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Abstract
We study chemical reaction networks (CRNs) as a kernel language
for concurrency models with semantics based on ordinary differen-
tial equations. We investigate the problem of comparing two CRNs,
i.e., to decide whether the trajectories of a source CRN can be
matched by a target CRN under an appropriate choice of initial
conditions. Using a categorical framework, we extend and relate
model-comparison approaches based on structural (syntactic) and
on dynamical (semantic) properties of a CRN, proving their equiv-
alence. Then, we provide an algorithm to compare CRNs, running
linearly in time with respect to the cardinality of all possible com-
parisons. Finally, we apply our results to biological models from
the literature.

Categories and Subject Descriptors F.1.1 [Models of Computa-
tion]: Relations between models

Keywords chemical reaction networks, bisimulation, model com-
parison, ordinary differential equations

1. Introduction
Chemical reaction networks (CRNs) are an established model of
interaction in many natural sciences such as organic and inorganic
chemistry, ecology, epidemiology, and systems biology. In infor-
matics, they have been receiving increasing attention due to the
powerful analogy between computational processes and molecu-
lar systems [21], leading to a wealth of cross-fertilization that has
produced, to cite a few, foundational results on the computational
power of CRNs (e.g., [14, 27]), languages for the specification
of complex biomolecular systems [9], and model-reduction tech-
niques based on traditional approaches within theoretical computer
science such as abstract interpretation [10] and bisimulation [4, 15].

In this paper we study the problem of comparing CRNs with
respect to their deterministic trajectories generated by the well-
known quantitative semantics based on ordinary differential equa-
tions (ODEs). This associates each species of the CRN with an
ODE that provides the net change of its concentration as a function
of time. We are mainly motivated by applications where the hitherto

[Copyright notice will appear here once ’preprint’ option is removed.]

unavailable possibility of formally (and automatically) comparing
CRNs may provide answers of biological relevance. For instance,
a subject of investigation in evolutionary biology is to understand
whether a system can be postulated to have evolved into another
one that still retains some of the original behavior [2, 3]. In DNA
computing, one would like to compare a specification CRN, which
just represents the actual dynamics of interest, with respect to an
implementation CRN, where the interactions reflect certain physi-
cal and technological constraints imposed by the materials and pro-
tocols employed [23].

We formulate the comparison problem as the question of de-
ciding whether the ODE solution of a given source CRN can be
matched by a target CRN under an appropriate choice of initial
conditions. More precisely, we ask for a mapping between the
ODEs of the two CRNs such that the solutions coincide at all time
points. This notion, called emulation, has been recently introduced
in [2], but no procedure to compute it was provided. Later, emula-
tion has been related in [5] to a backward differential equivalence
(BDE). This is an equivalence relation over the variables of an ODE
system such that equivalent variables have the same ODE solutions
whenever initialized equally. Thus, emulation can be seen as a par-
ticular BDE over the ODE of the “union CRN” containing both
the source and target networks; this is somewhat reminiscent of the
typical approach for relating two process models by means of some
behavioral equivalence over their disjoint union (e.g. [12]).

A partition-refinement algorithm to compute the largest BDE
(i.e., the unique BDE relation that contains any other BDE rela-
tion) has been provided in [5]. It cannot be used, however, to find
emulations. This is because a BDE may not represent a mapping
from source species into target species. For instance, an equiva-
lence class may not contain any species of the target CRN; or it may
contain more than one (which would also impose the constraint that
equivalent target species have the same initial conditions). In fact,
finding an emulation means nothing else than finding a BDE where
each equivalence class contains exactly one species of the target
CRN and at least one species of the source CRN.

Our main goal is to develop a framework for CRN comparison
together with an algorithm to compute all possible emulations
between networks. Not only do we consider comparisons at the
dynamical/semantic level through emulation, but we also study
comparisons at the structural/syntactic level. In particular, we are
concerned with establishing mappings of species and reactions
from the source CRN to the target CRN. Practically, this is useful
in applications because it allows one to understand, for instance,
how a certain functionality, i.e., a reaction, can be found across
two networks. This is relevant in the aforementioned evolutionary
studies [2, 3]. From a theoretical viewpoint, structural relations
are interesting because they provide a finitary, discrete view for a
behavior evolving over continuous time and state space.
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Structure and dynamics have been only partially related in [2].
The notions of stoichiomorphism and reactant morphism provide
syntactic conditions that are sufficient to obtain an emulation at
the ODE level; however, the converse does not hold. The first
contribution of our paper is to fully reconcile these two levels. In
the same spirit of [2], we develop a new structural notion, called
flux morphism, that characterizes emulation between CRNs. We
show this in a categorial setting where we prove that the category of
CRNs with flux morphisms as arrows is equivalent to the category
of CRNs where arrows are emulations.

A naive algorithm for finding all emulations between two CRNs
would employ the brute-force approach of trying out all possible
partitions that are refinements of the largest BDE for the ODE sys-
tem of the union CRN. Obviously, however, this is an intractable
task if not for trivial models. We avoid this naive exploration by
exploiting a novel geometric interpretation of BDE and, interest-
ingly, using the coarsest BDE refinement algorithm [4–6] as an in-
ner step. Our key insight is that a BDE induces a linear space that
can be spanned by an appropriate subset of the generalized eigen-
vectors for the Jacobian matrix. Based on this fact, the algorithm
starts by building an initial set of so-called guiding partitions from
these generalized eigenvectors. (Each such generalized eigenvector
induces the finest partition of the species such that two species are
in the same block iff the corresponding coordinates of the general-
ized eigenvector are equivalent.)

The main step is to observe that given a BDE, a refinement can
be obtained by computing the coarsest BDE of that partition subject
to the condition that it is also a refinement of a guiding partition.
The algorithm collects these refinements by recursively visiting the
BDE partition obtained by refining the current one with each and
every guiding partition, starting from the largest BDE of the origi-
nal ODE system. The properties of the guiding partitions guarantee
that the algorithm returns all BDE partitions. The algorithm takes
as input an ODE system with a totally differentiable drift; hence, a
fortiori it provides all possible emulations between two CRNs. In
addition, by our categorical characterization result, any emulation
that the algorithm finds can be always related to structural relations
between the two CRNs under consideration.

We show the usefulness of our results by studying CRN compar-
isons of models of biological systems examined in [2]. With a pro-
totype implementation of the algorithm, we were able to confirm all
the emulations manually derived in [2], and to establish new emu-
lations for further models that were previously not considered. Ad-
ditionally, we were able to show that certain models studied in [2]
cannot be related by means of an emulation. In this context, we
make also a contribution of theoretical nature. The conditions for
emulation/BDE typically depend on a given choice of the rate pa-
rameters. We introduce a class of CRNs, so-called unimodal influ-
ence networks (which include all models of [2] and many others
in the literature, e.g. [24]), for which the absence of an emulation
for any choice of rates is implied by the absence of emulation for a
specific choice of rates (i.e., when they are all set to one).

Further related work. CRN comparisons have been recently pro-
posed in several works [16, 17, 22], but none of them takes reaction
rates into account. A notion of CRN comparison that considers ki-
netics is presented in [23], but this is specialized for a specific im-
plementation of a CRN using DNA; furthermore, technically the
result of correspondence therein established is based on an asymp-
totic fast-slow decomposition of the dynamics whereby fast species
are assumed to be found in the stationary regime, while emulation
requires equivalent traces at all time points.

BDE generalizes backward bisimulation developed in [4] which
applies only to elementary CRNs (i.e., networks with reactions
having at most two reagent species). In addition, we use BDE in
this paper because the algorithm for computing all BDE partitions,

as discussed, works for more general ODEs for which the coarsest-
refinement algorithm of [5] can be used.

The idea of exploiting geometrical properties of the ODE sys-
tem can be traced back to a seminal work by Li and Rabitz. In [19]
they show that aggregations via a linear transformation of the state
space can be related to the Jacobian matrix of the ODE system.
There are two crucial differences with respect to our contribution.

i) The aggregations examined in [19] concern the possibility of
deriving a new ODE system where each variable represents
a linear combination of the original variables. Unlike many
model-reduction approaches for CRNs (e.g., [1, 7, 8, 10]) or
control systems (see [26] and references therein) BDE cannot
be seen as an instance of that framework. Hence, its geometric
interpretation is a new result in its own right.

ii) The results of [19] are specific to mass-action ODE systems
for elementary CRNs, while our algorithm works for totally
differentiable drifts. In addition, a possible implementation
of [19] would require symbolic reasoning over infinite sets,
which our algorithm can avoid by using the syntax-driven
partition-refinement approach of [4].

Structure of the paper. Section 2 sets the scene by providing
the previously established notions of morphism, emulation and
BDE [2, 5]. Section 3 first introduces the notion of flux morphism
and then generalizes all major results of [2, 5]. Using those novel
results, we then prove that the category of CRNs with flux mor-
phisms as arrows is equivalent to the category of CRNs where ar-
rows are emulations. We continue in Section 4 by providing an al-
gorithm that computes all BDE partitions of an ODE system un-
derlying a totally differentiable drift. This algorithm is then used in
Section 5 to decide whether certain CRNs from evolutionary biol-
ogy are related by means of emulation.

