
A Modal Logi
 for KlaimRo

o De Ni
ola and Mi
hele LoretiDipartimento di Sistemi e Informati
a, Universit�a di Firenzee-mail: fdeni
ola,loretig�dsi.unifi.itAbstra
t. Klaim is an experimental programming language that sup-ports a programming paradigm where both pro
esses and data
an bemoved a
ross di�erent
omputing environments. The language relies onthe use of expli
it lo
alities, and on allo
ation environments that asso-
iate logi
al lo
alities to physi
al sites. This paper presents a temporallogi
 for spe
ifying properties of Klaim programs. The logi
 is inspiredby Hennessy-Milner Logi
 (HML) and the ��
al
ulus, but has novel fea-tures that permit dealing with state properties to des
ribe the e�e
t ofa
tions over the di�erent sites. The logi
 is equipped with a
onsistentand
omplete proof system that enables one to prove properties of mobilesystems.Keywords: Mobile Code Languages, Temporal Logi
s of Programs, Coordina-tion Models.1 Introdu
tionThe in
reasing use of wide area networks, espe
ially the World Wide Web, is
alling for new programming paradigms and for new programming languagesthat model intera
tions among
lients and servers by means of mobile agents;these are programs that are transported and exe
uted on di�erent hosts. Klaim(a Kernel Language for Agents Intera
tion and Mobility) [7℄ is one of su
h.Klaim
onsists of
ore Linda [3, 4℄ with multiple lo
ated tuple spa
es andof a set of pro
ess operators, borrowed from Milner's CCS [6℄. The underlying
ommuni
ation model is based on shared data spa
e and is, thus, asyn
hronous.In Klaim, tuple spa
es and pro
esses are distributed over di�erent lo
alities,whi
h are
onsidered as �rst{
lass data. The
lassi
al Linda operations, indexedwith the lo
ations of the tuple spa
e they operate on, allow programmers todistribute/retrieve data and pro
esses over/from di�erent nodes dire
tly. Thus,programmers
an dire
tly manage the physi
al distribution of pro
esses, theallo
ation poli
ies, and the agents' mobility.For Klaim's programs, like for other
lass of programs, it is
ru
ial to estab-lish
orre
tness, deadlo
k freeness, liveness and to
ontrol a

ess rights. Sin
ethe language is based on pro
ess algebras, a natural
andidate for su
h tasks isa temporal logi
 based on HML, the logi
 proposed by Hennessy and Milner tospe
ify and verify properties of CCS agents [5℄.

However, one soon realizes that HML would be insuÆ
ient. For a
hieving ourtask we need both state formulae (to test for the presen
e of spe
i�
 tuples atgiven lo
alities) and ri
her a
tions (to spe
ify the performed a
tions and theirsour
e and target).In this paper we shall introdu
e a variant of HML with re
ursion, the syntaxof our logi
 is then the following:� ::= tt �� t�� �� hAi� �� � �� ��:� �� � _ � �� :�where the state properties are spe
i�ed by the basi
 operator t��, and the
lassi
al indexed diamond operator (hai) is repla
ed by an a
tion operator that
ontains sets of (abstra
t version of) the ri
h transition labels that are generatedby the following grammar:a ::= O(s1; t; s2) �� I(s1; t; s2) �� R(s1; t; s2) �� E(s1; P; s2) �� N (s1;�; s2):In the syntax above the label indi
ates sour
e and destination of informationmovement (s1 and s2), the information transmitted (et and P) and the kind ofmovement (O, I,: : :).Via abstra
t a
tions we
an spe
ify sets of labels that are
hara
terized by
ommon aspe
ts, as sour
e or destination of information movement, stru
ture ofthe information transmitted and kind of movement.We will show, via two simple examples, that the proposed logi
 is suÆ
ientlyexpressive for des
ribing interesting properties of mobile systems.To support veri�
ation of su
h properties we will introdu
e also a proof sys-tem based on tableau. The proof system is inspired by [2℄, the additional diÆ-
ulties and the novelties of our
ontribution are due to the fa
t that Cleaveland'ssystem does not
onsider value passing and restri
ts attention to systems witha �nite state spa
e.The rest of the paper is organized as follows. Se
tion 2
ontains the newlabeled semanti
s for Klaim. Se
tion 3
ontains syntax and semanti
s of theproposed logi
s together with its proofs system and a sket
h of the soundnessand
ompleteness proof. Se
tion 4
ontains the Klaim program for a distributedinformation system manager and the logi
al spe
i�
ation of some of its keyproperties. Se
tion 5 shows a new equivalen
e that is in full agreement with thenew one indu
ed by the proposed logi
s.Due to spa
e limitation most of the proofs are omitted; they
an be retrievedat [8℄2 Klaim: syntax and semanti
sKlaim (Kernel Language for Agent Intera
tion and Mobility) is a languagedesigned for programming appli
ations over wide area networks. Klaim is basedon the notion of lo
ality and relies on a Linda-like
ommuni
ation model.Linda [1, 3, 4℄ is a
oordination language with asyn
hronous
ommuni
ationand shared memory. Messages are stru
tured data named tuples. The sharedspa
e is named Tuple Spa
e. Tuples are a

essed by pattern mat
hing.

