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Abstract We present a novel method to reconstruct complex network from
partial information. We assume to know the links only for a subset of the
nodes and to know some non-topological quantity (fitness) characterising
every node. The missing links are generated on the basis of the latter quan-
tity according to a fitness model calibrated on the subset of nodes for which
links are known. We measure the quality of the reconstruction of several
topological properties, such as the network density and the degree distri-
bution as a function of the size of the initial subset of nodes. Moreover, we
also study the resilience of the network to distress propagation. We first
test the method on ensembles of synthetic networks generated with the Ex-
ponential Random Graph model which allows to apply common tools from
statistical mechanics. We then test it on the empirical case of the World
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Trade Web. In both cases, we find that a subset of 10 % of nodes is enough
to reconstruct the main features of the network along with its resilience
with an error of 5%.

Keywords Complex Networks - Financial Systems

PACS 89.75.Da - 02.50.Le - 89.65.Ef

1 Introduction

The reconstruction of the system from partial information is one of the
outstanding and unresolved problems in the field of statistical physics of
networks [4[15]. Indeed, there are several real-world economic and financial
contexts where knowledge of the entire network structure would be crucial
to assess the resilience of the system to both exogenous and endogenous
shocks while, at the same time, only limited information on that structure
is available. An example is the case of financial networks where nodes repre-
sent financial institutions and links represent financial ties of various types
such as loans or derivative contracts. These ties result in many cases in
dependencies among institutions and constitute the ground for the propa-
gation of financial distress across the network. The resilience of the whole
system to the default or the distress of one or more institutions depends
on the topological structure of the network [IL2]. Unfortunately, due to
confidentiality issues banks do not disclose their mutual exposures.

Typically the analysis of systemic risk is done by reconstructing the net-
work using the so-called Maximum Entropy (ME) algorithm. This method
assumes that the network is fully connected (for this reason this class of ap-
proaches is called ”dense reconstruction methods”). The weights of the links
are then obtained via a ” maximum homogeneity” principle. This means that
each node is assumed to bear a similar level of dependence from all other
nodes. The second step consists in finding a matrix that, while satisfying
certain constraints (imposed in this case by the budget of the individual
banks), minimizes the distance from the uniform matrix in which each entry
has the same value. Such a matrix is found using the Kullback-Leibler diver-
gence as the objective function to minimize [6,14]. The hypothesis that the
network is fully connected is a strong limitation of the ME algorithm, since
empirical networks are characterized by heterogeneous degree. Moreover,
[15] has shown how the ”dense reconstruction” leads to an underestimation
of the systemic risk. They also provide a new algorithm that allows to mini-
mize Kullback-Leibler divergence obtaining a matrix with an arbitrary level
of heterogeneity under a maximum value depending on constraints. Their
algorithm provides a ”sparse reconstruction” that is more reliable than the
dense one. Nevertheless it leaves open the question of what value of het-
erogeneity would be appropriate to choose, since the density of connections
must be specified ex-ante and it is not recovered by the algorithm.

In this paper we introduce a new general method, the Bootstrapping
Method (BM), to reconstruct the topology of the whole network starting
from the knowledge of a subset of nodes. This method overcomes some of
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the limitations described above. To validate the method we use both syn-
thetic networks as well as an example of real economic systems. In both
cases we compare the reconstruction with the known total structure. This
is the so-called World Trade Web (WTW), i.e. the network of countries
where links represent the financial flows corresponding to the trade vol-
umes among them. In our method, the allocation of the links among nodes
is carried out using the fitness model[3|[I1]. Differently from other network
generation models, the fitness model generates a network structure start-
ing from a non-topological variables (fitness) associated to the nodes. This
approach has been used in the past to reproduce the topological properties
of several empirical economical networks, including the network of equity
investments in the stock market [I0], the interbank market [5], the currency
market [9], and the WI'W [12]. We investigate how well it is possible to
recover both the topological properties of the network and its resilience to
distress propagation, as we vary the size of the subset of nodes for which in-
formation is available. Among the topological properties, we focus on those
that play an important role in contagion processes and in the propagation
of distress, i.e., the network density [I], the degree distribution [I7], the
k-core structure[13].

