A Modal Logic for KLAIM

Rocco De Nicola and Michele Loreti

Dipartimento di Sistemi e Informatica, Universita di Firenze
e-mail: {denicola,loreti}@dsi.unifi.it

Abstract. KLAIM is an experimental programming language that sup-
ports a programming paradigm where both processes and data can be
moved across different computing environments. The language relies on
the use of explicit localities, and on allocation environments that asso-
ciate logical localities to physical sites. This paper presents a temporal
logic for specifying properties of Klaim programs. The logic is inspired
by Hennessy-Milner Logic (HML) and the v—calculus, but has novel fea-
tures that permit dealing with state properties to describe the effect of
actions over the different sites. The logic is equipped with a consistent
and complete proof system that enables one to prove properties of mobile
systems.

Keywords: Mobile Code Languages, Temporal Logics of Programs, Coordina-
tion Models.

1 Introduction

The increasing use of wide area networks, especially the World Wide Web, is
calling for new programming paradigms and for new programming languages
that model interactions among clients and servers by means of mobile agents;
these are programs that are transported and executed on different hosts. KLAIM
(a Kernel Language for Agents Interaction and Mobility) [7] is one of such.

KLAIM consists of core Linda [3,4] with multiple located tuple spaces and
of a set of process operators, borrowed from Milner’s CCS [6]. The underlying
communication model is based on shared data space and is, thus, asynchronous.

In KLAIM, tuple spaces and processes are distributed over different localities,
which are considered as first—class data. The classical Linda operations, indexed
with the locations of the tuple space they operate on, allow programmers to
distribute/retrieve data and processes over/from different nodes directly. Thus,
programmers can directly manage the physical distribution of processes, the
allocation policies, and the agents’ mobility.

For KLAIM’s programs, like for other class of programs, it is crucial to estab-
lish correctness, deadlock freeness, liveness and to control access rights. Since
the language is based on process algebras, a natural candidate for such tasks is
a temporal logic based on HML, the logic proposed by Hennessy and Milner to
specify and verify properties of CCS agents [5].

However, one soon realizes that HML would be insufficient. For achieving our
task we need both state formulae (to test for the presence of specific tuples at
given localities) and richer actions (to specify the performed actions and their
source and target).

In this paper we shall introduce a variant of HML with recursion, the syntax
of our logic is then the following:

pu=tt | tQo | (A)p | & | ved | Ve | 0

where the state properties are specified by the basic operator t@Qg, and the
classical indexed diamond operator ({a)) is replaced by an action operator that
contains sets of (abstract version of) the rich transition labels that are generated
by the following grammar:

a = 0(517t782) | I(Slata'S?) | R(517t782) | 5(817])782) | N(517_752)'

In the syntax above the label indicates source and destination of information
movement (s; and s»), the information transmitted (et and P) and the kind of
movement (O, Z,...).

Via abstract actions we can specify sets of labels that are characterized by
common aspects, as source or destination of information movement, structure of
the information transmitted and kind of movement.

We will show, via two simple examples, that the proposed logic is sufficiently
expressive for describing interesting properties of mobile systems.

To support verification of such properties we will introduce also a proof sys-
tem based on tableau. The proof system is inspired by [2], the additional diffi-
culties and the novelties of our contribution are due to the fact that Cleaveland’s
system does not consider value passing and restricts attention to systems with
a finite state space.

The rest of the paper is organized as follows. Section 2 contains the new
labeled semantics for KLAIM. Section 3 contains syntax and semantics of the
proposed logics together with its proofs system and a sketch of the soundness
and completeness proof. Section 4 contains the KLAIM program for a distributed
information system manager and the logical specification of some of its key
properties. Section 5 shows a new equivalence that is in full agreement with the
new one induced by the proposed logics.

Due to space limitation most of the proofs are omitted; they can be retrieved
at [8]

2 KrLAIM: syntax and semantics

Kram (Kernel Language for Agent Interaction and Mobility) is a language
designed for programming applications over wide area networks. KLAIM is based
on the notion of locality and relies on a Linda-like communication model.

