URL: http://www.elsevier. nl/loca{:e/entcs/volumeéQ .html 14 pages

X-KLAIM and KLAVA:
Programming Mobile Code

Lorenzo Bettini, Rocco De Nicola, Rosario Pugliese

Dipartimento di Sistemi e Informatica, Universita di Firenze
{bettini,denicola,pugliese}@dsi.unifi.it

Abstract

Highly distributed networks have now become a common infrastructure for a new
kind of wide-area distributed applications whose key design principle is network
awareness, namely the ability to deal with dynamic changes of the network en-
vironment. Network-aware computing has called for new programming languages
that exploit the mobility paradigm as the basic interaction mechanism. In this pa-
per we present the KLAIM (Kernel Language for Agent Interaction and Mobility)
framework for programming mobile code applications, namely the X-KLAIM pro-
gramming language and the Java-based run-time system KLAVA. In particular, we
illustrate how KLAVA handles mobile code. Finally, an example is shown that is
implemented using this framework.

1 Introduction

Highly distributed networks have now become a common infrastructure for
many applications which use network facilities to access remote resources and
services. The Internet and the World Wide Web have surely contributed to
this growth, making a network connection available to everyone, not confined
to research laboratories or large enterprizes. Both programmers and users
have to deal with a new kind of wide-area distributed applications whose key
design principle is network awareness, namely the ability to deal with dynamic
changes of their network environment.

Network-aware computing has called for new programming languages and
paradigms that support migratory applications as a new model of interactions
among clients and servers. Mobile code, i.e. software that can be sent to remote
sites and can be executed on arrival, has been advocated as the basic paradigm
to support network-aware programming (see, e.g., [23,12]). In the literature
the term mobility is used to denote different mechanisms, ranging from simple
ones, which only supply the ability of downloading code for execution (e.g. [3]),
to more sophisticated ones, which support migration of entire computations
(e.g. [25,1,21]).

(©2002 Published by Elsevier Science B. V.

AL L L LAV J4A SAAd.

In this paper we present the framework, which relies on Java, for pro-
gramming in KLAIM, where mobile code applications and their interaction
strategies can be naturally programmed. KrLAM (Kernel Language for Agent
Interaction and Mobility) [14] is an experimental kernel language specifically
designed to program distributed systems composed of several components in-
teracting through multiple tuple spaces and mobile code. X-KLAIM (eXtended
KrAM) [6] is an imperative programming language obtained by extending
KrAiMm with variable declarations, operations with time-out, assignments, con-
ditionals, sequential and iterative process composition. The implementation
of KLAIM consists of two layers:

* a Java package, called KLAVA, which contains all the classes that implement
the X-KLAIM runtime system and operations;

e the X-KLAIM compiler that translates X-KLAIM programs into Java pro-
grams that use the package KLAVA.

The structure of the KLAIM framework is depicted in Figure 1. X-KLAIM
and KLAVA are available on line at http://music.dsi.unifi.it. KLAVA is
briefly described in [6] and presented in detail in [4,7].

o R Klava

X-Klaim Java K [package Klava] N

program X-Klaim program K \

—_—= . 1

compiler :’ ! Java
; javac | application Java
Java ' compiler , interpreter

program N /

Fig. 1: The framework for X-KLAIM.

Let us briefly show how the framework can be used. If X-KLAIM source
code is stored in a file called foo.xklaim, it can be compiled by means of the
X-KLAIM compiler and the result will be the file foo. java. This last file can
be compiled and executed by means of the standard jdk commands. When
the program is executed, the host and the port number of the Net server,
which is a class in the package KLAVA, must also be specified. This server
keeps track of the physical localities of the nodes which are part of the net
and must be started before any other node. Further details will be supplied
in the next sections. Thus, X-KLAIM can be used to write the highest layer
of distributed applications while KLAVA can be seen both as a middleware for
X-KLAIM programs and as a Java framework for programming according to
the KLAIM paradigm.

The rest of the paper is organized as follows. Section 2 introduces the
language KLAIM and its implementation X-KLAIM. The Java package Klava
and its general architecture are presented in Section 3, while the features
specifically concerning code mobility are described in Section 4. In Section 5
we show how to program a simplified news gatherer that relies on mobile agents

2

AL L L LAV J4A SAAd.

for retrieving information on remote sites, in particular we will implement this
example both in X-KLAIM and in KLAVA. Section 6 draws some conclusions
and hints future work.