We find that having information on a relatively small fraction of nodes
is sufficient to recover with good approximation the above properties. For
instance, with only about 7% of the nodes (10 out of 185) we have a rel-
ative error of about: 7% on the density, 10% on the average degree of the
main core, 7% on the size of the main core. For the resilience, we focus
on a recently introduced notion, debtrank [2], which measures the systemic
impact of the initial distress of a subset of nodes, whenever the links in the
network represent the dependencies among nodes. Similarly to the above
results, we find that with about 7% of the nodes the resilience is recovered
with a relative error within 10%.

At a first thought, it can be surprising that a small fraction of nodes
enables to reconstruct so well global emerging properties of the network.
However, one should bear in mind that in the method, while the links
are known only for a subset of nodes, the fitness is always known for all
the nodes. Thus, the method would probably require much higher fraction
of nodes in order to reconstruct networks with special topologies such as
strong community structure or networks where the fitness is not a strong
factor in driving the connectivity. The investigation of these effects is left
for future research. Overall, our method can be applied in principle to any
network representing a set of dependencies among components in a complex
system and it is thus of general interest in the field of complex networks
and statistical physics.

2 Exponential random graph and fitness model

In this paper we propose a Bootstrap Method (BM) to build the network
using a fitness model. The method is described in Section [3l Here we briefly
describe the ERGMs and the associated fitness model. In order to generate
ensembles of complex networks both dynamic and static approaches can be
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utilized. In the dynamic case, nodes and/or links are added step by step
using for instance a ”preferential attachment” algorithm. In the static case,
instead, the number of nodes is fixed the links are assigned at once according
to some statistical or deterministic criterion. Exponential random graph
models (ERGM) are one of the most studied class of network models[I6l[7].
They can be described using the powerful mathematical formalism of the
equilibrium statistical mechanics [16].

As a specific example, we will consider the so-called fitness or hidden
variables models, where the network topology is determined by an intrin-
sic property (called fitness) associated with each node of the network[3].
Through this scheme we can define a framework to investigate those net-
works where the topology is driven, at least in part, by non-topological
properties of the nodes. With the fitness model it is possible to study sev-
eral economical networks, ranging from the WTW (where the fitness of the
model are the GDP of the various countries) [12], to the financial networks
(where fitness are, for instance, the market capitalization of each institu-
tion) [1O,5].

Given a set of network properties, {C, } the Exponential Random Graph
Model (ERGM) is defined as the ensemble {2 of maximally random networks
with {C,} constrained to some statistical properties. More specifically, let
us suppose that the ensemble averages of {C,} are fixed:

(Coho =Y P(G)Cu(G)=C;  Va &)
G

It has been shown that (2 can be defined through a set of control parameters
{60, }, the values of which depend on a set of constraining values {C;} [10,
7). Furthermore the probability P (G) of a network G to occur in {2 is
given by P (G) = e #(%)/Z, where we introduced the graph Hamiltonian
H(G) =3,0.C.(G) , and the partition function Z = 3", exp(—H (G)).
{60,} is the set of Lagrange multipliers associated to the constraints {C}}.
The fitness model can be seen as a specific case where the set of properties
{C,} is the degree sequence {k; };=1,.. n of the nodes of the network. In this
case H = ). 6;k;, the partition function is exactly computable and each
node can be identified by its control parameter (or Lagrange multiplier) 6;.
Fixing the values of {6;} is equivalent to fix the mean values of {k;}. In
order to further clarify the role of {6;} in controlling the topology, let us
define z; = e~%. It is possible to show that the ensemble is such that for
each network in {2 two nodes ¢ and j are connected with a probability given
by:
Til 5

1 + ;75 '

Pij (2)
Therefore x; can be considered as the fitness of the node ¢ and it is related
to the ability of ¢ to create links with other nodes.

The average in {2 of several topological properties of the network can be
expressed in terms of appropriate compositions of the linking probabilities
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pij for every i and j. For instance, we can write the degree k; as
N
(ki) = Z Dijs (3)
J(#i)=1
the average nearest neighbor degree K*" as

Zj;éi Zk;ﬁj DijPjk
(ki) 7

(k™) =

and the clustering coefficient C; as

_ Zj#i Zk#j,i PijPjkPki
G = e k1

In the limit of small values of fitnesses (and therefore small connectivity),

x; is proportional to the desired degree of the node i. Indeed, in this limit
we can assume (k;) > >, 2;x; X ;.