Linda [1, 3,4] is a coordination language with asynchronous communication
and shared memory. Messages are structured data named tuples. The shared
space is named Tuple Space. Tuples are accessed by pattern matching.

A KLAIM system is a set of nodes that we call physical names or sites. We
use S to denote the set of sites and s, s1, s, ... to denote its element.

Programs refer to sites using localities, or logical name. We use Loc to denote
the set of localities and I, Iy, I3, ... to denote its elements. We also assume
existence of a locality self € Loc. We will use £ to denote elements of S U Loc.
The operations over tuple spaces take as argument the name of a node where
the target tuple space resides and a tuple.

Every node has a computational component, a set of processes running in
parallel, a tuple space and an associated environment p that binds localities
to sites. We also assume that in the node s the environment p is such that
p(self) = s;i.e. the locality self refers to the node where a processes is running.

The set Net of KLAIM net is defined in Table 1. A node is defined by three
parameters: the physical name s, the environment p and the process P. A net
N can be obtained from the parallel composition of nodes.

N:u=s:, P (node)
| Ny || N2 (net composition)

Table 1. Nets syntax

For defining the syntax of processes, we introduce the following syntactic
categories. We use Exp for the set expressions and ¥ for the set of parameterized
processes identifiers, respectively ranged over by e and A. We use VLoc, Var and
VProc as the sets of locality, value and process variables, they are ranged over by
u, ¢ and X respectively. Moreover, u will indicate sequences of locality variables
and {u} the set of locality variables in @. A similar notation we will also be used
for other kinds of sequences.

P := nil (null process)
| act.P (action prefixing)
| out(et) (evaluated tuple)
| P | P (parallel composition)
| X (process variable)
| A(P,0,¢) (process invocation)

act := out(t)@¢ | in(t)Q¢ | read(t)Q/ | eval(P)Q/
| newloc(u)

t u=f | f,t

f::=e|P|£|!:c|!X|!u

Table 2. Processes Syntax

Process syntax is defined in Table 2, where nil stands for the process that
cannot perform any actions, P; |P, stands for the parallel composition of P; and
P,, and act.P stands for the process that executes the action act then behaves

like P. Also tuples are modeled as basic processes, then a tuple et is in the tuple
space of a node s if and only if s contains a process out(et).

The possible actions are: out(t)@Qf, in(t)@Qf, read(t)@¢, eval(P)@¢ and
newloc(u). The first action adds the result of evaluation of t, using the al-
location environment p of the node where the action is performed, inside the
tuple space of the site p(I) (if it exists). If ¢ is a tuple and p an environment we
define the evaluation of ¢ within the environment p, 7[¢],, as in Table 3. The
operation out(t)@Q¢ is nonblocking.

Tlel, =¢lel TLE], = p(0) T[lz], =!o
TIP], = P{p} Tl'u], ="u TI!'X],=!X
TLft],=TLf1, TIt],

Table 3. Tuple Evaluation Function

To retrieve information from a tuple space located at £ one can use the
in(¢)@¢ and read(t)@Q¢ primitives, differently from out these are blocking op-
erations (i.e. the computation is blocked until the required action can be per-
formed).

match(v,v) match(P, P) match(s, s)
match(lx,v) match(! X, P) match(!u, s)
match(etz, et1) match(ety,et2) match(ets,ets)
match(ety, etz) match((et1, ets), (etz, ets))

Table 4. The Matching Rules

The in(t)@¢ action looks for a tuple inside the tuple space at £ that satisfies
the matching predicate defined in Table 4. If this tuple et exists then it is removed
from the tuple space and the continuation process P is closed with respect to
the substitution [et/t] that replaces every variable in a formal field of ¢ with the
corresponding value in et.

The read operation behaves like in but it doesn’t remove the tuple. Actions
in(¢)@(.P and read(t)@Q¢.P act as binders for variables in the formal fields of t.
A variable is free if and only if it isn’t bound. We said that a process P is closed
if and only if each variable in P is not free. From now on we will take in account
only closed processes.

The primitive eval(P)@/¢ spawns a process P at the site £. The localities in
P are evaluated with the allocation environment of the destination node.