2 An overview of Klaim and X-Klaim

X-KrLAM (eXtended KLAIM) [6] is an experimental programming language
specifically designed to program distributed systems composed of several com-
ponents interacting through multiple tuple spaces and mobile code. It is based
on the kernel language KrLAIM [14] and is inspired by the coordination lan-
guage Linda [18], hence it relies on the concept of tuple space. A tuple space
is a multiset of tuples; these are containers of information items, called fields.
There are two kinds of fields: actual fields, i.e. expressions, processes, local-
ities, constants, identifiers, and formal fields, i.e. variables. Syntactically, a
formal field is denoted with !ide, where ide is an identifier.

Tuples are anonymous and content-addressable and pattern-matching is
used to select tuples in a tuple space. Two tuples match if they have the same
number of fields and corresponding fields match: a formal field matches any
value of the same type, and two actual fields match only if they are identical
(but two formals never match). For instance, if Val is an integer variable, then
tuples (“foo”, “bar”,!Val) and (“foo”, “bar”,300) do match. After matching,
the variable of a formal field gets the value of the matched field: in the previous
example, after matching, Val will contain the integer value 300.

In Linda there is only one global shared tuple space; KLAIM extends Linda
by handling multiple distributed tuple spaces. Tuple spaces are placed on
nodes (or sites), which are part of a net. Each node contains a single tuple
space and processes in execution, and can be accessed through its locality.
There are two kinds of localities: physical localities are the identifiers through
which nodes can be uniquely identified within a net; logical localities are sym-
bolic names for nodes. A reserved logical locality, self, can be used by pro-
cesses to refer to their execution node. Physical localities have an absolute
meaning within the net, while logical localities have a relative meaning de-
pending on the node where they are interpreted and can be thought as aliases
for network resources. Logical localities are associated to physical localities
through allocation environments, represented as partial functions. Each node
has its own environment that, in particular, associates self to the physical
locality of the node.

KLAIM processes may run concurrently, both at the same node or at dif-
ferent nodes, and can execute the following operations over tuple spaces and
nodes.

 in(¢)Ql: evaluates tuple ¢ and looks for a matching tuple ¢’ in the tuple
space located at [. Whenever a matching tuple ' is found, it is removed
from the tuple space. The corresponding values of ¢’ are then assigned to
the formal fields of ¢ and the operation terminates. If no matching tuple is

3

AL L L LAV J4A SAAd.

found, the operation is suspended until one is available.

 read(t)@Ql: differs from in(¢)@[only because the tuple ¢’ selected by pattern-
matching is not removed from the tuple space located at [.

e out(t)@[: adds the tuple resulting from the evaluation of ¢ to the tuple
space located at [.

 eval(P)Q[: spawns process P for execution at [.

* newloc(l): creates a new node in the net and binds its physical locality
to [. The node can be considered as a “private” node because it can be
accessed by the other nodes only if the creator communicates the value of
variable [, which is the only way to access the fresh node.

During tuple evaluation, expressions are computed and logical localities
are translated into physical ones. Evaluating a process implies substituting
it with its closure (i.e. the process along with the environment of the node
where the evaluation is taking place). This means that, e.g., out(P)Ql adds
the closure of P to the tuple space located at [, while eval(P)@[sends P,
not its closure, for execution at [. Therefore, if node s; performs out(P)@Qss,
then, when P is executed at so, self will actually refer to s;. This means that
static scoping is used. On the contrary, if s; performs eval(P)@s,, no closure
is sent: P will refer to s, when using self and dynamic scoping is used.

X-KLAIM extends KLAIM with a high level syntax for processes: it supplies
variable declarations, operations enriched with time-out, assignments, condi-
tionals, sequential and iterative process composition. Time-outs are added
by supplying variants of the KLAIM blocking operations (read and in) that
limit the waiting to a fixed amount of time. When operating over Wide Area
Networks, this is necessary to deal with failures and performance degradation.

The X-KLAIM complete syntax can be found on-line, at the KLAIM site:
http://music.dsi.unifi.it, while in Table 1 we report only the part con-
cerning processes. We just briefly recall the more relevant features. If a
timeout (expressed in milliseconds) is specified for an operation, through the
keyword within, we get a boolean expression that can be tested in order to
establish if the operation succeeded:

if in(!z, ly)@l within 2000 then ... success! else ... timeout occurred endif

Comments start with the symbol #, and local variables of processes are de-
clared in the declare section of the process definition. Standard base types
are available (str, int, etc.) as well as X-KLAIM typical types, such as loc
for locality variables, process for process variables and ts, i.e. tuple space,
for implementing data structures by means of tuple spaces, e.g. lists, that can
be accessed through standard tuple space operations. Logical localities are
declared by using the type locname.