2. Preliminaries
Notation. Throughout the paper, S is a set of indices. We write
A → B and BA for the functions from A to B. Moreover, we set
dom(f) = {a | ∃b((a, b) ∈ f)}, f(X) = {f(a) | a ∈ X} and
f−1(Y ) = {a ∈ dom(f) | f(a) ∈ Y } for all X ⊆ dom(f)
and Y ⊆ f(dom(f)). A set X ⊆ dom(f) is called invariant with
respect to a function f if f(X) ⊆ X .

Comparison of ODE systems. Let the drift f : RS → RS
be totally differentiable. Adopting Newton’s notation, v̇ = f(v)
denotes the ODE system given, in components, by v̇x = fx(v),
where x ∈ S. Given an initial condition v(0) ∈ RS , Picard-
Lindelöf’s theorem ensures that v̇ = f(v) has a unique solution
v : dom(v) → RS , t 7→ v(t). The assumption dom(f) = RS is
made to simplify presentation and can be easily removed.

Definition 1 (Backward differential equivalence). Fix a drift f :
RS → RS and a partitionH of S. A vector v ∈ RS is constant on
H if for all x, y ∈ H and H ∈ H it holds that vx = vy . We callH
backward differential equivalent (BDE) if, for any v ∈ RS that is
constant onH, also f(v) is constant onH.

In BDE, the trajectories of equivalent variables are identical if
initialized with the same values.

Theorem 1. A partitionH is BDE if and only if, for any v(0) ∈ RS
that is constant on H, the solution of v̇ = f(v) with initial
condition v(0), v(t), is constant onH for all t ∈ dom(v).

Example 1. Let S = {x, y} and consider the drift

fx(v) = −2 · v2x + v2y fy(v) = −2 · v2y + v2x

Then, the partition {{x, y}} of S is BDE and vx(t) = vy(t) for all
t ≥ 0 whenever vx(0) = vy(0).
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We take the notion of emulation from [2].

Definition 2 (Emulation). Fix a source drift f : RS → RS and
target drift f̂ : RŜ → RŜ . The surjective function µ : S → Ŝ is an
emulation if fx(v̂ ◦ µ) = f̂µ(x)(v̂) for all v̂ ∈ RŜ and x̂ ∈ Ŝ.

Note that v̂ ◦ µ ∈ RS and (v̂ ◦ µ)x = v̂µ(x) for all x ∈ S.
Two ODE systems are related by means of an emulation if the
trajectories of the source ODE system coincide with those of the
target ODE system whenever the initial conditions of both systems
are equal with respect to µ, as stated next.

Theorem 2. Let µ : S → Ŝ be an emulation between the
source ODE system f : RS → RS and the target ODE system
f̂ : RŜ → RŜ . Then, v(t) = v̂(t) ◦ µ for all t ≥ 0 whenever
v(0) = v̂(0) ◦ µ.

Example 2. Consider Ŝ = {x̂} and f̂x̂(v̂) = −v̂x̂. Then the
function µ(x) = µ(y) = x̂ is an emulation between f : R{x,y} →
R{x,y} and f̂ : R{x̂} → R{x̂}, where f is as in Example 1. In
particular, it holds that v̂x̂(t) = vx(t) = vy(t) for all t ≥ 0
whenever v̂x̂(0) = vx(0) = vy(0).

The example above indicates that there is a close relation be-
tween emulation and BDE, as observed in [4].

Proposition 1. Fix a source drift f : RS → RS , a target drift
f̂ : RŜ → RŜ with S∩Ŝ = ∅ and a surjective function µ : S → Ŝ.
The partition {µ−1(x̂) ∪ {x̂} | x̂ ∈ Ŝ} is a BDE if and only if µ is
an emulation.

Chemical Reaction Networks. Formally, a CRN (S,R) is a pair
consisting of a finite set of species S and a finite set of chemical
reactions R. A reaction is a triple written in the form ρ →α π,
where ρ and π are the multisets of species reactants and products,
respectively, and α > 0 is the reaction rate parameter. We denote
by ρ(x) the multiplicity of species x in the multiset ρ. The flux
stoichiometry φ(x, r) of a species x in a reaction r = ρ →α π is
the difference between product and reactant multiplicity, times the
rate coefficient α, i.e. φ(x, r) = φ(x, ρ →α π) = α · (π(x) −
ρ(x)). It describes the amount of substance x transformed through
reaction r in a time unit. A given µ : S → Ŝ can be trivially lifted
to multisets over S, e.g., µ(x+ y) = µ(x) + µ(y).

The ODE system v̇ = f(v) underlying a CRN (S,R) is f :
RS → RS , where each component fx, with x ∈ S, is defined as

fx(v) :=
∑

ρ→απ∈R

φ(x, ρ→α π) · Jρ→α πKv

:=
∑

ρ→απ∈R

(π(x)− ρ(x)) · α ·
∏
y∈S

vρ(y)y

Example 3. The network ({x, y}, {x + x →1 y, y + y →1 x})
induces the drift of Example 1.

This represents the well-known mass-action kinetics, where the
reaction rate is proportional to the concentrations of the reactants
involved. Since the ODE system of a CRN is given by polynomials,
the drift f is totally differentiable, meaning that there exists a
unique solution of v̇ = f(v) for any initial condition v(0).

Theorem 3 (see [4, 5]). For any partition G of S, the coarsest
BDE partition H that refines G exists and can be calculated using
a partition refinement algorithm.

Structural properties of CRNs. Emulation is a dynamical prop-
erty of an ODE system that is implied by the syntactical properties
of CRNs reactant morphism and the stoichiomorphism from [2].

Definition 3. Let (S,R) and (Ŝ, R̂) denote the source and the
target CRNs, respectively. A pair of functions (µ, σ) ∈ (S →
Ŝ)× (R→ R̂) is

• a reactant morphism if, for all ρ →α π ∈ R there exist α̂ and
π̂ with σ(ρ→α π) = µ(ρ)→α̂ π̂ ∈ R̂.

• a stoichiomorphism whenever
∑
r∈σ−1(r̂) φ(x, r) = φ(µ(x), r̂)

for all x ∈ S and r̂ ∈ R̂.

Theorem 4 (see [2]). Fix a source network (S,R), a target net-
work (Ŝ, R̂) and let (µ, σ) ∈ (S → Ŝ)× (R → R̂) be a reactant
morphism and stoichiomorphism. Then, µ : S → Ŝ is an emulation
between the source drift f and the target drift f̂ .

Category theory. Following the usual notation, we denote by |C|
the objects of a given category C, while HomC(a, b) refers to the set
of arrows from object a to object b, where a, b ∈ |C|. A function
between categories Ψ : C → D is called a functor if Ψ(a) ∈ |D|
for all a ∈ |C| and Ψ(ψ) : Ψ(a) → Ψ(b) ∈ HomD(Ψ(a),Ψ(b))
for all ψ : a → b ∈ HomC(a, b). Additionally, Ψ has to preserve
identities and compositions.

Definition 4. A functor Ψ establishes the equivalence of categories
C and D if for any a, b ∈ |C| it holds that

• the function Ψ : HomC(a, b) → HomD(Ψ(a),Ψ(b)) is bijec-
tive;

• and for each d ∈ |D| there exists some c ∈ |C| such that d is
isomorphic to Ψ(c).

3. Equivalence of Structure and Dynamics
Flux morphisms. Ordinary morphisms from [2] are only suffi-
cient conditions for emulation in general.

Example 4. Consider the source network

x+ y →1 x x+ z →1 x

y + z →1 y y + z →1 2z + y

and the target network x̂ + ŷ →1 x̂. Then, µ(x) := x̂ and
µ(y) := µ(z) := ŷ defines an emulation µ : S → Ŝ. However,
there exists no σ : R→ R̂ such that (µ, σ) is a reactant morphism.
This is because the reactions y + z →1 y and y + z →1 2z + y
are “redundant”, i.e., they can be dropped without affecting the
underlying drift. At the same time, they introduce the reactant y+z
that yields 2ŷ = µ(y + z) 6= x̂+ ŷ.

We tackle this problem by introducing the notion of quotient
reactant morphism.

Definition 5. Two reactions r1 = ρ1 →α1 π1, r2 = ρ2 →α2

π2 ∈ R of a CRN (S,R) are reactant equivalent, written r1 ∼ r2, if
and only if ρ1 = ρ2. In the following, let [r] denote the equivalence
class of r with respect to ∼. Moreover, for any given multiset ρ′,
define R|ρ′ = {ρ→α π ∈ R | ρ = ρ′}.

Note that [ρ→α π] = R|ρ for any ρ→α π ∈ R.

Definition 6. Fix a source CRN (S,R) and a target CRN (Ŝ, R̂).
A total surjective function µ : S → Ŝ and a partial function
σ : R/∼ ↪→ R̂/∼ form a quotient reactant morphism if

i) for any [ρ→α π] ∈ R/∼, the function σ is either undefined if
R̂|µ(ρ) = ∅ or it satisfies

σ([ρ→α π]) = R̂|µ(ρ) when R̂|µ(ρ) 6= ∅ (1)

ii) the union of classes for which σ is not defined is redundant
with respect to µ, i.e. for all x ∈ S and v̂ ∈ RŜ it holds that
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0 =
∑
r∈R0

φ(x, r) · JrKv̂◦µ, where R0 =
⋃
{e ∈ R/∼ | e /∈

dom(σ)}.
Example 5. With µ as in Example 4 and σ given by

σ([x+ y →1 x]) = σ([x+ z →1 x]) = [x̂+ ŷ →1 x̂],

σ([y + z →1 y]) = ∅,

(µ, σ) is a quotient reactant morphism because y + z →1 y and
y + z →1 2z + y of the source network cancel each other out.