The action newloc(u) creates a new node and binds the variable u to its
new/fresh name s. The continuation process is closed with respect to the substi-
tution {s/u}. Prefix newloc(u).P binds the locality variable u in P. Program-
mers, by means of newloc operations, can create private spaces.

Process identifiers are used in recursive process definitions. It is assumed that
each process identifiers A has a single defining equation A(X,%,Z) and that all

free (values, processes or localities) variables in P are contained in {X,@,7}.
We also assume that all occurrences of process identifiers in P are guarded (i.e.,
each process identifier occurs within the scope of a blocking in/read prefix).

2.1 Operational Semantics

The evolution of a KLAIM net is described by singling out the tuples that are
inserted, withdrawn or read from each node, or the processes that are spawned
to other sites or the new/fresh sites that are created.

Example 1. Consider the net
N1 = s1 11, out(t)@s,.nil||s, ::,, nil

after placing the result of evaluating tuple ¢ (et = T[t]p) on sq, it evolves to
the net
Ny = 51 ::p, nil||ss 1, out(et)

nil{p} = nil
X{p} =X
(out(t)@l.P){p} = out(t{p})Qt{p}.P{p}
(eval(Q)Ql.P){p} = eval(Q)@{p}.P{p}
(in(t)Ql.P

)
P)
¢.P){p} = in(t{p})@t{p}.P{p}
(read(t)at.P){p} = read(+{p})al{p}.P{p}
(newloc(u).P){p} = newloc(u).P{p}

(P | P2){p} = Pi{p} | P2{p}
AP, Le){p} = P[P/X,0/a,e/a){p} if AX,u,7) Y P

elpt =e
(O){p} = p(0)
lz{p} =z
(uw){p} ="'u
(X){p} =X
(f:){p} = fr}. t{p}

Table 5. Closure Laws

We use labeled transitions to describe the evolution of nets. These labels in-
dicate source and destination of information movement, the information trans-
mitted and the kind of movement. We define the set of transition labels, Lab, as
follows:

a = 0(5176t752) | I(Slaet;SZ) | R(Slaet;SZ) | E(Sla-P;SZ) | N(Sla_752)

and we use a, possibly indexed, to range over Lab.

et =TI[t], s'=p) a=0(sets)
s, out(t)QLP || s iz PP =" 51, P s 1, (P | out(et))
s=pl) a=E(5Q,5)
s, eval(Q)@QLP || s = PP =% s, P s = (P Q)
match(T[t],, et) s’ = p(0) a=1I(set,s)
s, in(t)@QLP || s ::, out(et) == s ::, Plet/TTt],] |l s' iz, nil

match(T[t],) s =p) a=R(s,et,s)
s, read(t)QLP || s’ ::, out(et) == s, Plet/T[t]]] s ::p out(et)
s'#s a=N(s,—,5)

sz, newloc(u).P =2 s i1, P[s'/u] || s" 1 mil

s::PﬁX,Zﬂ,’é:ﬂ % N ~ .
PPIRTRHA SN | o,
s, AP LE) =5 N

Ny =% Ny a#N(s1,—,s2)
Ni||N =% N || N

N1>1)N2 a:N(Sl,—,Sz) S2¢N N1 = N> N1>i)N

N | N=%No | N No >% N

Table 6. The Operational Semantics

In Example 1 the label is a = O(sy,t, s2).
We use: s € N to denote that there exists a site named s in the net IV;
s, € N if s € N and the allocation environment of s is p; s, :: P if s, € N and
P is running on s.
The operational semantics of KLAIM is given in Table 6. Where = is the
structural congruence defined as the least congruence relation R such that:
(N1 || N2) B (N2 || Na),
(N1 [| N2) || N3) B (Ny || (N2 || Ns)),
(s ::g (P | P)) R (s ::g P | s ::g P,).

It easy to prove that this new labeled operational semantics coincides with
the previous operational semantics based on rewriting systems [7].
We also write N >—* N' if and only if:

1. N'=N;
2. Ja,N": N >% N" and N" >—* N'.

Example 2. In this example we analyze a Client-Server application. A client
sends data to be evaluated by the server. The server evaluates them and sends
back the result to the client. We have two sites, one for the client, and the other
for the server.