()

3 Bootstrapping Method

The estimation of the linking probability p;; between node ¢ and node 7,
pi; is the initial step in order to develop a network Bootstrapping method.
Let us suppose to have incomplete information about the topology of a real
network (say Gg). In particular, we assume to know the links of only a
subset I of the nodes. Moreover, we assume to know, for all the nodes, a
non-topological property, denoted as y;, that is correlated to some statisti-
cal properties of the degree k; of the nodes by a known relation as below
clarified. For instance, in the World Trade Web y; could be the country
GDP, while in financial networks it can be the operating revenue of the
firm ¢. We would like to estimate the value x (Gy) of a topological property
X (Gy) of the network Gy. We make two hypotheses:

1. the network Gy has been drawn from an ensemble of ERGM, that we call
2. From the statistical mechanics of networks we know that the value
7 (Gy) of the property X in Gy, varies within the range () + 0 where
of? is the standard deviation, and (x)g, the average of the property X
estimated on the whole ensemble (2.

2. each known value of the non-topological property y; is assumed to be
proportional to the fitness, denoted as xz; (because a generic property
of the network can be used as a fitness variable) of the node i in the
ensemble {2, through a universal unknown parameter z: v/zy; = z; .
Therefore Eq. () becomes:

2YilY;
= Rl (®

Pii =7 + 2Y:Y;
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With these hypotheses, we map the problem of evaluating x (Gy) into
the one of choosing an ERGM ensemble (2 compatible with the constraints
given by the fitness. Once (2 is determined (it is univocally defined by the
set of {z;}), we can use the average (X), as a good estimation for z (Gy).
Within this framework, the question is which ensemble {2, belonging to the
class ERGM, is the most probable to extract the real network G, knowing
only the partial information {y;}. Since we know {y;} , i.e. the rescaled
fitness values (a non topological property of the network), the problem
becomes to find the most likely value of z. For this reason we use the
notation {2(z) for the desired ensemble.

Notice that if we knew not only {y;} but the entire topology of the
network, z could be found by means of a maximum likelihood argument
(Ref. [12]) comparing the average number of links in the ensemble networks
with the total number of links Lg in Gy:

N N

(L) =5 Sk =5 2 Y piy = Lo 7

i=1 i=1 j#i

where p;; contains the unknown parameter z through Eq. (6]). Therefore
we can evaluate z as Lo is known and by definition of 1/zy; = z; go back
to x; that is our desired output. Let us call zy the estimation calculated
in this way, and £2(zp) the respective ERGM ensemble. But note that we
assume to know only the degrees of the nodes in a subset I and not the
entire topology. Let be n the number of nodes of I. In this case the relation
we have to apply in order to use the maximum likelihood principle in the

estimation of z is:
D)= "pij =D ki (8)
i€l iel j#i i€l
where the degrees k; are calculated in the original network Gy. For a subset
I of the entire set of nodes of the network the estimation is less precise than
the one in Eq. (7). However even with just the knowledge of the degree of
a single node, the Eq. (8) estimates z, and finally X (Gy) .

The network bootstrap of a network G is defined by the above equations
using the following procedure. Let us assume to know the non topological
property y; of all N nodes of the system and the links of a subset I of
n < N nodes.

— Given the topological information of the links in the subset I, we com-
pute the sum of all degrees of these n nodes in Go: >, k; -

— This sum is substituted into the Eq. [l to obtain the relative value of z,
denoted as 2/, that is an approximation of the zg.

— With the value of 2’ and the knowledge of every y; we assign all the
links in the network according to the linking probability of Eq. [6l

We want to estimate the accuracy of the network bootstrap method for
both topological and non-topological properties. To this end, we first apply
the method to a synthetic network generated using the fitness model (see
Section M]). We then apply the method to an empirical case, i.e. the WTW
(see Section ). In the second case, we test also how well we can reconstruct
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a global and non-topological property such as the resilience of the network
to distress propagation (see Section [6).