I/O operations in X-KLAIM are implemented as tuple space operations.
For instance the logical locality screen is actually attached to the output
device. Hence, operation out(“foo\n”)@screen displays the string “foo\n”

4

AL L L LAV J4A SAAd.

RecProcDefs rec id formalparams procbody

rec id formalparams extern
RecProcDefs ; RecProcDefs

formalParams e | [paramlist]
paramlist == €] id: type | paramlist , paramlist
procbody = declpart begin proc end
declpart u= €| declare decl
decl ;= comnst id := expression
| locname id
| var idlist : type
| decl , decl
idlist w= id | idlist , idlist
proc u= KAction | nil
| id := expression | proc ; proc
| if expression then proc else proc endif
| while expression do proc enddo
| if KAction within expression then proc else proc endif
| procCall | call id | (proc)
KAction z= out(tuple)@id | in(tuple)@id | go@id
| eval(proc)@id | read(tuple)@id | newloc(id)
tuple = expression | proc | ! id | tuple , tuple
procCall x= id (actuallist)
actuallist = €| expression | proc | id | actuallist , actuallist
id = string
type := int | str | loc | process | ts | bool

Table 1: X-KLAIM process syntax.

on the screen. X-KLAIM also supplies strong mobility by means of action
go@/ [5] that makes an agent migrate to [and resume its execution at [from
the instruction following the migration.

The KrpAmm and X-KrAmM Linda-like communication paradigm fits for
coordinating heterogeneous, distributed and mobile applications. The un-
derlying coordination model permits full space uncoupling of communicating
objects because it requires a single interface: the operations over tuple spaces.
This approach is also called flow-of-objects [2] as opposed to method invo-
cation, which requires many interfaces for the operations supplied by remote
objects. The Linda asynchronous communication model, known as Generative
Communication [18], also permits time uncoupling, because it makes tuples’
life time independent of the producer process’ life time, and destination un-
coupling, because the creator of a tuple is not required to know the future use
or the destination of that tuple. Moreover, message selection is associative
(by means of pattern matching) and anonymous, thus only the structure of a
message has to be known.

3 The Klava package and its architecture

Krava (KLAIM in Java) is a Java package which contains all Java classes for
implementing the runtime system support for X-KLAIM operations. KLAVA
can be seen both as a middleware for X-KLAIM programs and as a Java
framework for programming according to the KLAIM paradigm.

b}

AL L L LAV J4A SAAd.

Java [3] has been chosen as the implementation language for X-KrLAIM
because it supplies a natural support for programming distributed applica-
tions with mobile code. Indeed, Java supplies architectural independence, i.e.
on-line portability [11], class libraries for network programming, tools for syn-
chronization, dynamic class loading and customizable security mechanisms.

A KLAVA net is implemented by the KLAVA net server, which coordinates
KLAVA nodes that are part of the net, by letting them communicate with each
other. In order to become part of a KLAVA net, a node has to log into the net
server by specifying its own physical locality, through which it will be uniquely
identified and addressed within that net.

In the rest of this section, we shall present the “specializable” classes of
the package Klava. Some of these classes can already be used as they are
(e.g. class Tuple), while others have to be specialized through inheritance and
methods overriding (e.g. class KlavaProcess).

The class Tuple provides methods for handling tuples (creating a tuple,
adding elements to a tuple, getting an element of a tuple, etc.). A tuple
can be created by passing a Vector object, containing all tuple elements, to
the Tuple constructor, or by first creating an empty tuple and then adding
elements using the method add(Object o). To express a formal field, a Class
object can be used. For instance, to create a tuple with a formal field of type
String and an actual field of type Integer with value 10, one can write

Tuple t1 = new Tuple((new String()).getClass(), new Integer(10));
or

Tuple t1 = new Tuple(Class.forName("java.lang.String"), new Integer(10));

Another method of the class Tuple is match, that gets a tuple as parameter
and checks the matching with the current tuple. For instance, the previous
tuple matches the following one:

Tuple t2 = new Tuple(new String("Hello"), new Integer(10));
t2.match(t1) ;

match also performs the binding of the formals; after matching, the
value bound to a formal field can be retrieved using the method Object
getItem(int index).