At the server site, named sg, there is a process that is waiting for a tuple
containing two expressions and a site name. When such a tuple is present, the
server returns the sum of the values to the site and restarts.

At the client site, named s¢, there is a process that sends, to the server sites,
the tuple (3,5, self) and waits for the result.

The KLAIM net for this system is:

s¢ i, out(3, 5, self)Qserver.in(Iresult)@self nil

55 i1ps ProcServer

ProcServer is defined as follow.
ProcServer in(lzy,z2, lu)@self.out(z; + z2)Qu.ProcServer

The evolution of the net start with the insertion of tuple (3,5, s¢) by the client
in the tuple space of sg (label O(sc,(3,5,s¢),ss)). Then process ProcServer
in sg first removes tuple (3,5, s¢) (label Z(ss, (3,5,s¢),ss)), then inserts tuple
(8) in the tuple space of s¢ (label O(ss, (8),s¢)). Finally tuple (8), is removed
from s¢ (label Z(sc, (8),5¢))-

3 A Logic for KrLAamm

We now introduce a logic that allows us to specify and prove properties of mobile
system specified in KLAIM. In our view the important features of a KLAIM system
are the tuples residing at specific nodes and the actions that a system performs
during its evolution.

Our logic aims at capturing these two aspects. It permits to specify the
presence of a tuple et inside the tuple space of a node s, by means of the atomic
formula et@s, and the possible evolutions by means of the modal operators (-),
indexed by sets of actions.

3.1 Syntax

We use ¢ as a generic element in S U VLoc. We also use VAR for VLoc U Var U
VProc and its elements are denoted with ¢d, while VAL stands for ValU ProcUS
and its elements are ranged by wv.

To denote sets of actions that a KLAIM system can perform, we define the
set of abstract actions ALab. An abstract action « is defined as follows:

a = 0(o1,t,02) | Z(o1,t,05) | Rlov,t,02) | E(o1,Pyoz) | N(oy,—,03)

Obviously Lab C ALab.
Let V Log be the set of logical variable ranged over by x. We define £ as the
set of formulae ¢ obtainable by the following grammar:

¢pu=tt | tQo | (A | k| vrd | Vo | —¢

where A is a subset of ALab. We shall also assume that no variable x occurs
negatively (i.e. under the scope of an odd number of — operators) in ¢.
We will use: (a)¢ for ({a})¢, (=)¢ for (Lab)¢p and (—A) for (Lab — A[A])¢.
We say that a variable id is bound in ¢ if every occurrence of id in ¢ appears
in the scope of some (A) with id € « for every a € A. A formula ¢ is closed if
every variable in ¢ is bound.

Definition 1. We define Subst C VLoc - S & VProc — VProcWd Var — Val,
0, sometime with indexes, will be used to denote elements of Subst.

If § € Subst and id is a variable then §(id) is a value v of the same type of id.
The closure of a formula ¢ with respect to a substitution ¢ (¢{d}) is the formula
¢' obtained from replacing every variable id in ¢ with §(id). We also use 01 - 2
for the substitution J such that: §(id) = d2(id) if d2(id) is defined, d(id) = 6y (id)
otherwise.

3.2 Semantics

For specifying sets of actions that are characterized by common aspects, as source
or destination of information movement, structure of the information transmitted
and kind of movement, we use abstract actions.
Thus we first define the set of labels denoted by an abstract action a (Afa])
as follows:
Afa] ={a|30 : a = a{0}}
i.e. Afa] is the set of action a such that there exists a substitution ¢ for which

a = a{d}; if a € AJa] then we use 62 for a ¢’ such that a{d'} = a.
For example let a = Z(u, ("hello"), s) then

Ala] = {Z(s', ("hello"),s)|s' € S}
and for a = Z(s", ("hello"), s) € Aa] we have that 62 = {s"/u}.