4 Test of BM: synthetic networks

Let be {I,} , with @ = 1,..., M, an ensemble of subsets of the network
Gy each of them containing n nodes. In order to test how much our BM
estimate of the property X is precise, we will proceed in the following way:

— evaluate z for each subset I, from Eq. (§]), let us call it z,

— use the value z,, to estimate, through the relation 1/zy; = x;, the average
property <X>oz = <X>.Q(za)51

— repeat the calculation for all other sets I/, accumulate the values of
(X)q and compute the average (X) of this quantity and its associated
root mean square deviation with respect to the real value of X(Gp)
across all the realizations of I, for fixed n.

The property X is then estimated by averaging the (X) computed for each
subset I. Notice that each value (X) is by itself an estimation of the true,
unknown, property X.

In order to study the accuracy of the reconstruction, we study how the
root mean square error varies as a function of the size n of the subset of
nodes for which information is available. Using the fitness model and all the
available information, we generate an ensemble of networks G each one of
size N and we compute several properties like the network density, the size
of the main core and the average degree of the main core. These values will
be our benchmarks to test how good is the network reconstruction with the
BM.

We test the BM by using the following three topological quantities be-
cause they have been found to play a role in the distress propagation and
contagion processes and therefore are relevant to the resilience of the net-
work to systemic risk (see Section [I]):

1. density D ;

2. degree of the main core, k%", In a network, the k-core is defined as
the “largest subgraph whose nodes have at least k connections (within
this subgraph, of course)” [7]. The main core is k-core with the highest
possible degree, k™" .

3. size of the main core, S™%" _i.e. its number of nodes.

Each of these measures will play the role of the property X in the pre-
vious notation. In order to use a real-world fitness, we take as reference the
WTW (in year 2000) which contains 185 nodes. We thus generate networks
of size N=185 and we use as fitness y; the GDP from the WTW. For each
of these properties we will carried out the procedure described here below.

1. choose a value for the variable zy (compatible with the fitness model
for WTW, where the fitness is the GDP of a country); we start with
20 = 104
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2. using as fitness the GDP of a country create 50 networks. Let be 2y
this ensemble. Compute on the this set the average link density D,

3. use a 51th network from the (25 ensemble as reference network, call it
G, this will be the network to reconstruct

4. starting from network with a single node n = 1 with known degree k
and GDP y; use this information to compute an estimation of z, say z’

5. from the new value of 2z’ create a new ensemble of 50 networks (say I,
because is referring to one particular set of random chosen nodes)

6. choose another set of n nodes, generate 50 networks from this set, repeat
this operation 100 times each time with a different set I, of n nodes

7. in each of the 100 ensembles of 50 networks, I, estimate the average
density (Da)

8. compute the root mean square error: o4 = 1/100>" 1/ ((Dqa) — D.)? the

difference is between the reconstructed networks (D, ) and the original
average link density D,
9. compute and plot o4/D,
10. repeat the points from 4 to 9 using a different values of n

The entire procedure is repeated for the quantities S™*" and k™", and
the results are shown in Fig[ll for 3 different values of zj, corresponding
to different values of density. We observe that in all cases there is a rapid
decrease of the relative error as the number of nodes n, used to reconstruct
the topology, increases. This is a good indication of the goodness of the
method. Even with a single node, plus the information on the fitness y;
(GDP of the countries), we are able to estimate the topological properties
of the network with a relative error of about 13% for the main core average
degree k™™ about 18% for the network density D, and about 10% for the
size of main core S™%",

As expected, if we have a denser network (Fig[Id-f ) the relative error is
smaller because the network has more links from with the BM can recon-
struct the topology. The same trend in the decrease of the relative error is
verified for all the examined topological quantities.
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ig. 1: The pictures from top left represent respectively: a) using three

values of zg related to three different link average densities (D) (estimated
numerically) compute the relative error o' /kI**™ for the three cases b)
same as (a) but for the relative error of the S-main core size, ¢) same as in

(a

) but for the density of the links D. In all the 3 plots it is evident how

the quality of the reconstruction increases with the number of nodes used
to generate the network ensemble.