A Klaim system is a set of nodes that we
all physi
al names or sites. Weuse S to denote the set of sites and s, s1, s2, : : : to denote its element.Programs refer to sites using lo
alities, or logi
al name. We use Lo
 to denotethe set of lo
alities and l, l1, l2, : : : to denote its elements. We also assumeexisten
e of a lo
ality self 2 Lo
. We will use ` to denote elements of S [Lo
.The operations over tuple spa
es take as argument the name of a node wherethe target tuple spa
e resides and a tuple.Every node has a
omputational
omponent, a set of pro
esses running inparallel, a tuple spa
e and an asso
iated environment � that binds lo
alitiesto sites. We also assume that in the node s the environment � is su
h that�(self) = s; i.e. the lo
ality self refers to the node where a pro
esses is running.The set Net of Klaim net is de�ned in Table 1. A node is de�ned by threeparameters: the physi
al name s, the environment � and the pro
ess P . A netN
an be obtained from the parallel
omposition of nodes.N ::= s ::� P (node)�� N1 k N2 (net
omposition)Table 1. Nets syntaxFor de�ning the syntax of pro
esses, we introdu
e the following synta
ti

ategories. We use Exp for the set expressions and 	 for the set of parameterizedpro
esses identi�ers, respe
tively ranged over by e and A. We use VLo
, Var andVPro
 as the sets of lo
ality, value and pro
ess variables, they are ranged over byu, x and X respe
tively. Moreover, eu will indi
ate sequen
es of lo
ality variablesand feug the set of lo
ality variables in eu. A similar notation we will also be usedfor other kinds of sequen
es.P := nil (null pro
ess)�� a
t:P (a
tion pre�xing)�� out(et) (evaluated tuple)�� P1 j P2 (parallel
omposition)�� X (pro
ess variable)�� Ah eP; è; eei (pro
ess invo
ation)a
t ::= out(t)�` �� in(t)�` �� read(t)�` �� eval(P)�`�� newlo
(u)t ::= f �� f; tf ::= e �� P �� ` �� !x �� !X �� !uTable 2. Pro
esses SyntaxPro
ess syntax is de�ned in Table 2, where nil stands for the pro
ess that
annot perform any a
tions, P1jP2 stands for the parallel
omposition of P1 andP2, and a
t:P stands for the pro
ess that exe
utes the a
tion a
t then behaves

like P . Also tuples are modeled as basi
 pro
esses, then a tuple et is in the tuplespa
e of a node s if and only if s
ontains a pro
ess out(et).The possible a
tions are: out(t)�`, in(t)�`, read(t)�`, eval(P)�` andnewlo
(u). The �rst a
tion adds the result of evaluation of t, using the al-lo
ation environment � of the node where the a
tion is performed, inside thetuple spa
e of the site �(l) (if it exists). If t is a tuple and � an environment wede�ne the evaluation of t within the environment �, T [[t ℄℄�, as in Table 3. Theoperation out(t)�` is nonblo
king.T [[e ℄℄� = E [[e ℄℄T [[P ℄℄� = Pf�g T [[` ℄℄� = �(`)T [[!u ℄℄� = !uT [[f; t ℄℄� = T [[f ℄℄�; T [[t ℄℄� T [[!x ℄℄� = !xT [[!X ℄℄� = !XTable 3. Tuple Evaluation Fun
tionTo retrieve information from a tuple spa
e lo
ated at ` one
an use thein(t)�` and read(t)�` primitives, di�erently from out these are blo
king op-erations (i.e. the
omputation is blo
ked until the required a
tion
an be per-formed). mat
h(v; v) mat
h(P; P) mat
h(s; s)mat
h(!x; v) mat
h(!X;P) mat
h(!u; s)mat
h(et2; et1)mat
h(et1; et2) mat
h(et1; et2) mat
h(et3; et4)mat
h((et1; et3); (et2; et4))Table 4. The Mat
hing RulesThe in(t)�` a
tion looks for a tuple inside the tuple spa
e at ` that satis�esthe mat
hing predi
ate de�ned in Table 4. If this tuple et exists then it is removedfrom the tuple spa
e and the
ontinuation pro
ess P is
losed with respe
t tothe substitution [et=t℄ that repla
es every variable in a formal �eld of t with the
orresponding value in et.The read operation behaves like in but it doesn't remove the tuple. A
tionsin(t)�`:P and read(t)�`:P a
t as binders for variables in the formal �elds of t.A variable is free if and only if it isn't bound. We said that a pro
ess P is
losedif and only if ea
h variable in P is not free. From now on we will take in a