In order to lift Theorem 4 to the new notion of quotient reactant
morphism, the notion of stoichiomorphism has to be relaxed as
well.

Definition 7. For a source CRN (S,R) and a target CRN (Ŝ, R̂),
the total surjective function µ : S → Ŝ and the partial function
σ : R/∼ ↪→ R̂/∼ form a quotient stoichiomorphism if for all
x ∈ S and ê ∈ R̂/∼ it holds that∑

e∈σ−1(ê)

∑
r∈e

φ(x, r) =
∑
r̂∈ê

φ(µ(x), r̂)

The quotient reactant morphism discussed in Example 5 is eas-
ily verified to be a quotient stoichiomorphism.

Definition 8. For a source CRN (S,R) and a target CRN (Ŝ, R̂),
a mapping (µ, σ) ∈ (S → Ŝ) × (R/∼ ↪→ R̂/∼) is called flux
morphism if (µ, σ) is a quotient reactant morphism and a quotient
stoichiomorphism.

The following result shows that a reactant morphism and a
stoichiomorphism give rise to a flux morphism.

Theorem 5. If (µ, σ) : (S,R) → (Ŝ, R̂) is a reactant morphism
and stoichiomorphism, then (µ, σ) : (S,R/∼) → (Ŝ, R̂/∼),
where σ is induced by σ via σ([r]) := [σ(r)], is a flux morphism.1

The result below, instead, shows that Theorem 4 carries over to
flux morphisms.

Theorem 6. Fix a source CRN (S,R), a target CRN (Ŝ, R̂) and
let (µ, σ) ∈ (S → Ŝ) × (R/∼ ↪→ R̂/∼) be a flux morphism.
Then, µ is also an emulation, meaning that f(v̂ ◦ µ) = f̂(v̂) ◦ µ
for all v̂ ∈ RŜ .

For instance, since (µ, σ) from Example 5 defines a flux mor-
phism, µ : S → Ŝ is an emulation.

The following is a partial converse of Theorem 6: emulation and
quotient reactant morphism yield a quotient stoichiomorphism. It is
an important step towards our first main result.

Proposition 2. Fix a source CRN (S,R), a target CRN (Ŝ, R̂) and
let (µ, σ) ∈ (S → Ŝ) × (R/∼ ↪→ R̂/∼) be a quotient reactant
morphism and µ an emulation. Then, (µ, σ) is also a quotient
stoichiomorphism.

We are in a position to state our first main result. It is a converse
of Theorem 6 and, as has been observed in Example 4, cannot be
stated on the domain of ordinary notions from [2].

Theorem 7. Fix a source CRN (S,R), a target CRN (Ŝ, R̂) and
a function µ : S → Ŝ. Then, µ is an emulation if and only if
(µ, σ) is a flux morphism where σ is the unique partial function
σ : R/∼ ↪→ R̂/∼ that satisfies condition (1).

Proof. Since the only if direction follows from Theorem 6, let us
assume that µ : S → Ŝ is an emulation and set σ([ρ →α π]) :=

1 Note to the reviewers. The proofs are in the appendix that will be published
in the case of acceptance.

R̂|µ(ρ) if R̂|µ(ρ) 6= ∅. Thanks to Proposition 2, it suffices to show
that the so defined (µ, σ) is a quotient reactant morphism.

Let f ′ denote the aggregated drift underlying µ that arises from
the drift f of (S,R), that is

f ′µ(x)(v̂) =
∑

ρ→απ∈R

φ(x, r) · Jµ(ρ)Kv̂

for all x ∈ S and v̂ ∈ RŜ . Note that f ′ is well-defined because
µ is an emulation, that is it holds that f ′µ(x)(v̂) = f ′µ(x′)(v̂) if
µ(x) = µ(x′). Instead, let f̂ denote the drift of (Ŝ, R̂). Since µ is
an emulation, we have

f̂µ(x)(v̂) = fx(v̂ ◦ µ) = f ′µ(x)(v̂)

for all x ∈ S and v̂ ∈ RŜ . Note that the above equalities hold for all
v̂ ∈ RŜ and x ∈ S. Hence, since two polynomials that coincide on
all values need to have the same monomials, we thus infer that f̂x̂
and f ′x̂ have the same monomials for all x̂ ∈ Ŝ. By construction, the
monomials of f ′ are contained in {c ·µ(ρ) | ρ→α π ∈ R, c ∈ R}.
Hence, if ρ →α π ∈ R and there are no α̂, π̂ such that µ(ρ) →α̂

π̂ ∈ R̂, we infer that reactions {ρ′ →α′ π′ ∈ R | µ(ρ′) = µ(ρ)}
are redundant for all v̂ ◦ µ with v̂ ∈ RŜ . This shows that (µ, σ) is
a quotient reactant morphism.

Example 6. Let (µ, σ) be as in Example 5. Then, Theorem 7
implies that µ : S → Ŝ is an emulation between the source and
the target network. Conversely, by Theorem 7, it suffices to show
that µ : S → Ŝ is an emulation to infer that the unique σ that is
induced by (1) and µ is such that (µ, σ) is a flux morphism.

Using Theorem 7 we next prove that flux morphism implies the
notion of BDE, and vice versa.

Theorem 8. Fix a source CRN (S,R) and a target CRN (Ŝ, R̂)

with S ∩ Ŝ = ∅. Then, there is a flux morphism (µ, σ) : (S →
Ŝ)× (R/∼ ↪→ R̂/∼) if and only if there exists a BDE partitionH
of S ∪ Ŝ such that |H ∩ S| ≥ 1 and |H ∩ Ŝ| = 1 for all H ∈ H.

Example 7. We have seen that (µ, σ) from Example 5 is a flux
morphism and used Theorem 7 in Example 6 to conclude that
µ : S → Ŝ is an emulation. Proposition 1 ensures that

{µ−1(x̂) ∪ {x̂} | x̂ ∈ Ŝ} = {{x, x̂}, {y, z, ŷ}}

is a BDE partition of the union CRN (S∪Ŝ, R∪R̂), thus confirming
the if direction of Theorem 8.

We end the paragraph by partially lifting the “change of rates”
theorem of [2] to flux morphisms. It states, essentially, that mor-
phisms respect, to a certain degree, a change of rate coefficients.

The following notions will be needed.

Definition 9. Fix a CRN (S,R). A bijection ι : R → R′ that
satisfies ι(ρ →α π) = ρ →α′ π for all ρ →α π ∈ R is called a
change of rates.

Definition 10. We call a set of reactions ∼-uniform if any two
reactions ρ1 →α1 π1, ρ2 →α2 π2 ∈ R satisfy α1 = α2 if
ρ1 = ρ2. A change of rates is called ∼-uniform if it leads to a
∼-uniform set of reactions.

We are in a position to state the result.

Theorem 9. Fix a source CRN (S,R), a target CRN (Ŝ, R̂) with
a ∼-uniform set of reactions R̂ and let (µ, σ) ∈ (S → Ŝ) ×
(R/∼ ↪→ R̂/∼) be a flux morphism. Then, for any ∼-uniform
change of rates ι̂ : R̂ → R̂′, there exists a change of rates
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ι : R → R′ such that (µ, σ′) : (S,R′) ↪→ (Ŝ, R̂′), where σ′

is induced by µ : S → Ŝ and condition (1), is a flux morphism.

In [2] no assumptions were made on the nature of rate change.
This comes, however, at the price of making the stronger assump-
tion of ordinary morphisms.

The assumption in Theorem 9 cannot be dropped. To see this,
consider the source CRN x→α1 x, x→α2 2x and the target CRN
x̂ →β1 ∅, x̂ →β2 3x̂. If β1 = β2 = β, setting α1 = α2 = β
induces a quotient stoichiomorphism. Instead, if β1 = 10 and
β2 = 1, there is no pairα1, α2 > 0 for which there exists a quotient
stoichiomorphism.

Equivalence of structure and dynamics. We now build on our
findings to establish an equivalence result between the category of
structurally related networks Cm and the category of dynamically
related networks Ce.
Definition 11. The category Cm has CRNs as objects and flux
morphisms as arrows. The identity morphism of (S,R) is the pair
of identity functions (idS , idR), while the composition of two flux
morphisms (µ, σ) : (S,R) → (Ŝ, R̂) and (µ̂, σ̂) : (Ŝ, R̂) →
(Ŝ′, R̂′) is given by(

µ̂, σ̂
)
◦
(
µ, σ

)
(x, [ρ→α π]) :=

(
µ̂(µ(x)), R̂′|µ̂(µ(ρ))

)
The definition of Ce is straightforward and follows next.

Definition 12. The category Ce has CRNs as objects and emu-
lations as arrows. The identity emulation is given by the identity
function idS and the composition of emulations is defined in the
obvious way.

The next result ensures that Cm and Ce are indeed categories.