5

Test of BM: World Trade Web

We now test the empirical network of the WTW for the same topological
properties of the previous case. The main difference is that now instead of
using a reference network generated with the fitness model and an average
measure of this network class (generated in the ensemble 2 ), the reference

is
si

1.

2.
3.

now the empirical WTW network. We perform the test with the following
milar procedure:

compute the variable zg from the WT'W using the GDP of the countries
and all the links of the original network

from the WTW network compute the density Dy rw of the links
starting from a network with a single node n = 1 with known degree k
and GDP y; use this information to compute an estimation of z, say 2’
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4. from the new value of 2’ create a new ensemble of 50 networks (say I,
because is referring to one particular set of random chosen nodes)

5. choose another set of n nodes, generate 50 networks from this set, repeat
this operation 100 times each time with a different set I, of n nodes

6. in each of the 100 ensembles of 50 networks, I, estimate the average
density (Da)

7. compute the root mean square error: oq = 1/100 )" 1/ ({(Dqa) — Dwrw)?

the difference is between the reconstructed networks (D,,) and the orig-
inal WTW link density Dwrw

8. compute and plot o4/ Dwrw

9. repeat the points from 4 to 9 using a different value of n

the same test is carried out for the other quantities k™" andS™*™. We
expect to see more error than the previous case. We plot the quantity

6 Test of BM: DebtRank a measure of systemic risk

With the WTW network we can use a novel measure of systemic risk: the
DebtRank [2] that represents the expected distress of the nodes in case of
financial events. In the WTW case a financial event can be, for instance,
the default of a country and the subsequent impossibility to pay the traded
goods: this shock generate a distress propagation in the network causing
losses to the other countries. The DR captures the impact I; of the shock
to each node 1.

We compute the DebtRank DR of a single node (due to a shock hitting
a single node at a time), and the group debtrank GDR of the ensemble (due
to an initial shock hitting all the nodes simultaneously) using an algorithm
described in the Methods section of [2] that consists in computing a feedback
centrality from the matrix of the weights, given an initial shock % (to one
or more nodes) that is carried out by a variable h; impact specific to the
method. During the calculation of this feedback centrality we use several
values of the impact rescaling factor 0 < o < 1 to propagate the shocks in
the network.

To compute the DR of each node we use the procedure:

1. choose an impact rescaling factor a, the greater is this factor the greater
will be reverberation effect on the network

2. assign an initial shock 0 < ¢ < 1 to a node ¢

run the DR algorithm (as described in the Methods section of [2])

save the values of the impact at the end and the beginning of the sim-

ulation: the DR of the node ¢ will be the difference in the impact on all

nodes after the propagation of the distress

5. repeat for a different node

.~ W

—_

impact rescaling factor «
assign an initial shock 0 < ¥ < 1 to all nodes
3. run the DR algorithm

N
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Fig. 2: The pictures from top left represent respectively: a) the relative
error in the estimation of average degree of the main core o™ /kmain
computed with real WTW network following the procedure described in
the previous paragraph b) same as in (a) but for the relative error in the
size of main core ¢) same as in (a) but for the density of the links D. In
all the 3 plots it is evident how the goodness of the reconstruction of the
WTW network increases with the number of nodes used to generate the
network ensemble.

4. save the values of the impact at the end and the beginning of the simula-
tion. The GDR will be the difference in the impact on all nodes after the
propagation of the distress: GDR = }_, h;(T)v; — 3, hj(1)v;, where h;
is the impact on each node, T indicates the end of the simulation (when
the distress propagates to the entire network).

Our goal is to test how well the GDR is computed with the network
bootstrap. We make several tests for different values of initial impact
and impact rescaling factor . The DebtRank is strongly dependent by the
weights (value of the elements of the adjacency matrix) that are instead
unknown during the simulations. In fact the fitness model reconstructs the
degree sequence, not the weight of the nodes we then use a value for each
link with two rules:
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— Compute the average weight averaging the elements of the W;; matrix

associated to the n < N nodes. Use this value as homogeneous weight
for all nodes

— Assign to each node an weight similarly to a gravity model (see []])

where the link /;; has a weight proportional to the product of the GDPs
GDP;-GDPF;

We want to consider the impact in case a country defaults (it is not pay-

ing) while the actual adjacency matrix represents the economic value of the
goods (the links are in the opposite direction). For this reason we transpose
the WTW matrix and follow this procedure and we normalize imposing
a row stochastic condition ) jwij = 1. The procedure for computing the

GDR is the following (results on Fig. B3]

1.