Definition 2. We define the logical environment Env as Env C [VLog —
Subst — Net*]. We also use e, sometime with indezxes, to denote elements in
Env. Moreover we use e-[k — g| for the logical environment €' such that ¢/ (k') =
e(k') if K # K, €' (k) = g otherwise.

We define M[-] : L — Env — Subst — Net* to denote the set of nets
that are models of a logical formula. Function M[-] is defined by structural
induction as follows:

— M[tt]ed = Net,;
— M[k]ed = e(k)d
— M[tQo]ed = {N|s = o{6}, et =t{d},3Ip. s ::, out(et) € N};
M[(@)¢]"ed = {N]| FaaN' : N =% N' A a € AJa{d}]A
N' € M[¢]"ed - 685 };

- M[[¢1 \ (252]]6 = M[[¢1]]6(5 U M[[¢2]]6(5;
— M[—¢]ed = Net — M[¢p]ed;
— M[vk.¢led = vf?,6 where:

1. £, : [Subst - Net*] — [Subst — Net*] is defined as follows:

£2.(9) = M[gle - [k = g]

2. Vf,j:e = U{glg C fn"fe(g)} where g; C g» if and only if for all § ¢;(d) C
92(6).

Other formulae like [A]@p, pk.¢ or ¢1 A ¢ can be expressed with formulae in
L. Indeed [A]¢ = —(A)—¢, pk.¢ = —vi.—¢[-K/k] and ¢1 A pa = =(d1 V ¢2).

Definition 3. Let N be a net and ¢ be a closed formula, we say that N is a
model of ¢, written N |= ¢, if and only if N € M[¢]eodo, where eg = Ak.6y and
do = 0.

Ezample 3. If we consider the Client/Server application of Example 2, a prop-
erty that we would like specify/verify is that if the tuple (z;,x2,u) is sent to
the server then the tuple (z1 + x2) is sent to the locality u from the server. This
property can be specified with the formulae:

¢ = wk.a((O(ur, (71, 72, u),u2))(¢1) V 2 2(=O(uy, (21, 72, u), uz)) bt
V(=O(u1, (1,72, u),u2))K))
o1 = wk . A((O(uz, (k1 + x2),u1))tt V =((—O(uz, (x1 + x2),u1))tt
Va(=0(uz, (21 + @2),u1))=K"))

3.3 The proof system

We now introduce a tableau based proof system for £ formulae. This proof
system is based on [2] where a tableau-based system for p-calculus has been
introduced.

The proof rules operate on sequents of the form H - N : ¢, where H is a set
of hypothesis of the form N' : ¢/, N is a net, and ¢ is a closed formula. More
correctly we should have written H Fye: N : ¢, because we interpret N over
Net, we omit the annotation for the sake of simplicity. We will refer to sequents
by 7« and to proofs by II.

If ¢; and ¢, are formulae, we say that ¢, is an immediate sub-term of ¢,
written ¢p < ¢, if one of the following holds:

1. ¢o = ¢n;

2. g2 =¢1 Vg3 0r ¢ =¢3V ¢, for some ¢3;
3. g2 = (A)dr;

4. ¢2 = Vﬁ.¢1.

We write < for the transitive closure of <, and < for the transitive and
reflexive closure of <;.

HFN:é; HFN:-¢p1 HFN:~¢s
———— Rl R2
HbEN:¢1 Vs HEN:=(¢1V ¢)
HFN:¢ s HF N :¢{62}
HFN:-—¢ HFEN: (A
HE Ny :=¢{05'} HFE Ny:—¢p{05>} g { ViNﬂNi,aiEA[ai]],]
Hb N: (A aeA
H U{N :vk.¢} F N : $lvk.¢/ k)
HEFN:vk.¢
H' U{N :vk.¢} F N : =¢[vk.¢/K]
HEFN:-vk.¢
where H' = H — {N' : ¢'|us.¢p < ¢'}

R4 — [N>1>N',a €A a EA[[a]I]

R6 — [N :vk.¢p & H|

R7 — [N:vk.¢p € H|

Table 7. The proof system
Definition 4.