Lemma 1. Emulations and flux morphisms are closed under com-
position.

Category Cm relates CRNs that share the same structure, while
Ce relates CRNs that emulate each other. We relate now both
categories by means of a functor.

Definition 13. Set Ψ : Cm → Ce by Ψ((S,R)) = (S,R)
for all (S,R) ∈ |Cm| and by Ψ((µ, σ)) = µ for all (µ, σ) ∈
HomCm((S,R), (Ŝ, R̂)) and (S,R), (Ŝ, R̂) ∈ |Cm|.

Note that Ψ is a well-defined functor because Theorem 6 en-
sures that µ is an emulation if (µ, σ) is a flux morphism.

The next result is a consequence of Theorem 7. It states that by
studying structural properties of CRNs one does not lose symme-
tries present at the ODE level. It thus formally shows the equiva-
lence of structure and function on the level of CRNs in [2].

Theorem 10. The functor Ψ : Cm → Ce yields the equivalence of
Cm and Ce.

4. Algorithmic Model Comparison
In this section we present an algorithm for the calculation of all
BDE partitions underlying a totally differentiable drift f : RS →
RS . In addition to being of importance on its own in the area of
model reduction, it can be used to decide whether a source ODE
system f and a target ODE system f̂ are related by means of an
emulation. Thus, in particular, the algorithm provides a technique
to decide whether there exists an arrow between two given CRNs
in Ce (and, thanks to Theorem 10, also in Cm). In the case there are
arrows, the algorithm calculates all of them.

We reiterate that the partition refinement algorithm of Theo-
rem 3 cannot be used to tackle the problem because it calculates
the coarsest BDE partition but does not tell one whether this parti-
tion can be split further into finer BDE partitions. In particular, the

number of possible refinements of the coarsest BDE partition is still
too large to be analyzed efficiently. As discussed in Section 1, the
main idea behind our algorithm is to find a set of guiding partitions
which, if applied to the partition refinement algorithm, guarantees
to find any BDE partition. We thus perform a guided, instead of a
brute-force, search.

Calculating all BDEs. We first introduce the set of vectors UH
that is constant on a given partitionH of S and observe that UH is
a linear subspace of RS .

Lemma 2. Fix a partitionH of S. Then, the set UH := {v ∈ RS |
v is constant onH} is a linear subspace of RS .

For convenience, we write space instead of linear space. The
first step towards our algorithm is to observe that, whenever H is
a BDE partition, UH is an invariant space of the Jacobi matrix of
f evaluated at point 1 ∈ RS , written J(1), where 1x = 1 for
all x ∈ S. This observation is inspired by [19], where subspaces
underlying linear transformations of ODE state spaces are shown
to be invariant sets of the transpose of J(1).

Theorem 11. Fix a totally differentiable f : RS → RS and
assume that H is a BDE partition of S. It holds that J(1)v ∈ UH
for any v ∈ UH, meaning that UH is an invariant space of the
Jacobi matrix of f evaluated at 1 ∈ RS .

Proof. Recall that for a given drift f : RS → RS , v 7→ f(v),
a partition H of S is BDE if and only if f(v) is constant on H
whenever v is constant on H. Fix an arbitrary v′ ∈ UH. Since f is
totally differentiable, there exists a continuous function r : RS →
RS , v 7→ r(v) such that

f(v′ + v) = f(v′) + J(v′) · v + r(v)

for all v ∈ RS , r(v′) = 0 and limv→v′
r(v)
‖v−v′‖ = 0. (Note that

v 7→ f(v′) + J(v′) · v is the linearization of f at point v′.) Fix
arbitrary x, y ∈ H and H ∈ H. Then, in the case v ∈ UH, the
above discussion implies that

fx(v′ + v)− fy(v′ + v) = fx(v′)− fy(v′)

+ (J(v′) · v)x − (J(v′) · v)y + rx(v)− ry(v),

thus yielding

ry(v)− rx(v)

‖v‖ = 1
‖v‖

(
(J(v′) · v)x − (J(v′) · v)y

)
= (J(v′) · v

‖v‖ )x − (J(v′) · v
‖v‖ )y

Since v ∈ UH can be chosen arbitrarily small, this implies that
(J(v′) · v)x = (J(v′) · v)y for all v ∈ UH. Hence, UH is an
invariant space of J(v′) for any v′ ∈ UH. Since 1 ∈ UH, this
yields the claim.

Example. Set S = {1, 2, 3} and consider the drift f : RS → RS v1
v2
v3

 7→
 −v1v3 + v3v2
−v2v1 + v1v3
−v3v2 + v2v1


The Jacobi matrix at point 1 is then

J(1) =

 −1 1 0
0 −1 1
1 0 −1

 (2)

With this, it holds that J(1) · (1, 1, 1)T = (0, 0, 0)T , thus showing
that the subspace {η · (1, 1, 1)T | η ∈ R} of R3 is an invariant
space of J(1).
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Having established that any UH of a BDE partition H is an
invariant set of J(1), we ask ourselves next how to calculate the
invariant subspaces of J(1). This is a classic topic of linear algebra,
so let us recall some elementary notions.

Definition 14. Fix A ∈ RS×S . If λ ∈ R and w ∈ RS \ {0}
are such that Aw = λw, we call λ the eigenvalue corresponding
to the eigenvector w. The set of all eigenvalues of A is called
spectrum and is denoted by σ(A). The eigenspace of λ ∈ σ(A)
is given by Eλ(A) = {w ∈ RS | (A − λI)w = 0}. The
matrix A is diagonalizable if there exists a basis of RS consisting
of eigenvectors of A.

In order to simplify presentation, we first discuss the situation
in the special case where J(1) is diagonalizable.

Let us assume that W is an invariant set of J(1). Since J(1)
is diagonalizable and Eλ(J(1)) ∩ Eλ′(J(1)) = {0} whenever
λ 6= λ′, RS can be decomposed into the eigenspaces of J(1),
i.e. RS =

⊕
λEλ(J(1)). Moreover, since this implies thatW =⊕

λ(W ∩ Eλ(J(1))), we infer that any invariant set of J(1) can
be written as a direct sum of subsets of eigenspaces.

At the same time, any subspace of an eigenspace Eλ(J(1))
is an invariant space of J(1) because Aw = λw for all w ∈
Eλ(J(1)). Thus, it suffices to determine the set of all possible sub-
spaces of Eλ(J(1)). To get an idea how those look like, let us fix
some λ ∈ σ(J(1)) and assume that Eλ(J(1)) = 〈u1, u2, u3〉,
where 〈w′1, . . . , w′k〉 denotes the set of all linear combinations∑k
i=1 ηiw

′
i. The one dimensional invariant sets contained in

Eλ(J(1)) are then given by the family 〈η1u1 + η2u2 + η3u3〉
where η1, η2, η3 ∈ R such that |η1| + |η2| + |η3| 6= 0. Instead,
the two dimensional invariant sets of Eλ(J(1)) are given by the
families 〈ηu1 + η′u2, u3〉, 〈ηu1 + η′u3, u2〉 and 〈u1, ηu2 + η′u3〉
with |η| + |η′| 6= 0. Finally, there is only one three dimensional
invariant set, namely Eλ(J(1)) = 〈u1, u2, u3〉 itself.

The above discussion leads to the following.

Theorem 12. Let J(1) be diagonalizable. Then, for any BDE
space UH, there are linearly independent vectors wλ1 , . . . , w

λ
kλ
∈

Eλ(J(1)) with 0 ≤ kλ ≤ dimEλ(J(1)) such that UH =⊕
λ〈w

λ
1 , . . . , w

λ
kλ
〉.

Thus, if we fix for each λ ∈ σ(J(1)) a basis uλ1 , . . . , uλdimEλ ∈
RS of Eλ(J(1)), then for any wλi there exist coefficients η(λ,i)j ∈
R so that wλi =

∑dimEλ
j=1 η

(λ,i)
j uλj .

We now drop the assumption of J(1) being diagonalizable. To
this end, from now on until Theorem 14, we work on CS as a vector
space over the field C.

Definition 14 carries over to the complex case by replacing each
R with C. In particular, σ(A) ⊆ C.

Definition 15. For A ∈ CS×S , the generalized eigenspace of
λ ∈ σ(A) is E∗λ(A) = {z ∈ Cn | (A − λI)νλz = 0}, where νλ
denotes the algebraic multiplicity of λ. Call any z ∈ E∗λ(A) \ {0}
a generalized eigenvector of A.

It can be shown that E∗λ(A) is an invariant set of A for any
λ ∈ σ(A) and that Cn =

⊕
λE
∗
λ(A) over field C. Moreover, the

following well-known result holds.

Theorem 13. A matrix A ∈ CS×S is in Jordan normal form if all
entries not on the diagonal and the superdiagonal are zero and

A =

 A1

. . .
Ap

 , Ai =


λ 1

λ
. . .
. . . 1

λ



where λ ∈ σ(A). It can be shown that for any A ∈ CS×S
there exist a basis B ∈ CS×S of CS (over field C) consisting
of generalized eigenvectors of A such that B−1AB is in Jordan
normal form.

Let <(z) and =(z) denote the real and imaginary part of any
z ∈ C, respectively, and H = {(x, y) ∈ C | y ≥ 0} be the upper
half plane of C. We continue by generalizing Theorem 12.

