. Knowing this result, Suo in [11] constructed the solution for an
interface crack problem and found expressions for the traction along the interface ahead of the
crack tip and the jump in displacement over the crack. These results were found under the
assumption that the load applied on the crack faces was symmetric.

A similar method has been used to study the steady-state problem. Now the governing
equation also contains an inertial term:

0%y, 0%u;

where p is the material density. Introducing the respective moving coordinate system: (Z; =
x1 — vt, g = x2), this can be rewritten as

~ 0%y,

Ciikl=—=——— =0, 6

M 9% 07 ©)

in the new frame of reference, where C’ijkl = Cijpl — pv%ikéljéu. This allowed Yang [14] to solve
the interface crack problem in an anisotropic bimaterial under symmetrical load prescribed along
the crack surfaces.
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From this stage on, for convenience, the moving coordinate system will be written as 1 = x
and 9 = y. Searching for a solution in the form u; = A;f(x + py), Yang obtain the eigenvalue
problem (4), where the matrix Q now relies on both the material constants and the crack
velocity, while matrices R and T are identical to those in (4). Using the same method as seen
in [11], it was possible to find the physical solution of the problem under the assumption that
the loading on the crack faces was symmetric.

The theory has recently been developed further in [4] where the results were obtained for
asymmetric loading on the crack faces, for a static crack. The method used in this analysis
originates from the approach used in [12] where special weight functions were incorporated into
the fundamental Betti formula. These results have been then extended to a moving crack under
asymmetric loading in [9] and it is the application of these results that we will discuss in the
remainder of this paper.

In order to perform further work, certain information regarding the asymptotic expansions
of the traction, t(z), and displacement jump, d(z), at the crack tip is required. The expansions,
as x — 0, are given by

1 1

t(x) = 2\/%T(a:)K + 2\/%T(ac)Y + O((z)2), (7)
d() = 2wk + 0@y + o((—0)h), 8)

V2 V2m

where K = [K, K] and Y = [V, Y]. Here, K = K; + iK> is the complex stress intensity factor
of the system [1, 13]. The matrices U(x) and T'(x) are given by the following equations

_ 2(H + H) [w(—x)" w(—x)7%

Uu ) ; )
() cosh e 1+ 2¢¢ 1 — 2i¢

T(x) =2 [Wmie,v_vx_ie] .

The matrix H is a bimaterial matrix defined as B; + B;, where B is the surface admittance
tensor, B = ;AL ™!, for each material. The vector w and Dundurs paramater e are found from
the eigenvalue problem [11]

Hw = ¢*™“Hw. (9)

Follwing the work of [2] an expression was also found for the energy release rate at the crack
tip, G, for the static case in [11] in the form

~ wiH+H)w|K|?
B 4 cosh?(me)

(10)

It was noted in [15] that the same method can be used to find the energy release rate for a
moving crack as long as it moves at subsonic speeds. As this paper only considers cracks with
sub-Rayleigh velocities this expression can also be used in our analysis. For orthotropic materials
equation (10) can be simplified further

G = Hll(l _462)‘[(’2 (11)

The Dundurs parameter, 3, and Hj; are both obtained from the bimaterial matrix H (see [9]).

The following section of the paper considers a specific example of loading and materials
to calculate energy release rates using the methods developed in [9]. We concentrate on the
consequence of the asymmetry in the applied load for the major fracture mechanics paramaters,
that is the stress intensity factors and energy release rate, highlighting some effects which cannot
be observable in a dissimilar structure when only symmetric loading is applied.
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2. Specific example

The loading on the crack faces is given by a point force of magnitude F' acting on the upper
crack face a distance a behind the crack tip and two point forces, both of magnitude F'/2, acting
on the lower crack face a distance b away from the point force acting upon the upper crack face.
All forces move at the same speed and in the same direction as the crack propagation. This
system is shown in Fig. 1.

In order to compare the contribution of the different parts of the loading to the overall energy
release rate, we decompose the stress intensity factor, K, into its symmetric and asymmetric
parts, denoted K and K* respectively. Both components are complex numbers.

We now compute the energy release rate for two given materials. The piezoceramic Barium
Titanate is set as material I, with material properties C1; = 120.3GPa, Cy = 120.3GPa,
C1a = 75.2GPa, Cgs = 21GPa and p = 6,020kgm 3. Material II is set as the Aluminium which
has material properties C11 = 107.3GPa, Cy = 107.3GPa, C15 = 60.9GPa, Cgg = 28.3GPa and
p = 2,700kgm—3. For the purpose of the calculations in this paper we set a = 1. The velocity
has been normalised by dividing by cg, the lowest Rayleigh wave speed for either material, which
in this case is the Rayleigh wave speed of Barium Titanate. We present a dimensionless form

of the ERR in our results, where GG is normalised in the following manner: GCéé) /F?. For this

normalisation we take our value of CG%) as that of the material above the crack.

Fig. 2 shows the normalised ERR and Fig. 3 indicates the normalised energy release rates,
G® and G#, corresponding to K and K4, respectively. Both components are normalised by
the total energy release rate corresponding to K = K + K4, given by G.
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Figure 2. The normalised ERR, as a function of the velocity, for different positions of the
self-balanced point forces applied to the crack surfaces, described by the ratio b/a in Fig. 1.

The graph in Fig. 2 clearly shows that ERR increases as the velocity increases for all values
of b/a and approaches infinity as the velocity approaches the Rayleigh wave speed , as expected.
Moreover, the energy release rate is higher for larger values of b/a, that is, as the asymmetry
of the loading increases. Therefore, symmetric loading is energetically more beneficial than any
choice of asymmetric one.