ountonly
losed pro
esses.The primitive eval(P)�` spawns a pro
ess P at the site `. The lo
alities inP are evaluated with the allo
ation environment of the destination node.The a
tion newlo
(u)
reates a new node and binds the variable u to itsnew/fresh name s. The
ontinuation pro
ess is
losed with respe
t to the substi-tution fs=ug. Pre�x newlo
(u):P binds the lo
ality variable u in P . Program-mers, by means of newlo
 operations,
an
reate private spa
es.Pro
ess identi�ers are used in re
ursive pro
ess de�nitions. It is assumed thatea
h pro
ess identi�ers A has a single de�ning equation Ah eX; eu; exi and that all

free (values, pro
esses or lo
alities) variables in P are
ontained in f eX; eu; exg.We also assume that all o

urren
es of pro
ess identi�ers in P are guarded (i.e.,ea
h pro
ess identi�er o

urs within the s
ope of a blo
king in=read pre�x).2.1 Operational Semanti
sThe evolution of a Klaim net is des
ribed by singling out the tuples that areinserted, withdrawn or read from ea
h node, or the pro
esses that are spawnedto other sites or the new/fresh sites that are
reated.Example 1. Consider the netN1 = s1 ::�1 out(t)�s2:niljjs2 ::�2 nilafter pla
ing the result of evaluating tuple t (et = T [[t ℄℄�) on s2, it evolves tothe net N2 = s1 ::�1 niljjs2 ::�2 out(et)nilf�g = nilXf�g = X(out(t)�`:P)f�g = out(tf�g)�`f�g:Pf�g(eval(Q)�`:P)f�g = eval(Q)�`f�g:Pf�g(in(t)�`:P)f�g = in(tf�g)�`f�g:Pf�g(read(t)�`:P)f�g = read(tf�g)�`f�g:Pf�g(newlo
(u):P)f�g = newlo
(u):Pf�g(P1 j P2)f�g = P1f�g j P2f�gAh eP; è; eeif�g = P [eP= eX; è=eu; ee=ex℄f�g if A(eX; eu; ex) def= Pef�g = e(`)f�g = �(`)!xf�g = !x(!u)f�g = !u(!X)f�g = !X(f; t)f�g = ff�g; tf�gTable 5. Closure LawsWe use labeled transitions to des
ribe the evolution of nets. These labels in-di
ate sour
e and destination of information movement, the information trans-mitted and the kind of movement. We de�ne the set of transition labels, Lab, asfollows:a ::= O(s1; et; s2) �� I(s1; et; s2) �� R(s1; et; s2) �� E(s1; P; s2) �� N (s1;�; s2)and we use a, possibly indexed, to range over Lab.

et = T [[t ℄℄� s0 = �(`) a = O(s; et; s0)s ::� out(t)�`:P k s0 ::� P 0 � a�! s ::� P k s0 ::� (P 0 j out(et))s0 = �(`) a = E(s;Q; s0)s ::� eval(Q)�`:P k s0 ::� P 0 � a�! s ::� P k s0 ::� (P 0 j Q)mat
h(T [[t ℄℄�; et) s0 = �(`) a = I(s; et; s0)s ::� in(t)�`:P k s0 ::� out(et) � a�! s ::� P [et=T [[t ℄℄�℄ k s0 ::� nilmat
h(T [[t ℄℄�) s0 = �(`) a = R(s; et; s0)s ::� read(t)�`:P k s0 ::� out(et) � a�! s ::� P [et=T [[t ℄℄℄ k s0 ::� out(et)s0 6= s a = N (s;�; s0)s ::� newlo
(u):P � a�! s ::� P [s0=u℄ k s0 ::� nils ::� P [eP= eX; è=eu; ee=ex℄ � a�! Ns ::� Ah eP; è; eei � a�! N A(eX; eu; ex) def= PN1 � a�! N2 a 6= N (s1;�; s2)N1 k N � a�! N2 k NN1 � a�! N2 a = N (s1;�; s2) s2 62 NN1 k N � a�! N2 k N N1 � N2 N1 � a�! NN2 � a�! NTable 6. The Operational Semanti
sIn Example 1 the label is a = O(s1; t; s2).We use: s 2 N to denote that there exists a site named s in the net N ;s� 2 N if s 2 N and the allo
ation environment of s is �; s� :: P if s� 2 N andP is running on s.The operational semanti
s of Klaim is given in Table 6. Where � is thestru
tural
ongruen
e de�ned as the least
ongruen
e relation R su
h that:(N1 k N2) R (N2 k N1),((N1 k N2) k N3) R (N1 k (N2 k N3)),(s ::Æ� (P1 j P2)) R (s ::Æ� P1 k s ::Æ� P2).It easy to prove that this new labeled operational semanti
s
oin
ides withthe previous operational semanti
s based on rewriting systems [7℄.We also write N ��!� N 0 if and only if:1. N 0 = N ;2. 9a;N 00 : N � a�! N 00 and N 00 ��!� N 0.Example 2. In this example we analyze a Client-Server appli
ation. A
lientsends data to be evaluated by the server. The server evaluates them and sendsba
k the result to the
lient. We have two sites, one for the
lient, and the otherfor the server.