The interface TupleItem can also be used for handling tuple fields. Its
methods are used by the matching algorithm: isFormal to test whether a
tuple field is a formal, setValue to update a formal field with an actual value,
and equals to test whether two actual fields match. As usual, the semantics
of these methods must be specified by the classes that implement the interface.
The package Klava makes available some classes for standard data types that
implement this interface: KString, KInteger, KBoolean and KVector. It
is assumed that an object of a class implementing TupleItem that has been
created with the default constructor (i.e. with no parameters) is a formal. It is
not necessary to use getItem to retrieve the value of formals: if TupleItems

AL L L LAV J4A SAAd.

are used as formal fields, fields values are automatically updated by means
of the method setValue. Of course, since types are used for matching, a
KString will never match a String.

The class TupleSpace provides methods to place tuples in and retrieve
tuples from a tuple space. In particular, operations out, in, read and their
non-blocking versions are implemented as methods of this class.

In Krava, localities (both logical and physical) are nothing but strings:
the only Internet address that has to be known is the address (and port) of the
host in which the net server is running. There are three classes that handle
localities. The abstract class Locality is the base class. The other two classes
LogicalLocality and PhysicalLocality are derived from this base class. A
variable which represents a locality should always be declared as a Locality
so that polymorphism can be used extensively. Physical localities are not IP
addresses, but are simply the names with which Node objects register them-
selves into the Net object. In this way we have an additional abstraction level
and a Node is independent from its IP address. All locality related classes
implement the interface TupleItem, and thus localities can be used in tuples.

The class Node implements a node of a KLAVA net. A Node object contains
a single tuple space and exports methods to access this tuple space. These
methods will redirect operations to the corresponding methods of the tuple
space of the node. The difference is that these methods also take a locality
as parameter. Additionally, the class Node also provides the method newloc,
that creates a new node in the net and returns its locality, and the method
eval, that spawns a new process for execution. A Node object must log in
a Net server, and hence has to know the exact IP address of the latter (host
and port number). It must also specify its own physical locality; in case the
proposed locality is already in the net, the net server will refuse registering
the node. Two nodes can be started on the same machine, as long as they
specify two different physical localities; indeed a physical locality is just a
name, and not an Internet address. Every Node has two fields: self (of class
Logicallocality) and here (of class PhysicalLocality). here represents
the physical locality of the node within the net. The environment of a Node
can be specified with the method void addToEnv(String logLoc, String
phyLoc).

Due to network latency bandwidth, network communications can be quite
slow, hence, retrieving information can require more time than one is willing
to wait. Moreover, the absence of a tuple could block a process executing
an in/read operation. To tackle these problems, a time-out can be used:
if this expires before an operation returns, then a KlavaTimeOutException
exception will be thrown. Time-outs can thus be handled in a try...catch
block. For instance, a process can execute

AL L L LAV J4A SAAd.

try {
in(s, locl, 5000) ; // no more than 5 secs
System.out.println("I found " 4+ s + " at locality " + locl) ;

} catch (KlavaTimeOutException toe) {
System.out.println("TIME QUT!!!") ;

-

Nodes communicate through messages and streams (connected to sockets).
The class NodeMessage implements messages exchanged in the KLAVA system
(the content of a message can be any serializable Object). A message also
contains the physical locality of the sender and of the receiver.

The class KlavaProcess is an abstract class that must be derived to cre-
ate processes. The derived classes must implement the method execute that
will be invoked when a process is executed (just like run for threads). A
process must be executed within a node, which makes its execution environ-
ment [12]. To start a process within a new Node, one can invoke the method
addProcess(KlavaProcess P), as follows:

Node n = new Node(...) ;
n.start () ;
n.addProcess(new myProc()) ;

KlavaProcess also offers all the methods to access tuple spaces; these
methods transparently call the homonymous methods of the class Node. Even
processes can own an allocation environment for localities. When a logical
locality must be translated into a physical one, first the environment of the
process (if it has one) is used, and then, if the interpretation fails, the environ-
ment of the node is used. Thus sending a closure (as explained in Section 2)
consists in sending a process after setting its environment.