Compute the reference Group Debt Rank on the original WTW network
with an initial shock ¢ = 0.1 keep this value as reference (green dashed
line in the plots)

Create a new network with the same topology of the WI'W but with the
weights replaced by the average weight of the WTW links (this value
will be used in the simulation for all links)

Compute the GDR on a network with the same topology of the WTW
and weight imposed homogeneous. Our goal is to study how close to
this value (blue dashed line in the plot), using homogeneous values for
the weights, the bootstrap method can go

Bootstrap the networks with networks of size n < N using homogeneous
weights (computed as average of the weights of the only nodes that we
start from in the simulation), compute the average GDR on 50 boot-
strapped networks with homogeneous weights. Repeat the operation 100
times changing the starting set of nodes during the generation of the 50
networks, obtaining for each n an average value with error (blue dots).
In the non homogeneous case (green dots) bootstrap the networks using
weights according to a gravity model, where the weight of the link is the
product of the GDPs of each node. To add an error, a ”perturbation”,
on a such network we estimate empirically from the plot of W;; vs
GDP; - GDP; the average variation of the weight W;; in function of the
GDPs product. We then alter the corresponding adjacency matrix Wi’j
imposing, for each weight, a random normal error: w;; = w;; + oN(0,1)
where ¢ is a standard deviation computed on w;; for the corresponding
fixed value of GDP; - GDP;. The new perturbed weight matrix is then
transformed to maintain the row stochasticity.
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Fig. 3: The pictures from top left represent respectively: a) using the im-
pact rescaling factor @ = 0.1 , compute the Group Debt Rank on the
original WTW network with empirical weights (green dashed line), the av-
erage Group Debt Rank on the 100 bootstrapped networks with weights
obtained using gravity model (green dots) and respective errors, the Group
Debt Rank on the original WTW network with homogeneous weights (blue
dashed line), and finally the average Group Debt Rank on the 100 boot-
strapped networks with homogeneous weights (blue dots) and respective
errors. b) same as in (a) but for & = 0.3 , ¢) same as in (a) but for a = 0.5,
d)same as in (a) but for & = 0.7, e) same as in (a) but for « = 0.9
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In Fig. Blwe plot the GDR for various « values, ranging from 0.1 to 0.9,
in all cases the initial shock is ¥ = 0.1, 10% of the value of the trade of
every country. From the pictures we can draw the following conclusions:

— There is a significant difference when using homogeneous weights or
heterogeneous weights. Using a constant value for the weight of each
link lead to underestimating the value of systemic risk as measured by
DebtRank

— The reconstruction of the DebtRank values is already good for small
subsets of nodes in the network.

— Using a gravity model (even if simplified) improves the estimate of the
GDR of the WTW network

— The gap between the homogeneous GDR and the empirical one increases
for larger values of the impact rescaling factor . This can be interpreted
as follows: when the network effects are important the use of homoge-
neous weights in the dynamics leads to a larger error. Conversely when
the network effects (reverberation) are less important the homogeneous
weights are not so far from the true value of the GDR.

From this analysis we can conclude that the BM is good in reconstruct-
ing a non topological property such as the DebtRank but to achieve this
goal one has to chose careful the weights of links because the use of an
average value leads to inaccurate estimates, especially if the network effects
are relevant.