Theorem 14. Let A ∈ RS×S and let B−1AB be a Jordan normal
form of A. Let Bλ = {zλ1 , . . . , zλdimE∗

λ
} ⊆ CS be the generalized

eigenvectors from B that span E∗λ(A) over field C. With

B′λ := {<(zλi ) | zλi ∈ Bλ} ∪ {=(zλi ) | zλi ∈ Bλ}

for all λ ∈ σ(J(1)) ∩ H, let Bλ = {uλ1 , . . . , uλdλ} be a basis
of 〈B′λ〉 over field R. Then, for any BDE space UH, there are
linearly independent vectors wλ1 , . . . , w

λ
kλ
∈ 〈Bλ〉 over field R

with 0 ≤ kλ ≤ dλ so that UH=
⊕

λ〈w
λ
1 , . . . , w

λ
kλ
〉 over field R.

The above result suggests the following. First, calculate a ba-
sis B ∈ CS×S underlying a Jordan normal form of J(1). After-
wards, compute Bλ from B ∈ CS×S for all λ ∈ σ(J(1)) ∩ H.
Then, any BDE space UH is spanned by vectors wλi where wλi =∑dλ
j=1 η

(λ,i)
j uλj with η(λ,i)j ∈ R and 1 ≤ i ≤ kλ.

Example. A possible Jordan decomposition D = B−1J(1)B of
J(1) from (2) is

D =

 0 0 0

0 3
2
−
√
3

2
i 0

0 0 3
2

+
√
3

2
i


B =

 1 −1 +
√

3i −1−
√

3i
1 −1−

√
3i −1 +

√
3i

1 2 2


From this, we infer that σ(J(1)) = {0, 3

2
−
√
3

2
i, 3

2
+
√

3
2
i}.

Applying the construction of Theorem 14, we obtain

B0 = {(1, 1, 1)T }
B 3

2
+
√

3
2
i

= {(−1,−1, 2)T , (−
√

3,
√

3, 0)T } (3)

From now on, let us fix some BDE partition H of S and write
UH =

⊕
λ〈w

λ
1 , . . . , w

λ
kλ
〉. Our goal is to provide an algorithm

that finds H by establishing kλ and wλ1 , . . . , w
λ
kλ

for all λ ∈
σ(J(1)) ∩H. To this end, we will need the following.

Definition 16. Given some v ∈ RS , let Hv denote the finest
partition of S on which v is constant, i.e. set Hv := S/≈v where
x ≈v y if and only if vx = vy . Moreover, let G(W) := {Hv | v ∈
W} for any subspaceW ⊆ RS .

Proposition 3. It holds that H refines Hv for any v ∈ UH. More
generally, H refines S/(≈v1 ∩ . . .∩ ≈vk ) for any v1, . . . , vk ∈
UH. Crucially, H is the coarsest BDE partition that refines all
Hwλi , where λ ∈ σ(J(1)) ∩H and 1 ≤ i ≤ kλ.

Recall that Theorem 3 features a partition refinement algorithm
that takes an initial partition G as input and returns the coarsest
BDE partition that refines G. SinceHwλi ∈ G(〈uλ1 , . . . , uλdλ〉), the
idea is to invoke our partition refinement algorithm with elements
from the finite set

⋃
λG(〈uλ1 , . . . , uλdλ〉) to perform the guided

search. Our second main result is stated next and follows from
Proposition 3.

Theorem 15. Given a drift f : RS → RS and the underlying
set of guiding partitions G :=

⋃
λGλ :=

⋃
λG(〈uλ1 , . . . , uλdλ〉),

Algorithm 1 computes the set of all BDE partitions B of S by
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// G is a list of BDE partitions
// todo and bdes are red-black trees that store partitions
bdes := ∅; todo := ∅
H := get coarsest bde(f, {S})
todo.add(H)
while

(
todo.empty() == false

)
do

H := todo.get()
for all G ∈ G do
H′ := get coarsest bde(f, new list[H;G])
if
(
todo.in(H′) == false and

bdes.in(H′) == false
)

then
todo.add(H)

end if
end for
bdes.add(H); todo.remove(H)

end while
return bdes

Algorithm 1: Takes a drift f and the underlying guiding set⋃
λGλ and calculates all BDE partitions of S.

invoking the partition refinement algorithm at most |B| · |G| + 1
times.

The overall complexity of Algorithm 1 also depends on the drift
and on how difficult it is to calculate the sets Gλ. For instance,
if the drift arises from a system of polynomials in |S| variables
with degree at most two and |R| denotes the number of monomials
present in all polynomials (as is the case in our applications of
Section 5), then the partition refinement algorithm needs at most
O(|R| · |S| · log(|S|)) steps [6]. By invoking an SMT solver, the
partition refinement algorithm has been extended to a much richer
class of drifts [5]. At the same time, however, it has been shown that
the class is expressive enough to encode tautology which is coNP-
complete. Hence, efficiency holds only in the case of subclasses.

We wish to point out that |B| · |G| + 1 is a worst case bound
that may be rarely attained in practice. To see why, assume for
simplicity that UH = 〈wλ1 , . . . , wλkλ〉 for some λ ∈ σ(J(1)) ∩ H.
Then, indeed, in all examples provided in Section 5, we could
observe that the number of subsets W ⊆ {wλ1 , . . . , wλkλ} such that
〈W 〉 is a BDE space was small. This implies that the coarsest BDE
partition that refines Hwλi for some 1 ≤ i ≤ kλ is likely to be H
itself. Put different, feeding the partition refinement algorithm with
a partition underlying one single Hwλi usually leads to a partition
that refines almost all remaining partitionsHwλj , where j 6= i.

We now turn to the calculation of Gλ, with λ ∈ σ(J(1)) ∩
H. For the ease of notation, we assume in the remainder of the
paragraph that S = {1, . . . , n} for some n ≥ 1. The following is
easily seen.

Remark 1. Theorem 14 ensures G(Bλ) = {Huλ1 } if dλ = 1.

In the case where dλ > 1, however, there are infinitely many
possible directions wλi /‖wλi ‖, see also discussion before Theo-
rem 12. Note, however, that if u ∈ 〈Bλ〉 has two coordinates,
say i and j, that coincide, then there exists an η ∈ Rdλ such that∑dλ
l=1 ηl · u

λ
l · ei =

∑dλ
l=1 ηl · u

λ
l · ej , where ek denotes the vector

whose k-th coordinate is 1 and all other coordinates are zero. This
motivates the following.

Definition 17. For any pair set P ⊆ {1, . . . , n}2, set LλP :={
η ∈ Rdλ | ∀(i, j) ∈ P

[∑dλ
l=1 ηl · u

λ
l · (ei − ej) = 0

]}
.

That is, LλP denotes the coordinates η with respect to basis
uλ1 , . . . , u

λ
dλ

that yield vectors u ∈ 〈Bλ〉 such that the i-th and
the j-th coordinates of u are equal for all (i, j) ∈ P . Note that any

set of pairs P ⊆ S2 induces the partition H = S/P∗, where P∗
denotes the transitive closure ofP . Thus, forP arbitrary, the setLλP
is the solution space of a linear system of equations Θη = 0 with
Θ ∈ R(n−m)×m and m = |S/P∗|. We get (n−m) rows because
each block {i1, . . . , iν} ∈ S/P∗ induces ν − 1 linear equations
that ensure u(ei1 − eik ) = 0 for all 2 ≤ k ≤ ν.

Our ultimate goal is to find allH ∈ Gλ by performing a search
on pair sets P . Note that P can be seen as a list of constraints
(namely, the pairs of coordinates that have to coincide) imposed
on the linear combinations of uλ1 , . . . , uλdλ . In particular, by adding
additional pairs to P , the dimension of LλP can either stay the same
or become smaller. (The dimension can stay the same, for instance,
if u(ei− ej) = 0 whenever u(ej − ek) = 0. In such case, one gets
Lλ{(i,j)} = Lλ{(i,j),(j,k)} = Lλ{(j,k)}, meaning that adding (j, k) to
{(i, j)} (or (i, j) to {(j, k)}) does not reduce the dimension.)

With this in mind, we make the following pivotal observation.
Define for any set of pairs P the underlying closure as P :=
{(i, j) | LP∪{(i,j)} = LP}. It is not hard to see that P is the
largest equivalence relation such that

∑dλ
l=1 ηl·u

λ
l ·(ei−ej) = 0 for

all (i, j) ∈ P and η ∈ LP . Consequently, the solution space LP
corresponds to the partition S/P in Gλ. Note also that Lid = Rdλ
and that dimLP∪{(i,j)} < dimLP = dimLP for any pair set P
and (i, j) /∈ P . Consequently, by starting with the closure id, the
set of all closures can be obtained recursively by visiting, for any
computed closure P , its underlying closures P ∪ {(i, j)}, where
(i, j) /∈ P .