The class Net implements the server that manages a KLAIM net. A Net
object keeps track of the physical localities of the nodes which are part of
the net. It is a multithreaded server and can also be seen as a name registry
server. There is exactly one net server for every KLAVA net. When a Net
object receives a login request from a node, a new NodeHandler thread is
spawned to handle the connection. NodeHandler will be a proxy for the node
within the net and will handle the delivery of node’s messages to other nodes;
this form of inter node communication is depicted in Figure 2, where Nodes
is a table mapping node physical localities into NodeHandlers.

In this scenario communications take place indirectly, through the net
server. Direct connections are also allowed: a node can ask the net server for
the IP address of another node and then it can establish a direct connection
to that node; in this case messages are delivered to the receiving node directly.
Note that in case of firewalls or network restrictions the access to a remote
site may be allowed only through a net server: e.g., an applet, by default,
can only open a network connection to the computer it has been downloaded

8

AL L L LAV J4A SAAd.

Net
Nodes
21 \
A’s NodeHandler Mess. B B's NodeHandler
3

] \
/ 4\
Node A Node

Fig. 2: Inter node communication through NodeHandlers.

from. If on the latter computer there’s a net server running, the applet is still
able to communicate, indirectly, to all the nodes and, possibly, applets that
are part of that KLAVA net. An example of an applet built with KLAVA is
available at http://music.dsi.unifi.it/klava_applet.

4 Code Mobility in Klava

Processes can be sent along with a message and executed at destination sites,
where however their Java classes (i.e. their code) may be unknown. It is
necessary to make such a code available for execution at remote hosts. Instead
of an on-demand approach (where the code is requested to the server from
which an agent is downloaded when it is needed), we prefer to collect all the
code that a process needs, before dispatching it. This approach better complies
with the mobile agents paradigm: during a migration, an agent will bring all
the information that it may need for later executions. Moreover, our choice
has the advantage of simplifying the handling of disconnected operations [22].

Therefore, a process must be sent along with its class binary code, and with
the class code of all the objects the process uses. Clearly, only the code of user
defined classes has to be sent, as the other code (e.g. Java and Klava classes)
is common to every KLAVA application. The names of user defined classes
can be retrieved by means of class introspection (Java Reflection API). Just
before dispatching a process to a remote site, a recursive procedure is called
for collecting all classes that are used by the process when declaring data
members, objects returned by or passed to a method/constructor, exceptions
thrown by methods, inner classes, the interfaces implemented by its class, the
base class of its class. The byte code of these classes is then sent, along with
the migrating process.

All the nodes that are willing to accept remote processes (due to security
problems, a node may refuse accepting remote processes for execution) must
have a custom class loader: a NodeClassLoader, provided in the Klava pack-

9

AL L L LAV J4A SAAd.

age. When a class code is needed, if the class loader cannot find the code
among the local packages, it will try to find it in its own local table of class
binary data. Therefore, when a process is received from the network, before
using it, the node must add the class data (received along with the process)
to its class loader’s table.

Due to security concerns Java does not allow dynamic inspection of byte
code stack; this makes impossible to save the execution state for later use.
For this reason, KLAVA can only permit weak mobility of agents that have to
be restarted after the migration, while X-KLAIM, by relying on a source level
transformation [5], also provides strong mobility by means of go@l operation
(the mobile agent automatically resumes execution from the point after the
migration). A more detailed description of forms of mobility can be found in
[13,20].

Downloading code from the net exposes the executing machine to se-
curity risks, since this code could execute dangerous operations that could
damage the system or the other executing processes. Klava provides a
KlavaSecurityManager, which, if activated by the node, does not allow pro-
cesses, downloaded from the net, or sent by remote nodes, to execute opera-
tions on system resources (such as files, and system properties). We are going

to implement new security mechanisms that exploit the new Java security
model [19].

5 An example of mobility: a News Gatherer

In this section we will show how to program a news gatherer, that relies on
mobile agents for retrieving information on remote sites, using our framework.
In particular we will implement this example both in X-KLAIM and in KLAVA.
We assume that some data are distributed over the nodes of a KLAVA net and
that each node either contains the information we are searching for, or the
locality of the next node to visit in the net. This example is taken from [14],
and in KLAIM can be specified! as shown in Listing 1.

NewsGatherer(item, retLoc) =
read (item, litem Val)Qself.out(item Val)@QretLoc.nil
I
read(item, !nextLoc)Qself.eval(NewsGatherer(item, retLoc))@QneztLoc.nil

Listing 1: The news gatherer specified in KLAIM.