At the server site, named sS , there is a pro
ess that is waiting for a tuple
ontaining two expressions and a site name. When su
h a tuple is present, theserver returns the sum of the values to the site and restarts.At the
lient site, named sC , there is a pro
ess that sends, to the server sites,the tuple (3; 5; self) and waits for the result.The Klaim net for this system is:sC ::�C out(3; 5; self)�server:in(!result)�self:nilksS ::�S Pro
ServerPro
Server is de�ned as follow.Pro
Server def= in(!x1; !x2; !u)�self:out(x1 + x2)�u:Pro
ServerThe evolution of the net start with the insertion of tuple (3; 5; sC) by the
lientin the tuple spa
e of sS (label O(sC ; (3; 5; sC); sS)). Then pro
ess Pro
Serverin sS �rst removes tuple (3; 5; sC) (label I(sS ; (3; 5; sC); sS)), then inserts tuple(8) in the tuple spa
e of sC (label O(sS ; (8); sC)). Finally tuple (8), is removedfrom sC (label I(sC ; (8); sC)).3 A Logi
 for KlaimWe now introdu
e a logi
 that allows us to spe
ify and prove properties of mobilesystem spe
i�ed inKlaim. In our view the important features of aKlaim systemare the tuples residing at spe
i�
 nodes and the a
tions that a system performsduring its evolution.Our logi
 aims at
apturing these two aspe
ts. It permits to spe
ify thepresen
e of a tuple et inside the tuple spa
e of a node s, by means of the atomi
formula et�s, and the possible evolutions by means of the modal operators h�i,indexed by sets of a
tions.3.1 SyntaxWe use � as a generi
 element in S [VLo
. We also use VA R for VLo
 [Var [VPro
 and its elements are denoted with id, while VA L stands for Val[Pro
[Sand its elements are ranged by v.To denote sets of a
tions that a Klaim system
an perform, we de�ne theset of abstra
t a
tions ALab. An abstra
t a
tion � is de�ned as follows:� ::= O(�1; t; �2) �� I(�1; t; �2) �� R(�1; t; �2) �� E(�1; P; �2) �� N (�1;�; �2)Obviously Lab � ALab.Let V Log be the set of logi
al variable ranged over by �. We de�ne L as theset of formulae � obtainable by the following grammar:� ::= tt �� t�� �� hAi� �� � �� ��:� �� � _ � �� :�

where A is a subset of ALab. We shall also assume that no variable � o

ursnegatively (i.e. under the s
ope of an odd number of : operators) in �.We will use: h�i� for hf�gi�, h�i� for hLabi� and h�Ai for hLab�A[[A℄℄i�.We say that a variable id is bound in � if every o