The above observation is formalized in Algorithm 2. There,
psets contains the closures that are processed in the current
iteration of the main while loop in line 6. Since id = {(i, i) |
1 ≤ i ≤ n} corresponds to the maximal solution space Rdλ
and each iteration of the main while loop seeks to reduce the
dimension, psets is initialized with the closure of id. We now
discuss the body of the main while loop. Lines 8-15 compute
for each closure P ∈ psets the underlying guiding partition
{1, . . . , n}/P . In the case the solution space underlying a closure
P has dimension one, adding any further pair (i, j) /∈ P will lead
to the trivial solution space LP∪{(i,j)} = ∅. Consequently, we can
remove P from psets. Lines 21-41 construct the new pair sets
P = {P ∪ {(i, j)} | P ∈ psets, (i, j) /∈ P}. For any pair
set P ∈ P, line 34 calculates the underlying closure P . Line 37,
instead, ensures that new psets stores only pairwise different
elements. Although this check does not improve the worst case
bounds, it allows for a substantial speed-up in practice.

Before giving a formal statement concerning the correctness and
the running time of the algorithm, we first discuss it on an example.

Example. Let us apply Algorithm 2 to the bases given in (3). The
case B0 = {(1, 1, 1)T } yields G0 =

{{
{1, 2, 3}

}}
, so let us focus

on Bλ = {(−1,−1, 2)T , (−
√

3,
√

3, 0)T } with λ = 3
2

+
√

3
2
i.

We first calculate Lλ{(1,2)}, Lλ{(1,3)} and Lλ{(2,3)}. By definition,
(η1, η2) ∈ Lλ{(1,2)} whenever

0 =
(
η1(−1,−1, 2)T + η2(−

√
3,
√

3, 0)T
)

(e1 − e2),

which is equivalent to −η1 −
√

3η2 = −η1 +
√

3η2. That is,
Lλ{(1,2)} = {(η1, η2) | η2 = 0}. Further, we infer that (η1, η2) ∈
Lλ{(1,3)} if and only if −η1 −

√
3η2 = 2η1, yielding Lλ{(1,3)} =

{(η1, η2) | η2 = −
√

3η1}. In a similar fashion one obtains
Lλ{(2,3)} = {(η1, η2) | η2 =

√
3η1}. The vectors induced by

Lλ{(1,2)}, Lλ{(1,3)} and Lλ{(2,3)} are thus given by

(η1, η1, 2η1) = η1(−1,−1, 2)T + 0 · (−
√

3,
√

3, 0)T

(2η1,−4η1, 2η1) = η1(−1,−1, 2)T −
√

3η1(−
√

3,
√

3, 0)T
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(−4η1, 2η1, 2η1) = η1(−1,−1, 2)T +
√

3η1(−
√

3,
√

3, 0)T ,

where η1 ∈ R, respectively. Armed with this, we are in a position
to describe Algorithm 2.

SinceLλ{(1,2)},Lλ{(1,3)} andLλ{(2,3)} are pairwise different sub-
spaces of R2, it holds that id = id and the (trivial) guiding partition
{{1}, {2}, {3}} is added to gparts by lines 8-15. Afterwards,
lines 21-41 set new psets to {id ∪ {(1, 2)}, id ∪ {(1, 3)}, id ∪
{(2, 3)}} and the solutions spaces Lλ{(1,2)}, Lλ{(1,3)} and Lλ{(2,3)}
are computed. The first iteration finishes by giving psets the value
of new psets.

During the second iteration, lines 8-15 add {{1, 2}, {3}},
{{1, 3}, {2}}, {{1}, {2, 3}} to gparts while emptying psets.
This is because Lλ{(1,2)}, Lλ{(1,3)} and Lλ{(2,3)} are all of di-
mension one. The algorithm terminates then in the second itera-
tion with Gλ =

{
{{1}, {2}, {3}}, {{1, 2}, {3}}, {{1, 3}, {2}},

{{1}, {2, 3}}
}

.

The following crucial result can be shown.

Theorem 16. If dλ = 1, then Gλ = {uλ1}. Instead, if dλ > 1,
Algorithm 2 computes Gλ in at most O(n2dλ+4) steps.

Before giving the proof, we again stress that the above bounds
are only attained under the pessimistic assumption that lines 21-41
lead to pairwise different closures. In all models we have consid-
ered in Section 5, however, the algorithm showed decent perfor-
mance because each iteration had a substantial number of closures
P,P ′ ∈ psets and pairs (i, j) /∈ P , (i′, j′) /∈ P ′ such that
P ∪ {(i, j)} = P ′ ∪ {(i′, j′)}. In particular, in the case of a highly
symmetric network with n = 12 and maxλ dλ = 7, we were able
to calculate all BDE partitions in around 40 min on a 2.6 GHz Intel
Core i5 machine with 4GB of RAM.

We also argue that, although dλ can be as large as n, usually
maxλ dλ � n. In fact, it is well-known that the set of n × n
matrices that have n pairwise different eigenvalues (which suffices
maxλ dλ ≤ 2) is dense in Rn×n.

Remark 2. Algorithm 2 allows for a bounded computation if the
additional break condition

(
n
2

)
· |psets| > bound is added

in line 16. Although a bounded computation may fail to find all
BDE partitions, the number of missed partitions can be expected
to be small if bound is of decent size because, as pointed out in
the discussion after Theorem 15, Algorithm 1 needs usually only
a subset of the guiding set in order to find all BDE partitions.
Since the return value of Algorithm 1 returns always a set of BDE
partitions, the bounded computation approach is sound. It is also
complete if the computational bound is not exceeded during the
computation of the guiding set.

Proof. The correctness of the algorithm follows from the discus-
sion between Definition 17 and Example 4. In the following, all line
numbers refer to Algorithm 2. Let Pν be the content of psets at
the beginning of iteration ν of the while loop in line 6, where the
first iteration has index ν = 0. By construction, Algorithm 2 en-
sures that dimLP ≤ dλ − ν for any P ∈ Pν . Since closures
whose solution space has dimension one are removed in lines 8-15,
this ensures that there are at most dλ iterations of the main while
loop. Moreover, we note that lines 21-41 increase the number of
pair sets at most by the factor

(
n
2

)
≤ n2, hence |Pν | ≤ |Pν−1| ·n2

for all ν ≥ 1, thus yielding |Pν | ≤ (n2)ν for all ν ≥ 0. By
combining both statements, we infer that pset cannot exceed the
size of |Pdλ−1| ≤ (n2)dλ−1 = n2(dλ−1). We now take a closer
look at the algorithm. Any closure P is stored in terms of the corre-
sponding partition {1, . . . , n}/P and each partition is encoded by
a row vector p ∈ R1×n where p(i) denotes the smallest index of the
block to which i belongs to (e.g., the partition {{1, 3}, {2, 4}, {5}}

1: // psets and new psets are red-black trees of closures
2: // pset and new pset are pair set objects
3: // gparts is a binary search tree storing Gλ
4: pset.pairs := get closure(e1, . . . , edλ ); pset.dim := dλ
5: psets := {pset}; gparts := ∅
6: while true do
7: // Compute the guiding partition underlying each closure
8: for all pset in psets do
9: if (not gparts.in(get part(pset))) then

10: gparts.add(get part(pset.pairs))
11: end if
12: if (pset.dim == 1) then
13: psets.remove(pset)
14: end if
15: end for
16: if

(
psets.empty() == true

)
then

17: break
18: end if
19: // Generate new closures from the current ones
20: new psets := ∅
21: while

(
psets.empty() == false

)
do

22: pset := psets.get()
23: for all pairs (i, j) not in pset.pairs do
24: new pset := new pset(pset.pairs ∪{(i, j)})
25: // Construct the linear system of Lλnew pset.pairs
26: new lin sys := get lin sys(new pset.pairs)
27: // Compute the basis of Lλnew pset.pairs
28: basis := linsolve(new lin sys)
29: // If Lλnew pset.pairs = ∅, continue with next closure
30: if (basis is empty) then
31: continue
32: end if
33: // Compute the closure pset.pairs ∪ {(i, j)}
34: new pset.pairs := get closure(basis)
35: new pset.dim := get size(basis)
36: // If the closure new pset is not in new psets, add it
37: if (not new psets.in(new pset)) then
38: new psets.add(new pset)
39: end if
40: end for
41: end while
42: // Store new closures in psets
43: psets := new psets
44: end while
45: return gparts

Algorithm 2: Computes the guiding set Gλ.

is encoded by the row vector (1, 2, 1, 2, 5)). With this, lines 24, 26
and 28 can be solved in O(n3) steps. The computation in line 34
is accomplished in the following way. With v1, . . . , vd being the
vectors of basis, we first calculate Hv1 , . . . ,Hvd . Afterwards,
we compute the coarsest partition that refines all Hv1 , . . . ,Hvd .
Since d ≤ n, this needs at most O(n4) steps. We further note
that the number of entries in gparts, psets and new psets is
bounded by

∑ν
i=0(n2)i ≤ (n2)ν+1 in the ν-th iteration. Hence,

the add, remove and in methods of those red-black trees cost at
most O(log((n2)ν+1) · n) ≤ O(n2 · log(n)). (The multiplication
by n is due to the sorting with respect to partitions.)

This shows that the ν-th iteration of the main while loop costs at
most (n2)ν · O(n4) steps. Since lines 21-41 are not invoked in the
last iteration and there are at most dλ iterations, the total number of
operations is at most

∑
0≤ν≤dλ−1(n2)ν · O(n4) ≤ O(n2dλ+4).
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(a) NCC (b) GW (c) QI
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Figure 1: Unimodal influence networks from [2].