1. A sequent HF N : ¢ is successful if
— ¢ = tt.
— ¢=vk.¢ and N :vk.¢/ € H;
— ¢ ==(A)¢', and Ba € AJA] such that N == N';
— ¢ = etQs and s ::, out(et) € N;
— ¢ = —et@s and s :z, out(et) € N;
2. I is a successful proof for w if the following conditions hold:
— II is built using the rules on Table 7;
— is the root of II;
— every leaf on II is a successful sequent.
3. m is provable if and only if there exists a successful proof II for m.

We define the models of a formula ¢ with the hypothesis H, M|[¢>]]H, as
follows:

— M[tt]"ed = Net;
- M[[m]]Hets =e(k)0
— M[t@o]"ed = {N|s = 0{0}, et = t{6}, s ::, out(et) € N};
— M[(@)¢]7ed = {N|Fa3N' : N =% N' Aa € Ala{6}] AN’ € M[¢]"e6 -
0o sy}
M[()¢]"ed = {N]| JaAN' : N =% N' A a € AJa{d}]A
B N' € M[¢]"ed - 085 };
— M1V §o]"ed = M[dn]" ed U M[g2]" e5;
— M[~¢]" e = Net — M[¢]" e;
— Mlvk.gled = vf2:5 U hé where:
L. f& : [Subst — Net*] — [Subst — Net*] is defined as follows:

£ (9) = £2.(gUh)

2. h: Subst — Nets* is defined as follows:
hé = {N|N : vk.¢{d} € H}
3. vl =U{glg € 128 (9)}-
If H = () then M[¢]"ed = M[¢]ed.

Definition 5. Let N be a net, and let ¢ be a closed formula, we say that N
is a model of ¢ under the hypothesis H, written N =y ¢, if and only if N €

M[¢]Heo50, with eg = \k.0g and 6y = 0.
Theorem 1. If there exists a proof IT for H+ N : ¢ then N =g ¢.

Theorem 2. Let N be such that the set {N'|N »—" N'} is finite then, for all
closed formula ¢, N =y ¢ implies H = N : ¢ provable.

Theorem 3. Let ¢ be a closed formula such that:

— if vk.¢' is a subformula of ¢ then it is negative in ¢;
— if (AY¢' of ¢ is such that, if there exists a = N (o, —,u) € A, then (A)¢' is
no negative in ¢;

then for all net N and for all set of hypothesis H if N =g ¢ then HF N : ¢ is
provable.

Ezxample 4. We want now to show how, using the proof system, we can prove
that system C'S of Example 2 satisfies formula ¢ of Example 3.

Thus we want prove that sequent () = C'S : ¢ is provable, i.e. there exists a
proof for it. Now the only rule that we can apply to the sequent is R7. Thus we
start our proof as follows:

((O(u1, (z1, T2, u), u2)) (P1) V ~(~(=O(u1, (z1, 2, u), u2))tt
V(—O(u1, (z1,2,u), u2))~wk.¢'))
OFCS: 6

CS:veg FCS:

(lsl = _'(<O(u1a (331,332,“),“2)>(¢1) \ _'(—'<—0(’U,1, (iL’l,iL'z,’u,),Ug»tt
V<_O(u17 (:L‘l,:L'Q,U),Uz»—'K))

We can now proceed by applying rules R3 and R1 obtaining;:
CS :vk.¢' +CS : (O(uy, (1,22, 1), u2))b1
Net CS can only evolve, by action O(s¢, (3,5, s¢), ss), to
SC'" = s¢ iy, in(lresult)@self.nil

ss iipg in(lzy, lz2, lu)Qself.out(z; + z2)Qu. ProcServer
lout(3, 5, s¢)

then applying rule R4 we have that:

vk =((O(ss, (8), s¢))tt V —(=(—0O(ss, (8),s0))tt
V(=0O(ss, (8),50))~K"))

CS :vk.¢' - CS : (O(u1, (x1,T2,u),u2))p1

CS:vk.¢' +CS :