urren
e of id in � appearsin the s
ope of some hAi with id 2 � for every � 2 A. A formula � is
losed ifevery variable in � is bound.De�nition 1. We de�ne Subst � VLo
 ! S ℄ VPro
 ! VPro
 ℄ Var ! Val,Æ, sometime with indexes, will be used to denote elements of Subst.If Æ 2 Subst and id is a variable then Æ(id) is a value � of the same type of id.The
losure of a formula � with respe
t to a substitution Æ (�fÆg) is the formula�0 obtained from repla
ing every variable id in � with Æ(id). We also use Æ1 � Æ2for the substitution Æ su
h that: Æ(id) = Æ2(id) if Æ2(id) is de�ned, Æ(id) = Æ1(id)otherwise.3.2 Semanti
sFor spe
ifying sets of a
tions that are
hara
terized by
ommon aspe
ts, as sour
eor destination of information movement, stru
ture of the information transmittedand kind of movement, we use abstra
t a
tions.Thus we �rst de�ne the set of labels denoted by an abstra
t a
tion � (A[[�℄℄)as follows: A[[�℄℄ = faj9Æ : a = �fÆggi.e. A[[�℄℄ is the set of a
tion a su
h that there exists a substitution Æ for whi
ha = �fÆg; if a 2 A[[�℄℄ then we use Æa� for a Æ0 su
h that �fÆ0g = a.For example let � = I(u; (00hello00); s) thenA[[�℄℄ = fI(s0; (00hello00); s)js0 2 Sgand for a = I(s00; (00hello00); s) 2 A[[�℄℄ we have that Æa� = fs00=ug.De�nition 2. We de�ne the logi
al environment Env as Env � [V Log !Subst ! Net�℄. We also use e, sometime with indexes, to denote elements inEnv. Moreover we use e�[� 7! g℄ for the logi
al environment e0 su
h that e0(�0) =e(�0) if � 6= �0, e0(�) = g otherwise.We de�ne M[[� ℄℄ : L ! Env ! Subst ! Net� to denote the set of netsthat are models of a logi
al formula. Fun
tion M[[� ℄℄ is de�ned by stru
turalindu
tion as follows:{ M[[tt℄℄eÆ = Net;{ M[[�℄℄eÆ = e(�)Æ{ M[[t��℄℄eÆ = fN js = �fÆg; et = tfÆg; 9�: s ::� out(et) 2 Ng;{ M[[h�i�℄℄HeÆ = fN j 9a9N 0 : N � a�! N 0 ^ a 2 A[[�fÆg℄℄^N 0 2M[[�℄℄HeÆ � Æa�fÆgg;{ M[[hA1 [A2i�℄℄eÆ =M[[hA1i�℄℄eÆ [M[[hA2i�℄℄eÆ

{ M[[�1 _ �2℄℄e =M[[�1℄℄eÆ [M[[�2℄℄eÆ;{ M[[:�℄℄eÆ = Net�M[[�℄℄eÆ;{ M[[��:�℄℄eÆ = �f ��;eÆ where:1. f ��;e : [Subst! Net�℄! [Subst! Net�℄ is de�ned as follows:f ��;e(g) =M[[�℄℄e � [� 7! g℄2. �f ��;e = Sfgjg � f ��;e(g)g where g1 � g2 if and only if for all Æ g1(Æ) �g2(Æ).Other formulae like [A℄�, ��:� or �1 ^ �2
an be expressed with formulae inL. Indeed [A℄� = :hAi:�, ��:� = :��::�[:�=�℄ and �1 ^ �2 = :(�1 _ �2).De�nition 3. Let N be a net and � be a
losed formula, we say that N is amodel of �, written N j= �, if and only if N 2M[[�℄℄e0Æ0, where e0 = ��:Æ0 andÆ0 = ;.Example 3. If we
onsider the Client/Server appli
ation of Example 2, a prop-erty that we would like spe
ify/verify is that if the tuple (x1; x2; u) is sent tothe server then the tuple (x1+x2) is sent to the lo
ality u from the server. Thisproperty
an be spe
i�ed with the formulae:� = :��::(hO(u1; (x1; x2; u); u2)i(�1) _ :(:h�O(u1; (x1; x2; u); u2)itt_h�O(u1; (x1; x2; u); u2)i:�))�1 = :��0::(hO(u2; (x1 + x2); u1)itt _ :(h�O(u2; (x1 + x2); u1)itt_:h�O(u2; (x1 + x2); u1)i:�0))3.3 The proof systemWe now introdu
e a tableau based proof system for L formulae. This proofsystem is based on [2℄ where a tableau-based system for �-
al
ulus has beenintrodu
ed.The proof rules operate on sequents of the form H ` N : �, where H is a setof hypothesis of the form N 0 : �0, N is a net, and � is a
losed formula. More
orre
tly we should have written H `Net N : �, be
ause we interpret N overNet, we omit the annotation for the sake of simpli
ity. We will refer to sequentsby � and to proofs by � .If �1 and �2 are formulae, we say that �1 is an immediate sub-term of �2,written �1 �I �2, if one of the following holds:1. �2 = :�1;2. �2 = �1 _ �3 or � = �3 _ �1, for some �3;3. �2 = hAi�1;4. �2 = ��:�1.We write � for the transitive
losure of �I , and � for the transitive andre
exive
losure of �I .