The impact of the single countries (DR) on the WT'W network is shown
in Tab. lwhere the impact rescaling factor & = 0.5 and the initial shock ¢ =
0.1. As expected the biggest is the GDP the biggest is the corresponding
DebtRank but with some variation due to network effects. Consider for
instance a country like Canada, a big exporter of oil and minerals, its impact
on the WI'W will be larger than Germany that is a strong exporter of
final goods. This analysis shows as the DebtRank measure is important to
assess the distress (losses) propagation giving results that are not trivially
expressed by the size of the countries.
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Country | DebtRank | GDP rank(2000)
USA 0.48 1
JPN 0.32 2
CAN 0.26 8
CHN 0.23 6
DEU 0.23 3
MEX 0.18 10
GBR 0.17 4
FRA 0.16 5
ITA 0.12 7
NLD 0.10 15
KOR 0.09 12
TWN 0.09 16
BEL 0.08 20
ESP 0.08 11
SGP 0.07 39
MYS 0.05 40
CHE 0.05 18
BRA 0.05 9
IRL 0.04 38
AUS 0.04 14

Table 1: Table showing the DebtRank and the GDP rank (year 2000) for the
20 biggest countries in the WTW network. Notice that DebtRank is only in
part respecting the same ranking given by the GDP of countries. Depending
on the size of the export each country can be more or less affected by a
shock on the default of the others countries. The values are computed using
impact rescaling factor &« = 0.5 and ¢ = 0.1, this numbers can interpreted
in the following way: if the US will not pay the 10% of their obligations
to the rest of the world, the size of the trade is so big to cause a total
loss of 48% of the total WTW volumes. The amplification effect due to the
network structure appears evident with a tool like DebtRank.

7 Conclusions

In this paper we have proposed a new method to reconstruct the topology of
a network using only partial information from its connections and an aux-
iliary non-topological property: the fitness associated to each node. This
method is particularly useful to overcome the lack of topological informa-
tion for several financial networks whose systemic risk must be measured.
Our approach allows to reconstruct the network using the topological infor-
mation from one fraction of the nodes (i.e. their links) and a non topological
property of each node derived from a fitness model.

We tested the network Bootstrap Method (BM) on the World Trade
Web network, where we can use an accurate fitness model to describe its
topology starting from the a non topological property (the GDP of the
countries). We studied how well are reconstructed the following topological
properties: the average density, the size, and the average degree of the main
core. All these measures are related to systemic risk for financial networks
as briefly presented in the introduction of this paper.
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We found that the density of the links, the size of the main core, the
average degree of the main core are reconstructed with an error varying
from 1% to 10%, depending from the property examined, using with 5%
of the nodes (10 over the 185 nodes of the WIT'W network). An interesting
finding is that the denser is a network the better is the reconstruction.
The goodness of the reconstruction increases with the number of the nodes
used as initial information and it is strongly dependent by the accuracy of
the fitness model (that for the WIT'W is an accurate model describing how
the links form across countries depending on their GDP and geographical
distance).

The BM method was checked with another non topological property:
the DebtRank a novel measure of systemic risk. We discovered that the
method was really effective in evaluating this property also with a small
number of starting nodes. We carried out a test using link weights derived
from the gravity model of the WTW (the weight of a link is proportional to
the product of the GDPs of each node) or using homogeneous (averaged)
weights.

In the case of homogeneous weights the BM estimates a value of Group
Debt Rank (a measure of the DebtRank in a set of nodes) that is lower
than the real one. This means that when the network is simulated using an
average value for the weight there is a systematic bias in the evaluation of
Systemic Risk measures such as the DebtRank. Conversely, in the case of
non homogeneous weights, imposing more realistic values from the WTW
fitness (gravity) model we obtain a more accurate estimation of the Group
Debt Rank. This result stresses the importance, in the study of network
systemic risk, to use a correct estimation of the weights and of the topolog-
ical properties. Finally we notice that the bigger is the impact factor a in
rescaling the nodes the greater is the distress propagation in the network
captured by the Group Debt Rank.

We highlight that, for systemic risk, the network effects are responsible
of an amplification of the distress. In fact the losses in the system due to
a node failure (a default or a partial impossibility to pay) are bigger than
the size of a country in terms of its ratio of GPD over the total market. In
the paper we showed that countries that are not so big for GDP can have
a significant impact on the WTW network depending on the size of their
connections with others.

For what concerns possible future development, our work opens several
challenges. To start with, we plan to test BM on other socio-economical
networks, mainly financial ones. As written above, BM precision depends
on how well fitness model describes real network. With WTW the fitness
model works surprisingly well and it reproduces topological properties of
any order [18]. We therefore need to test BM in more general cases, for
example with networks where fitness model is less accurate and reproduces
just some property.
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