The agent NewsGatherer tries to read one of two possible tuples: the first
tuple contains information we are searching for and the second one the locality
of the next node to visit. In the first case, the agent communicates the result

L P, + P, spawns both processes P; and P, but only one of the two will continue its
execution.

10

AL L L LAV J4A SAAd.

to its owner and terminates, in the other case it simply spawns itself to the
next node (Figure 3).

Application Sl

(“item", s3)

s3 (“item", "value")

(item", 2)

Fig. 3: The news gatherer example (ng is the news gatherer agent).

The implementations in X-KLAIM and in KLAVA are reported, respec-
tively, in Listing 2 and 3. If the result of the query is a locality, a new instance
of the process NewsGatherer is remotely spawned by means of an eval. We
use a timeout to test the presence of the tuple containing the information: if
this is not found within two seconds, we retrieve the locality of the next node
to visit. Notice that, also in KLAVA, for spawning a new process on a remote
site, only an eval invocation is required: the underline system will take care of
serializing the process through the network together with code and the code of
all the classes it will use and the values of its fields. The two implementations
are quite similar, and indeed the code generated by the X-KLAIM compiler is
not much different from the one shown in Listing 3.

rec NewsGatherer| item : str, retLoc : loc]
declare
var itemVal : str ;
var nextLoc : loc
begin
if read(item, litemVal)@self within 2000 then
out(itemVal)@retLoc
else
read(item, InextLoc)@self ;
eval(NewsGatherer(item, retLoc))@nextLoc
endif
end

Listing 2: The implementation of the news gatherer in X-KLAIM.

In X-KLAIM strong mobility can be exploited, thus the same example can
be implemented by using the go@[operation, as illustrated in Listing 4.

11

AL L L LAV J4A SAAd.

class NewsGatherer extends KlavaProcess {
protected KString itemVal ;
protected KString item ;
protected Locality retLoc ;

public NewsGatherer(KString item, Locality retLoc) {
this.item = item ;
this.retLoc = retLoc ;

}

public void execute() throws KlavaException {
itemVal = new KString();
try {
read(item, itemVal, self , 2000);
out(itemVal, retLoc);
} catch (KlavaTimeOutException e) {
Locality nextLoc = new PhysicalLocality();
read(item, nextLoc, self);
eval (new NewsGatherer(item, retLoc), nextLoc);

}
}
}

Listing 3: The implementation of the news gatherer in KLAVA.

rec NewsGatherer[item : str, retLoc : loc |
declare
var itemVal : str ;
var nextLoc : loc ;
var found : bool
begin
found := false;
while not found do
if read(item, !litemVal)@self within 2000 then
out(itemVal)@retLoc ;
found := true ;
else
read(item, InextLoc)@self ;
go@nextLoc
endif
enddo
end

Listing 4: X-KLAIM implementation exploiting strong mobility.

6 Conclusions and Future Work

We presented the KLAIM framework. The underlying programming model
enables space uncoupling, time uncoupling and destination uncoupling, and
asynchronous, associative and anonymous communication. We believe that
the KrnamM framework is suitable for programming distributed applications,
mobile agents, and, more in general, mobile code. An interesting spin-off of

12

AL L L LAV J4A SAAd.

our approach is that since it is based upon the KrLAIM formal model, some
properties of systems can be formally established. Indeed, a modal logic for
KLAIM is being studied [17] and a system to automatically prove KLAIM
system properties is under development.

A number of extensions have been made to the original KLAIM model
of computation. In [15,16], KLAIM is extended with a capability-based type
system that provides direct support for expressing and for using policies that
control accesses to resources and data. In [8], KLAIM is enriched in order to
transform the underlying flat model into a hierarchical model, that permits
modelling structured nets, and in [9,10] node connectivity is made explicit.
We plan to implement all these new features in the near future.

References

[1] Acharya, A., M. Ranganathan and J. Saltz, Sumatra: A Language for Resource-
aware Mobile Programs, in: Vitek and Tschudin [24], pp. 111-130.

[2] Arnold, K., E. Freeman and S. Hupfer, “JavaSpaces Principles, Patterns and
Practice,” Addison-Wesley, 1999.

[3] Arnold, K., J. Gosling and D. Holmes, “The Java Programming Language,”
Addison-Wesley, 2000, 3rd edition.