H ` N : �i R1H ` N : �1 _ �2 H ` N : :�1 H ` N : :�2 R2H ` N : :(�1 _ �2)H ` N : � R3H ` N : ::� H ` N 0 : �fÆa�g R4� hN � a�! N 0; � 2 A; a 2 A[[�℄℄iH ` N : hAi�H ` N1 : :�fÆa1� g H ` N2 : :�fÆa2� g : : : R5� � 8 i N �ai�! Ni; ai 2 A[[�i℄℄;�i 2 A �H ` N : :hAi�H 0 [fN : ��:�g ` N : �[��:�=�℄ R6 � [N : ��:� 62 H℄H ` N : ��:�H 0 [fN : ��:�g ` N : :�[��:�=�℄ R7 � [N : ��:� 62 H℄H ` N : :��:�where H 0 = H � fN 0 : �0j��:� � �0gTable 7. The proof systemDe�nition 4.1. A sequent H ` N : � is su

essful if{ � = tt.{ � = ��:�0 and N : ��:�0 2 H;{ � = :hAi�0, and 6 9a 2 A[[A℄℄ su
h that N � a�! N 0;{ � = et�s and s ::� out(et) 2 N ;{ � = :et�s and s ::� out(et) 62 N ;2. � is a su

essful proof for � if the following
onditions hold:{ � is built using the rules on Table 7;{ � is the root of �;{ every leaf on � is a su

essful sequent.3. � is provable if and only if there exists a su

essful proof � for �.We de�ne the models of a formula � with the hypothesis H , M[[�℄℄H , asfollows:{ M[[tt℄℄HeÆ = Net;{ M[[�℄℄HeÆ = e(�)Æ{ M[[t��℄℄HeÆ = fN js = �fÆg; et = tfÆg; s ::� out(et) 2 Ng;{ M[[h�i�℄℄HeÆ = fN j9a9N 0 : N � a�! N 0 ^ a 2 A[[�fÆg℄℄ ^ N 0 2 M[[�℄℄HeÆ �Æa�fÆgg;{ M[[h�i�℄℄HeÆ = fN j 9a9N 0 : N � a�! N 0 ^ a 2 A[[�fÆg℄℄^N 0 2M[[�℄℄HeÆ � Æa�fÆgg;{ M[[�1 _ �2℄℄HeÆ =M[[�1℄℄HeÆ [M[[�2℄℄HeÆ;{ M[[:�℄℄HeÆ = Net�M[[�℄℄HeÆ;{ M[[��:�℄℄eÆ = �f �;h�;e Æ [hÆ where:1. f �;h�;e : [Subst! Net�℄! [Subst! Net�℄ is de�ned as follows:f �;h�;e (g) = f ��;e(g [h)

2. h : Subst! Nets� is de�ned as follows:hÆ = fN jN : ��:�fÆg 2 Hg3. �f �;h�;e = Sfgjg � f �;h�;e (g)g.If H = ; then M[[�℄℄HeÆ =M[[�℄℄eÆ.De�nition 5. Let N be a net, and let � be a
losed formula, we say that Nis a model of � under the hypothesis H, written N j=H �, if and only if N 2M[[�℄℄He0Æ0, with e0 = ��:Æ0 and Æ0 = ;.Theorem 1. If there exists a proof � for H ` N : � then N j=H �.Theorem 2. Let N be su
h that the set fN 0jN ��!� N 0g is �nite then, for all
losed formula �, N j=H � implies H ` N : � provable.Theorem 3. Let � be a
losed formula su
h that:{ if ��:�0 is a subformula of � then it is negative in �;{ if hAi�0 of � is su
h that, if there exists � = N (�;�; u) 2 A, then hAi�0 isno negative in �;then for all net N and for all set of hypothesis H if N j=H � then H ` N : � isprovable.Example 4. We want now to show how, using the proof system, we
an provethat system CS of Example 2 satis�es formula � of Example 3.Thus we want prove that sequent ; ` CS : � is provable, i.e. there exists aproof for it. Now the only rule that we
an apply to the sequent is R7. Thus westart our proof as follows:CS : ��:�0 ` CS : ::(hO(u1; (x1; x2; u); u2)i(�1) _ :(:h�O(u1; (x1; x2; u); u2)itt_h�O(u1; (x1; x2; u); u2)i:��:�0)); ` CS : �where�0 = :(hO(u1; (x1; x2; u); u2)i(�1) _ :(:h�O(u1; (x1; x2; u); u2)itt_h�O(u1; (x1; x2; u); u2)i:�))We
an now pro
eed by applying rules R3 and R1 obtaining:CS : ��:�0 ` CS : hO(u1; (x1; x2; u); u2)i�1Net CS
an only evolve, by a
tion O(sC ; (3; 5; sC); sS), toSC0 = sC ::�C in(!result)�self:nilksS ::�S in(!x1; !x2; !u)�self:out(x1 + x2)�u:Pro
Serverjout(3; 5; sC)