The computation of a Jordan decomposition of a matrix A ∈
Rn×n takes O(n3) steps. Instead, J(1) can be calculated in poly-
nomial time if the drift f is such that each fi : Rn → R is a
polynomial in several variables. Consequently, Algorithm 1 readily
applies to polynomial ODE systems.

Calculating all emulations. With Algorithm 1 it is easy to decide
whether two ODE systems are related by means of an emulation.
Fix a source drift f : RS → RS and a target drift f̂ : RŜ → RŜ
such that S ∩ Ŝ = ∅. Since one can always rename variables, we
can make this assumption without loss of generality.

Recall that Proposition 1 ensures that µ : S → Ŝ is an
emulation if and only if {µ−1(x̂) ∪ {x̂} | x̂ ∈ Ŝ} is a BDE
partition of S ∪ Ŝ. Thus, if we apply Algorithm 1 to the union
drift g : RS∪Ŝ → RS∪Ŝ where gx(w) = fx(w|S) and gx̂(w) =

f̂x̂(w|Ŝ) for all w ∈ RS∪Ŝ , all we have to do is to check whether
there exist BDE partitions H of S ∪ Ŝ that satisfy |H| = |Ŝ| and
|H ∩ S| ≥ |H ∩ Ŝ| = 1 for all H ∈ H.

Another approach is to apply Algorithm 1 to the source drift
f : RS → RS . In the case there are no BDE partitions H of S
that have exactly |Ŝ| blocks, the source and the target drifts cannot
be related to each other. In the case there are, one has to decide
for each H of S that satisfies |H| = |Ŝ| whether the target drift
is isomorphic to the aggregated drift underlying f and H. That
is, one has to decide whether there exist a µ : S → S with
H = {µ−1(x) | x ∈ µ(S)} and a renaming η : µ(S) → Ŝ

such that f̂x̂(v̂) = fη−1(x̂)(v̂ ◦ η ◦ µ) for all v̂ ∈ RŜ and x̂ ∈ Ŝ.
This has the advantage that Algorithm 1 considers the target drift f
instead of the union drift g, at the expense of deciding whether two
drifts are isomorphic. We use this approach in Section 5 because all
target networks considered there are of moderate size.

5. Applications
Figure 1 shows formal pictorial definitions of networks studied
in [2] and known as influence networks. Each symbol (e.g., x and y)
is a node that corresponds to three distinct chemical species (e.g.,
x0, x1, x2, and y0, y1, y2) and at most four chemical reactions.
The reactions depend on how nodes are connected in the influence
network. Each node can have a connection at each terminal: high
output (solid line), representing the species with subscript 0, low
output (dashed line), representing the species with subscript 2,
activation input (circle) and inhibition input (bar). Species with
index 1 introduce nonlinearity in transitions [2] and are never
otherwise connected to the network. If i and a are the inhibitor

and activation input species for node x, respectively, then x is
associated with the following reactions:

x0 + i→α01 i+ x1, x1 + i→α12 i+ x2,

x2 + a→α21 a+ x1, x1 + a→α10 a+ x0,

where α01, α12, α21, α10 are given rate coefficients of node x. An
influence network is called unimodal if all species are activated or
inhibited by at most one species.

The AM network models a cell cycle switch that is needed to
avoid genetic instability during replication [2]. One of the main re-
sults of [2] was to show, by hand, that all (unimodal) influence net-
works in Figure 1 emulate AM, which essentially means that they
implement more complex versions of a cell cycle switch. Using
larger networks instead of smaller ones of apparently equal func-
tion can be beneficial for a number of practical reasons, including
enhanced stability with respect to stochastic noise [3].

By invoking Algorithm 1, we were able to automatically redis-
cover the emulations from [2] (where any rate was set to 1). In
particular we confirmed that all networks in Figure 1 emulate AM.
Moreover, we applied our algorithm also to networks in Figure 2,
which are further possible evolutionary transitions between cell cy-
cle switches that were not covered in [2]. This provided us with a
computer aided proof for the fact that also those networks emulate
AM. Indeed we found the following union BDE partitions:

HGW’∪AM =
{
{x0, q0, r2, y0, z2}, {x1, q1, r1, y1, z1},
{x2, q2, r0, y2, z0}

}
,

HNCC’∪AM =
{
{x0, q2, r0, s2, y2, z0}, {x1, q1, r1, s1, y1, z1},
{x2, q0, r2, s0, y0, z2}

}
,

HNCC”∪AM =
{
{x0, p2, r2, s0, y0, z2}, {x1, p1, r1, s1, y1, z1},
{x2, p0, r0, s2, y2, z0}

}
.

The algorithm can also be used to verify that no emulation can
relate two unimodal influence networks. In such a case, one can
infer that two networks do not share certain biological properties,
such as switches. For instance we were able to verify that NCC
does not emulate GW in the case where all rate coefficients are set
to one, while they both emulate AM in those conditions.

These tests are replicable using our prototype implementation
available at http://sysma.imtlucca.it/tools/cage/.

As with all quantitative notions of model comparison, emulation
is sensitive to rate parameters. We now study how a more paramet-
ric analysis is possible in the case of unimodal influence networks.

First we show that the assumptions made in Theorem 9 can be
dropped. That is, the change of rates theorem from [2] carries over
to flux morphisms if the target is a unimodal influence network.

Theorem 17. Fix a source CRN (S,R), a target unimodal influ-
ence network (Ŝ, R̂) and let (µ, σ) ∈ (S → Ŝ)× (R/∼ ↪→ R̂/∼)

be a flux morphism. Then, for any change of rates ι̂ : R̂ → R̂′,
there exists a change of rates ι : R → R′ such that (µ, σ′) :

(S,R′) ↪→ (Ŝ, R̂′), where σ′ is induced by µ : S → Ŝ and condi-
tion (1), is a flux morphism.

Dually, it is interesting to ask whether the absence of emulations
holds true for all possible rates. Unfortunately, it is not clear how
to lift Algorithm 2 in the case when J(1) has variables as entries
because this leads to parametric bases Bλ. Another problem is that,
in general, the eigenvalues of a matrix with parameters cannot be
expressed in terms of formulae because of Abel’s impossibility
theorem. Instead, we tackle this problem in a different way.

Definition 18. Let (S,R) and (Ŝ, R̂) be some unimodal influence
networks. An emulation µ : S → Ŝ is triplet preserving if, for any
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(a) GW’ (b) NCC’ (c) NCC”

Figure 2: Unimodal influence networks not studied in [2].

triplet x0, x1, x2 of (S,R) there exists a triplet x̂0, x̂1, x̂2 of (Ŝ, R̂)
such that µ(x1) = x̂1 and {µ(x0), µ(x2)} = {x̂0, x̂2}.

In the case of unimodal influence networks, only triplet pre-
serving emulations reveal biologically meaningful relations (since
subscript-one species are intermediate). The next result is based on
Theorem 17 and allows one to argue about families of networks by
considering a single pair of networks with unit rates.

Theorem 18. Let (S,R) and (Ŝ, R̂) be unimodal influence net-
works and assume that µ : S → Ŝ is a triplet preserving emulation.
Then, µ is also an emulation of the networks (S,R′) and (Ŝ, R̂′),
where R′ and R̂′ arise from R and R̂, respectively, by changing all
rate coefficients to one.

For instance, since NCC does not emulate GW in the case where
all rate coefficients are set to one, Theorem 18 ensures that, for
any choice of rate coefficients, there exists no triplet preserving
emulation that relates NCC to GW. In a similar fashion, we were
able to show that there exists no triplet preserving emulation from
NCC to DN and from CCR to MI, respectively.

6. Conclusion
We have developed a framework for model comparison of chemi-
cal reaction networks based on the notion of emulation as a map-
ping between species from a source CRN into a target CRN. We
characterized this semantic property in terms of structural condi-
tions through flux morphisms. In addition to being useful in appli-
cations, this approach provides an explanation in terms of discrete
structures of behavior evolving as ordinary differential equations
over continuous time and state spaces.

We argued that the problem of finding emulations cannot be
simply cast to the more traditional question of computing a largest
behavioural equivalence, i.e. backward differential equivalence
(BDE), because one would further require the constraint that every
equivalence class contain exactly one species of the target CRN.
Instead, we developed a new algorithm for computing emulations,
that owes much to a novel (in computer science) geometric inter-
pretation of an equivalence relation.

For quantitative notions of model comparison, it has long been
argued that exact variants such as ours are too strong because they
heavily depend on the choice of the numerical parameters, suggest-
ing approximate notions instead (e.g., [11, 13, 18, 25]). Here we
have started to tackle this issue by finding a family of models to
which an emulation found with a given choice of parameter car-
ries over. In the special but biologically relevant case of (unimodal)
influence networks, instead, we proved that the absence of an emu-
lation for a specific choice of rates implies absence for any choice
of rates. In the longer term, we believe that our contribution can
be seen as a stepping stone on which to build approximate variants
understood as appropriate perturbations on exact comparisons.
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A. Proofs
Theorem 5. Although this result can be shown directly, we present
a short proof that uses Theorem 7. Since (µ, σ) is a reactant mor-
phism, we know that (σ(ρ →α π))|1 = µ(ρ). Hence, [σ(r)] =
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[σ(r′)] for all r′ ∈ [r]. Also, dom(σ) = R/∼ because dom(σ) =

R. Combining both observations yields σ([ρ →α π]) = R̂|µ(ρ)
for all ρ →α π ∈ R. This shows that σ is indeed the unique
function that is characterized by µ and condition (1). Noting that
(µ, σ) is a reactant morphism and stoichiomorphism, we conclude
by using [2] that µ is an emulation. Theorem 7 ensures then the
claim.