Let ¢} be such that

g = "({OCss,(8), s0))tt vV ~(~{=OCss, (8), s0))tt
' V(=0(ss,(8),50))K))

then by rule R7 we have that
CS:vk.¢',CS :vK'.¢\ FCS : =i [vK .¢' /K]
CS:vk.¢'+CS :—wk'.¢)

As in a previous case, applying rules R3 and R1, we obtain the sequent
CS:vk.¢',CS : vk .9\ FCS : =(~(=0O(ss, (8),sc))tt V (—O(ss, (8), s¢))—wr'.¢1)
applying R2 we have to prove sequents:

CS:vk.¢',CS vk .91 FCS : ==(=0(ss, (8),sc))tt (1)

CS :vk.¢,CS vk .9y FCS : =(=0O(ss,(8),s0))wkK ¢} (2)
Net CS’ can only evolve, by an action Z(ss, (3,5, sc), Ss), to the net:

CS" = s¢ 1pe in(lresult)@self.nil || ss i1y out(3 + 5)Qsc.ProcServer
Then by rule R3 and R4, for (1), we obtain the successfully sequent
CS:vk.¢',CS vk .¢1 FCS :tt
while for (2) we obtain, by rule R5, sequent
CS:vk.¢',CS vk .¢1 FCS" : —wk'.¢}

Applying rules R7, R3 and R1 again, we obtain the sequent

CS :vk.d,CS vk .$,,C8" vk .§ F CS" : (O(ss, (8), sc))tt
Net CS" evolves, by O(ss, (8),s¢), to the net

CS" = sc ::p. in(Iresult)Q@self.nillout(8) || ss ::p4 ProcServer
thus, by rule R4, we have

CS :vk.¢',CS :vK'.¢1,C8" : vk . @1 - CS" : tt
CS :vk.g,CS vk .$,,C8" vk &, F CS" : (O(ss, (8), sc))tt

hence we have obtained a proof of § - C'S : —wvk.¢'.

4 An extended example

In this section we consider a larger example of a Distribute Information System
management.

We assume that a Database system is distributed over three different sites,
named Inf; (i € {1,2,3}). A node, named M anager, manages the database sys-
tem sending processes for updating the information on the nodes. The updating
process chooses a path to reach every node. Only one updating-process at a time
can be executed in a site. For this reason inside the tuple space of Inf; there
is the tuple "F". An updating process can be evaluated in an Inf; node only
when tuple "F" is in its tuple space.

The net of the distributed database is defined as follows:

Infi zout("F") | Infz :: out("F") || Infs :: out("F")

In the tuple space of node Manager there is a tuple (“G") for each node
Inf;. An updating process can be started only when at least a tuple (“G"') is in
the tuple space of Manager.

Process StartAgent looks for a tuple ("G"). When this tuple is found, the
process C'allUpdate, which starts the updating procedure, is called. Guarding
CallUpdate in StartAgent with an in("”"G") we ensure that the system is dead-
lock free.

StartAgent = in("G")Qself. (CallUpdate(Infi, Infs, Infs)
|Start Agent)

CallUpdate{ur, uz, us) = in(" F")Qu; .out("updating”)Qu;.
eval(Update(uz, Update(us, FUpdate(Manager))))@u;.nil

Update{u, X) = in(" F")Qu.out("updating’’)Qu.eval(X)Qu.
in("updating”)@self.out(” F")Q@self.nil

FUpdate(u) = in("updating'')@self.out(’ F"')Q@self.eval(Success)Qu.nil

Success = out('G")@self.nil

The manager node is define as follows:

Manager :: StartAgent|out(Inf;)|out(Infz)|out(Infs)
|0ut (Il GH) |Ollt (Il GH) |Ollt (Il GH)

For this system, we would like to specify that if a process Update(s, P) (re-
spectively FUpdate(s)) is evaluated in a site Inf;, for some site s and some
process P, then no processes are evaluated on Inf; until process P (respectively
Success) is evaluated from Inf; to the site s. This property is specified with the
following formulae:

¢1 = —(E(uy, Update(usz, X),us))~(ve1. (€(us, X, u2))ttVv
(€ (ug, X', uz))ttV
<_5(U3,X, Uz))—!nl)

¢ = ~(E(ur, FUpdate(us), us))(vks. (E(us, Success, us))ttV
ﬂ((g(U4,XI,U3)>ttV
(—&(ug, Success, uz))—Ks2)

We wish that ¢; and ¢ was verified in every reachable state of our system.
This is specified with the formula:

¢ = vk a((=d1 V =g2) V ~(—)kK)

Due to space limitation we omit the proof for ¢.