[4] Bettini, L., “Progetto e Realizzazione di un Linguaggio di Programmazione per
Codice Mobile,” Master’s thesis, Dip. di Sistemi e Informatica, Univ. di Firenze
(1998).

[5] Bettini, L. and R. De Nicola, Translating Strong Mobility into Weak Mobility,
in: Proc. of the Fifth IEEE Int. Conf. on Mobile Agents (MA 2001), 2001, to
appear.

[6] Bettini, L., R. De Nicola, G. Ferrari and R. Pugliese, Interactive Mobile Agents
in X-KLAIM, in: P. Ciancarini and R. Tolksdorf, editors, Proc. of the 7th Int.
IEEE Workshops on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE) (1998), pp. 110-115.

[7] Bettini, L., R. De Nicola and R. Pugliese, KLAVA: a Java Framework for
Distributed and Mobile Applications, Tech. Report, Dip. Sistemi e Informatica,
Univ. di Firenze (2001), available at
http://music.dsi.unifi.it/papers.html.

[8] Bettini, L., M. Loreti and R. Pugliese, Structured Nets in KLAIM, in: Proc.
of ACM SAC 2000, Special Track on Coordination Models, Languages and
Applications (2000), pp. 174-180.

[9] Bettini, L., M. Loreti and R. Pugliese, Modelling Node Connectivity in
Dynamically Evolving Networks, in: Proc. of CONCOORD, Int. Workshop on
Concurrency and Coordination, ENTCS 54, 2001.

13

AL L L LAV J4A SAAd.

[10] Bettini, L., M. Loreti and R. Pugliese, An Infrastructure Language for Open
Nets, in: Proc. of ACM SAC 2002, Special Track on Coordination Models,
Languages and Applications, 2002, to appear.

[11] Cardelli, L., Mobile computation, in: Vitek and Tschudin [24], pp. 3-6.

[12] Carzaniga, A., G. Picco and G. Vigna, Designing Distributed Applications with
Mobile Code Paradigms, in: R. Taylor, editor, Proc. of the 19th Int. Conf. on
Software Engineering (ICSE ’97) (1997), pp. 22-33.

[13] Cugola, G., C. Ghezzi, G. Picco and G. Vigna, Analyzing Mobile Code
Languages, in: Vitek and Tschudin [24].

[14] De Nicola, R., G. Ferrari and R. Pugliese, KLAIM: a Kernel Language for
Agents Interaction and Mobility, IEEE Transactions on Software Engineering
24 (1998), pp. 315-330.

[15] De Nicola, R., G. Ferrari and R. Pugliese, Types as Specifications of Access
Policies, in: J. Vitek and C. Jensen, editors, Secure Internet Programming:
Security Issues for Distributed and Mobile Objects, number 1603 in LNCS
(1999), pp. 117-146.

[16] De Nicola, R., G. Ferrari, R. Pugliese and B. Venneri, Types for Access Control,
Theoretical Computer Science 240 (2000), pp. 215-254.

[17] De Nicola, R. and M. Loreti, A Modal Logic for KvLAIM, in: T. Rus, editor,
Proc of Algebraic Methodology and Software Technology, 8th Int. Conf. AMAST
2000, number 1816 in LNCS (2000), pp. 339-354.

[18] Gelernter, D., Generative Communication in Linda, ACM Transactions on
Programming Languages and Systems 7 (1985), pp. 80-112.

[19] Gong, L., “Inside Java 2 platform security: architecture, API design, and
implementation,” Addison-Wesley, Reading, MA, USA, 1999.

[20] Hohlfeld, M. and B. Yee, How to Migrate Agents (1998), available at
http://wuw.cs.ucsd.edu/~bsy.

[21] Lange, D. and M. Oshima, “Programming and Deploying Java Mobile Agents
with Aglets,” Addison-Wesley, 1998.

[22] Park, A. and P. Reichl, Personal Disconnected Operations with Mobile Agents,
in: Proc. of 3rd Workshop on Personal Wireless Communications, PWC’98,
Tokyo, 1998.

[23] Thorn, T., Programming Languages for Mobile Code, ACM Computing Surveys
29 (1997), pp. 213-239, also Technical Report 1083, University of Rennes
IRISA.

[24] Vitek, J. and C. Tschudin, editors, “Mobile Object Systems - Towards the
Programmable Internet,” Springer, 1997.

[25] White, J. E., Mobile Agents, in: J. Bradshaw, editor, Software Agents (1996).

14