Fig. 3 show that the contribution of the asymmetric part of the loading to the overall energy
release rate is small compared to the contribution of the symmetric part for the lower crack
velocities. However, when the crack is moving at velocities close to the Rayleigh wave speed
the asymmetric nature of the loading begins to play a more crucial role in the calculations.
This fact is also highlighted in the left hand graph of Fig. 4. Interestingly, the energy release
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rate corresponding to the symmetric part of the loading is higher than the overall ERR for
the physical loading, apart from when the crack velocity is very close to the Rayleigh wave
speed. The behaviour of the symmetric part of G near the Rayleigh wave speed is particularly
noteworthy as it can be seen that for asymmetric loading (when b/a > 0) the ERR stops
increasing and starts decreasing. Note that, for the symmetrical load (b/a = 0), the energy
release does not depend on the crack speed. This was previously observed for isotropic and

anisotropic bimaterials in [13, 14].
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Figure 3. a) The ratio G° /G, as a function of velocity, for different values of b/a, with particular
attention being given to the behaviour near cg. b) The ratio G4 /G with a different scale on the

vertical axis.
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Figure 4. a) The ratio G4/G®, as a function of the velocity, for different values of b/a with
particular attention being given to the behaviour near cg. b) The ratio K3/K, as a function
of thevelocity, for different values of b/a. c¢) The value of § as a function of the velocity.

Fig. 4a shows the ratio of the mode 2 contribution of the stress intensity factor, K, to the
mode 1 component. For the symmetric case the mode 2 component is 0 for all values of the
velocity, as one would expect, whereas for asymmetric symmetry the ratio is initially negative
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and then at a certain velocity the sign of the ratio changes. This is connected to the fact that
for a determinate value of the propagation speed there is a change in the sign of the Dundurs
parameter, 5 (which only depends on the elastic constants of the materials). It is therefore
possible to obtain a characteristic value for v, depending only on the material properties. This
may lead to a possible change in the fracture mechanism or indicate a possible redirection of
the interface crack propagation, for example kinking or branching. Note that there are other
investigations, both theoretical and experimental, demonstrating an existence of a specific sub-
Rayleigh velocity which is related to the stability of the crack propagation [5, 6].

3. Conclusions

In this paper we have analysed some results concerning the ERR and SIF for a crack propagating
along the interface between anisotropic materials with a constant speed, under asymmetric,
self-balanced loading acting upon the crack faces. For small velocities the results agree with
those obtained for the stress intensity factors for the static crack in [4]. In particular, the load
asymmetry influences the critical loading magnitude. Moreover, it has been shown that the
asymmetry may play an important role for a moving crack, where the SIF changes its sign at
a certain velocity depending on the material parameters but independent of the asymmetry of
the load. However,this effect could only be observered in the presence of the asymmetry and
may be important when analysing possible crack kinking or branching.

Acknowledgments

LP, and GM acknowledge support from the FP7 IAPP project INTERCER?2’, project reference
PIAP-GA-2011-286110-INTERCER2. LM gratefully thanks financial support from the Italian
Ministry of Education, University and Research in the framework of the FIRB project 2010
”Structural mechanics models for renewable energy applications.

References
[1] Hwu C 1993 Explicit solutions for collinear interface crack problems Int. J. Solids Struct. 30 301-312
[2] Irwin G 1957 Analysis of stresses and strains near the end of a crack traversing a plate J. Appl. Mech. 24
361-364
[3] Lekhnitskii S G 1963 Theory of elasticity of an anisotropic body (San Francisco: Holden-Day)
[4] Morini L, Radi E, Movchan A B and Movchan N V 2012 Stroh formalism in analysis of skew-symmetric and
symmetric weight functions for interfacial cracks Math. Mech. Solids. 1-18
[6] Obrezanova O, Willis J R and Movchan A B 2002 Stability of an advancing crack to small perturbation of
its path J. Mech. Phys. Solids 50 57-80
[6] Obrezanova O, Willis J R and Movchan A B 2002 Dynamic stability of a propagating crack J. Mech. Phys.
Solids 50 2637-2668
[7] Piccolroaz A, Mishuris G and Movchan A B 2007 Evaluation of the Lazarus-Leblond constants in the
asymptotic model for the interfacial wavy crack J. Mech. Phys. Solids. 55 1575-1600
[8] Piccolroaz A, Mishuris G and Movchan A B 2009 Symmetric and skew-symmetric weight functions in 2D
perturbation models for semi-infinite interfacial cracks J. Mech. Phys. Solids. 57 1657-1682
[9] Pryce L, Morini L. and Mishuris G 2013 Weight function approach to study a crack propagating along a
bimaterial interface under asymmetric loading in orthotropic solids To be submitted for publication. arXiv
No.1305.0486
[10] Stroh A 1957 Steady state problems in anisotropic elasticity Math. Phys. 41 77-103
[11] Suo Z 1990 Singularities, interfaces and cracks in dissimilar anisotropic media Proc. R. Soc. Lond 427 331-358
[12] Willis J R and Movchan A B 1995 Dynamic weight function for a moving crack I Mode I Loading J. Mech.
Phys. Solids 43 319-341
[13] Wu K C 1990 Stress intensity factors and energy release rate for interfacial cracks between dissimilar
anisotropic materials J. Appl. Mech. 57 882-886
[14] Yang W, Suo Z and Shih C F 1991 Mechanics of dynamic debonding Proc. R. Soc. Lond 433 679-697
[15] Yu H H and Suo Z 2000 Intersonic crack growth on an interface Proc. R. Soc. Lond 456 223-246