5 Behaviours of Nets

In this section we introduce a new equivalence relation between KLAIM nets and
we will show as it is in full agreement with the one induced by the proposed
logics.

Nets will be compared according to their action tree or behaviour. The be-
haviours of nets are generated respect the following syntax:

F:::J_|w|a—>f' |F/\F|et@s

The set of all possible behaviour will be denoted by I.

We will write N : [to indicate that the net N has the behavior I'. A
particular behaviour L is introduced to represent fully unspecified behaviour;
every net N has L (N : L) as a possible behaviour. A net N has a behaviour
et@s if the tuple et is in the tuple spaces of the site s of IV

The behaviour a — I represent the set of nets that are able to perform an
action a and then behaves like I', so a net N has a behaviour I' = a — I if N'
exists such that N =% N’ and N’ : T.

A net N has a behaviour I1 A I if it has both Il and I» (N : I1 A Iy if
N:Fl and N2 :Fz).

The behaviour w represent the capability of performing any actions; no net
has behaviour w.

Definition 6. We say that N : I if and only if we are able to prove that with
the following rules:

N%&N’ N'.-T N: I N: I}
N:a—1T N: It NI

N: 1

To reason on behaviours we introduce an ordering between them.

Definition 7. < is the smallest relation defined as follows:

—I'<w

— 1<

ifF1§F2 thena — I <a— I>

- ifF1§F2 andF2§F3 thenHSFg
NnA <IHhAI

- <I'nh

if 1 <Isthen W AT <IZAT

If we interpret behaviours as requirements on computing agents then the
ordering I'" < I' indicates that a net with a behaviour I" satisfies more require-
ments then a net with a behaviour I".

In this point of view w is the highest while L is the lowest. If Ny : [1 A I3
then N; has both the behaviours I7 and [5 and if Ny : Iy then N; satisfies
more requirements. So I, < Iy A Iy and the operator A is commutative and
associative.

Definition 8.

1. We write Ny T Ny if and only if for all Iy if Ny : I then there exists I3,
with No : Iy, such that I'1 < Iy;
2. We write N1 ~ N> if and only if Ny C N2 and Ny C N;.

Theorem 4. For all net N1, No we have that N1 ~ N» if and only if for all
formula ¢ € L Ny |= ¢ if and only if N2 |= ¢

References

1. Nicholas Carriero and David Gelernter. Linda in Context. Communications of the
ACM, 32(10):444-458, October 1989. Technical Correspondence.

2. Rance Cleaveland. Tableau-based model checking in the propositional u-calculus.
Acta Informatica, 27(8):725-747, September 1990.

3. D. Gelernter. Generative communication in linda. ACM Transactions on Program-
ming Languages and Systems, 7(1):80-112, 1985.

4. D. Gelernter. Multiple tuple spaces in linda. In J.Hartmanis G. Goos, editor,
Proceedings, PARLE ’89, volume 365 of LNCS, pages 20-27, 1989.

5. Matthew Hennessy and Robin Milner. Algebraic laws for nondeterminism and con-
currency. Journal of the ACM, 32(1):137-161, January 1985.

6. R. Milner. Communication and Concurrency. International Series in Computer
Science. Prentice Hall, 1989. SU Fisher Research 511/24.

7. Rocco De Nicola, Gian Luigi Ferrari, and Rosario Pugliese. KLAIM: A kernel
language for agents interaction and mobility. IEEE Transactions on Software En-
gineering, 24(5):315-330, May 1998. Special issue: Mobility and Network Aware
Computing.

8. Rocco De Nicola and Michele Loreti. A logic for klaim (full paper). Avaiable at
ftp://rap.dsi.unifi.it/papers/fullMLK.ps.