then applying rule R4 we have that:CS : ��:�0 ` CS0 : :��0::(hO(sS ; (8); sC)itt _ :(:h�O(sS; (8); sC)itt_h�O(sS; (8); sC)i:�0))CS : ��:�0 ` CS : hO(u1; (x1; x2; u); u2)i�1Let �01 be su
h that�01 = :(hO(sS; (8); sC)itt _ :(:h�O(sS; (8); sC)itt_h�O(sS; (8); sC)i:�0))then by rule R7 we have thatCS : ��:�0; CS0 : ��0:�01 ` CS0 : :�01[��0:�0=�0℄CS : ��:�0 ` CS0 : :��0:�01As in a previous
ase, applying rules R3 and R1, we obtain the sequentCS : ��:�0; CS0 : ��0:�01 ` CS0 : :(:h�O(sS; (8); sC)itt _ h�O(sS; (8); sC)i:��0:�01)applying R2 we have to prove sequents:CS : ��:�0; CS0 : ��0:�01 ` CS0 : ::h�O(sS; (8); sC)itt (1)CS : ��:�0; CS0 : ��0:�01 ` CS0 : :h�O(sS; (8); sC)i:��0:�01 (2)Net CS0
an only evolve, by an a
tion I(sS ; (3; 5; sC); sS), to the net:CS00 = sC ::�C in(!result)�self:nil k sS ::�S out(3 + 5)�sC :P ro
ServerThen by rule R3 and R4, for (1), we obtain the su

essfully sequentCS : ��:�0; CS0 : ��0:�01 ` CS0 : ttwhile for (2) we obtain, by rule R5, sequentCS : ��:�0; CS0 : ��0:�01 ` CS00 : :��0:�01Applying rules R7, R3 and R1 again, we obtain the sequentCS : ��:�0; CS0 : ��0:�01; CS00 : ��0:�01 ` CS00 : hO(sS; (8); sC)ittNet CS00 evolves, by O(sS ; (8); sC), to the netCS000 = sC ::�C in(!result)�self:niljout(8) k sS ::�S Pro
Serverthus, by rule R4, we haveCS : ��:�0; CS0 : ��0:�1; CS00 : ��0:�01 ` CS000 : ttCS : ��:�0; CS0 : ��0:�01; CS00 : ��0:�01 ` CS00 : hO(sS; (8); sC)itthen
e we have obtained a proof of ; ` CS : :��:�0.

4 An extended exampleIn this se
tion we
onsider a larger example of a Distribute Information Systemmanagement.We assume that a Database system is distributed over three di�erent sites,named Infi (i 2 f1; 2; 3g). A node, named Manager, manages the database sys-tem sending pro
esses for updating the information on the nodes. The updatingpro
ess
hooses a path to rea
h every node. Only one updating-pro
ess at a time
an be exe
uted in a site. For this reason inside the tuple spa
e of Infi thereis the tuple 00F 00. An updating pro
ess
an be evaluated in an Infi node onlywhen tuple 00F 00 is in its tuple spa
e.The net of the distributed database is de�ned as follows:Inf1 :: out(00F 00) k Inf2 :: out(00F 00) k Inf3 :: out(00F 00)In the tuple spa
e of node Manager there is a tuple (\G00) for ea
h nodeInfi. An updating pro
ess
an be started only when at least a tuple (\G00) is inthe tuple spa
e of Manager.Pro
ess StartAgent looks for a tuple (00G00). When this tuple is found, thepro
ess CallUpdate, whi
h starts the updating pro
edure, is
alled. GuardingCallUpdate in StartAgent with an in(00G00) we ensure that the system is dead-lo
k free. StartAgent = in(00G00)�self: (CallUpdate(Inf1; Inf2; Inf3)jStartAgent)CallUpdatehu1; u2; u3i = in(00F 00)�u1:out(00updating00)�u1:eval(Update(u2; Update(u3; FUpdate(Manager))))�u1:nilUpdatehu;Xi = in(00F 00)�u:out(00updating00)�u:eval(X)�u:in(00updating00)�self:out(00F 00)�self:nilFUpdatehui = in(00updating00)�self:out(00F 00)�self:eval(Su

ess)�u:nilSu

ess = out(00G00)�self:nilThe manager node is de�ne as follows:Manager :: StartAgentjout(Inf1)jout(Inf2)jout(Inf3)jout(00G00)jout(00G00)jout(00G00)For this system, we would like to spe
ify that if a pro
ess Update(s; P) (re-spe
tively FUpdate(s)) is evaluated in a site Infi, for some site s and somepro
ess P , then no pro
esses are evaluated on Infi until pro
ess P (respe
tivelySu

ess) is evaluated from Infi to the site s. This property is spe
i�ed with thefollowing formulae:

�1 = :hE(u1; Update(u2; X); u3)i:(��1: hE(u3; X; u2)itt_:(hE(u4; X 0; u3)itt_h�E(u3; X; u2)i:�1)�2 = :hE(u1; FUpdate(u2); u3)i:(��2: hE(u3; Su

ess; u2)itt_:(hE(u4; X 0; u3)itt_h�E(u3; Su

ess; u2)i:�2)We wish that �1 and �2 was veri�ed in every rea
hable state of our system.This is spe
i�ed with the formula:� = ��::((:�1 _ :�2) _ :h�i:�)Due to spa
e limitation we omit the proof for �.5 Behaviours of NetsIn this se
tion we introdu
e a new equivalen
e relation between Klaim nets andwe will show as it is in full agreement with the one indu
ed by the proposedlogi
s.Nets will be
ompared a

ording to their a
tion tree or behaviour. The be-haviours of nets are generated respe
t the following syntax:� ::= ? �� ! �� a! � �� � ^ � �� et�sThe set of all possible behaviour will be denoted by � .We will write N : � to indi
ate that the net N has the behavior � . Aparti
ular behaviour ? is introdu
ed to represent fully unspe
i�ed behaviour ;every net N has ? (N : ?) as a possible behaviour. A net N has a behaviouret�s if the tuple et is in the tuple spa
es of the site s of NThe behaviour a ! � represent the set of nets that are able to perform ana
tion a and then behaves like � , so a net N has a behaviour � = a! � 0 if N 0exists su
h that N � a�! N 0 and N 0 : � .A net N has a behaviour �1 ^ �2 if it has both �1 and �2 (N : �1 ^ �2 ifN : �1 and N2 : �2).The behaviour ! represent the
apability of performing any a
tions; no nethas behaviour !.De�nition 6. We say that N : � if and only if we are able to prove that withthe following rules:N : ? N � a�! N 0 N 0 : �N : a! � N : �1 N : �2N : �1 ^ �2To reason on behaviours we introdu
e an ordering between them.De�nition 7. � is the smallest relation de�ned as follows:

{ � � !{ ? � �{ if �1 � �2 then a! �1 � a! �2{ if �1 � �2 and �2 � �3 then �1 � �3{ �1 ^ �2 � �2 ^ �1{ �1 � � ^ �1{ if �1 � �2 then �1 ^ � � �2 ^ �If we interpret behaviours as requirements on
omputing agents then theordering � 0 � � indi
ates that a net with a behaviour � satis�es more require-ments then a net with a behaviour � 0.In this point of view ! is the highest while ? is the lowest. If N1 : �1 ^ �2then N1 has both the behaviours �1 and �2 and if N2 : �2 then N1 satis�esmore requirements. So �2 � �1 ^ �2 and the operator ^ is
ommutative andasso
iative.De�nition 8.1. We write N1 v N2 if and only if for all �1 if N1 : �1 then there exists �2,with N2 : �2, su
h that �1 � �2;2. We write N1 ' N2 if and only if N1 v N2 and N2 v N1.Theorem 4. For all net N1, N2 we have that N1 ' N2 if and only if for allformula � 2 L N1 j= � if and only if N2 j= �Referen
es1. Ni
holas Carriero and David Gelernter. Linda in Context. Communi
ations of theACM, 32(10):444{458, O
tober 1989. Te
hni
al Corresponden
e.2. Ran
e Cleaveland. Tableau-based model
he
king in the propositional �-
al
ulus.A
ta Informati
a, 27(8):725{747, September 1990.3. D. Gelernter. Generative
ommuni
ation in linda. ACM Transa
tions on Program-ming Languages and Systems, 7(1):80{112, 1985.4. D. Gelernter. Multiple tuple spa
es in linda. In J.Hartmanis G. Goos, editor,Pro
eedings, PARLE '89, volume 365 of LNCS, pages 20{27, 1989.5. Matthew Hennessy and Robin Milner. Algebrai
 laws for nondeterminism and
on-
urren
y. Journal of the ACM, 32(1):137{161, January 1985.6. R. Milner. Communi
ation and Con
urren
y. International Series in ComputerS
ien
e. Prenti
e Hall, 1989. SU Fisher Resear
h 511/24.7. Ro

o De Ni
ola, Gian Luigi Ferrari, and Rosario Pugliese. KLAIM: A kernellanguage for agents intera
tion and mobility. IEEE Transa
tions on Software En-gineering, 24(5):315{330, May 1998. Spe
ial issue: Mobility and Network AwareComputing.8. Ro

o De Ni
ola and Mi
hele Loreti. A logi
 for klaim (full paper). Avaiable atftp://rap.dsi.unifi.it/papers/fullMLK.ps.