Theorem 6. Since (µ, σ) is a quotient stoichiomorphism, we have
for all x ∈ S and ê ∈ R̂/∼∑

e∈σ−1(ê)

∑
r∈e

φ(x, r) =
∑
r̂∈ê

φ(µ(x), r̂).

This and the fact that (µ, σ) is a quotient reactant morphism imply
that∑
e∈σ−1(ê)

∑
r∈e

φ(x, r) · JrKv̂◦µ =
∑

e∈σ−1(ê)

∑
r∈e

φ(x, r) · Jµ(r|1)Kv̂

=
∑
r̂∈ê

φ(µ(x), r̂) · Jr̂Kv̂

for all v̂ ∈ RŜ . Summing over all ê ∈ R/∼ yields∑
ê∈R̂/∼

∑
e∈σ−1(ê)

∑
r∈e

φ(x, r) · JrKv̂◦µ

=
∑

ê∈R̂/∼

∑
r̂∈ê

φ(µ(x), r̂) · Jr̂Kv̂

Thus, if R0 =
⋃
{e ∈ R/∼ | e /∈ dom(σ)} denotes the union of

classes for which σ is not defined, we observe∑
r∈R

φ(x, r) · JrKv̂◦µ = 0 +
∑

r∈R\R0

φ(x, r) · JrKv̂◦µ

=
∑

ê∈R̂/∼

∑
e∈σ−1(ê)

∑
r∈e

φ(x, r) · JrKv̂◦µ

=
∑

ê∈R̂/∼

∑
r̂∈ê

φ(µ(x), r̂) · Jr̂Kv̂

=
∑
r̂∈R̂

φ(µ(x), r̂) · Jr̂Kv̂,

where the first identity holds because (µ, σ) is a quotient reactant
morphism, while the third identity follows from the previous dis-
cussion.

Proposition 2. If R0 =
⋃
{e ∈ R/∼ | e /∈ dom(σ)} denotes the

union of classes for which σ is not defined, we observe that∑
r∈R

φ(x, r) · JrKv̂◦µ = 0 +
∑

r∈R\R0

φ(x, r) · JrKv̂◦µ

=
∑

ê∈R̂/∼

∑
e∈σ−1(ê)

∑
r∈e

φ(x, r) · JrKv̂◦µ

where the first identity holds true because (µ, σ) is a quotient
reactant morphism. Since it is also an emulation, it holds that∑

r∈R

φ(x, r) · JrKv̂◦µ =
∑
r̂∈R̂

φ(µ(x), r̂) · Jr̂Kv̂

for all x ∈ S and v̂ ∈ RŜ , thus yielding∑
ê∈R̂/∼

∑
e∈σ−1(ê)

∑
r∈e

φ(x, r) · JrKv̂◦µ =
∑
r̂∈R̂

φ(µ(x), r̂) · Jr̂Kv̂

Now, take any ê = [ρ̂ →α̂ π̂] ∈ R̂/∼ and consider the v̂ ∈ RŜ
such that v̂x̂ = 0 if ρ̂(x̂) = 0 and v̂x̂ = 1 otherwise. Then, for any
r̂ ∈ R̂, Jr̂Kv̂ = 1 if r̂|1 = ρ̂ and Jr̂Kv̂ = 0 otherwise. Since for

the so constructed v̂ only the reactions with ρ̂ as reagents are left as
non-zero summands, we conclude that∑

r̂∈[ρ̂→α̂π̂]

∑
r∈σ−1(r̂)

φ(x, r) =
∑

r̂∈[ρ̂→α̂π̂]

φ(µ(x), r̂)

Noting that this holds for all ê = [ρ̂ →α̂ π̂] ∈ R̂/∼ and x ∈ S
yields the claim.

Theorem 8. By setting H :=
{
µ−1(x) ∪ {x} | x ∈ Ŝ

}
, it is

straightforward to see that there exists an emulation µ : S → Ŝ
if and only if the exists a BB partition H of S ∪ Ŝ such that
|H ∩ S| ≥ 1 and |H ∩ Ŝ| = 1 for all H ∈ H. Thus, Theorem 7
yields the claim.

Theorem 9. For any ρ→α π ∈ R\dom(σ), we set ι′(ρ→α π) :=
ρ→α π. Since a change of rates affects only rates, this implies that
R′ \ dom(σ′) = R \ dom(σ) is redundant with respect to v̂ ◦ µ for
all v̂ ∈ RŜ , thus showing that (µ, σ′) is a quotient reactant mor-
phism. We are left with choosing the remaining rate assignments of
ι′ such that (µ, σ′) : (S,R′) ↪→ (Ŝ, R̂′) becomes a quotient sto-
ichiomorphism. Since (µ, σ) is a quotient stoichiomorphism, we
know that∑

e∈σ−1(ê)

∑
r∈e

(πr(x)− ρr(x)) · αr︸ ︷︷ ︸
=φ(x,r)

=
∑
r̂∈ê

(π̂r̂(µ(x))− ρ̂r̂(µ(x))) · α̂r̂︸ ︷︷ ︸
=φ(µ(x),r̂)

By assumption, this simplifies to∑
e∈σ−1(ê)

∑
r∈e

(πr(x)− ρr(x)) · αr

=
∑
r̂∈ê

(π̂r̂(µ(x))− ρ̂r̂(µ(x))) · α̂ê

Recall that we have assumed that a reaction can appear at most once
in a set of reactions. Hence, by indexing quantities by r (and r̂), we
can keep track of the stoichiometries and reaction coefficients. By
applying ι̂ to R̂, the quantity∑

r̂∈ê

(π̂r̂(µ(x))− ρ̂r̂(µ(x))) · α̂ê

is changed to ∑
r̂∈ê

(π̂r̂(µ(x))− ρ̂r̂(µ(x))) · α̂′ê

It suffices to show that, for all ê ∈ R̂/∼, the coefficients {αr |
r ∈

⋃
σ−1(ê)} can be replaced by the coefficients {α′r | r ∈⋃

σ−1(ê)} such that∑
e∈σ−1(ê)

∑
r∈e

(πr(x)− ρr(x)) · α′r

=
∑
r̂∈ê

(π̂r̂(µ(x))− ρ̂r̂(µ(x))) · α̂′ê

From above, it is easy to see that setting α′r := αr · α̂
′
ê
α̂ê

does the
job.

Lemma 1. It can be easily seen that a composition of emulations

is again an emulation, so let us fix flux morphisms (S,R)
(µ,σ)−−−→

(Ŝ, R̂), (Ŝ, R̂)
(µ̂,σ̂)−−−→ (Ŝ′, R̂′). Theorem 6 implies that µ̂ and µ

are emulations, thus ensuring that µ̂ ◦ µ is an emulation as well.
The claim follows then by Theorem 7.
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Theorem 10. Note that Ψ is well-defined because Theorem 6 en-
sures that µ is an emulation if (µ, σ) is a flux morphism. Let us fix
two (S,R), (Ŝ, R̂) ∈ |Cm|. We are left with proving that

Ψ : HomCm((S,R), (Ŝ, R̂))→ HomCe((S,R), (Ŝ, R̂))

is bijective. To this end, fix some emulation µ : S → Ŝ ∈
HomCe((S,R), (Ŝ, R̂)). Note that µ : S → Ŝ and (1) imply that
there can be at most one σ : R/∼ ↪→ R̂/∼ such that (µ, σ) is a flux
morphism. Theorem 7 ensures that this candidate function σ does
the job. Since (idS , idR) : (S,R) → (S,R) is an isomorphism,
|Ce| = |Cm| and Ψ((S,R)) = (S,R), the second property of
Definition 4 is trivially fulfilled and the proof is complete.

Lemma 2. We have to check that UH satisfies the three axioms of
a vector space. Obviously, 0 ∈ RS is constant on any partition, so
0 ∈ UH. Also, α · v is constant on H for any α ∈ R when v is
constant on H. Similarly, v + w is constant on H whenever v, w
are constant onH.

Theorem 12. Straightforward.

Theorem 13. In any decent linear algebra book.

Theorem 14. The result relies on a special version of Jordan de-
composition that is used in the field of dynamical systems, see
Section 1.8 in [20]. It implies that B :=

⋃
λ Bλ is a basis of

RS and that J(1) attains an almost diagonal form if we work on
the basis B instead of the canonical one. This nice form implies
then that UH =

⊕
λ〈w

λ
1 , . . . , w

λ
kλ
〉 with wλ1 , . . . , wλkλ ∈ 〈Bλ〉,

see [19].

Proposition 3. Straightforward.

Theorem 15. Direct consequence of Proposition 3.

Theorem 17. Observe that the proof of Theorem 9 relies on the fact
that ∑

e∈σ−1(ê)

∑
r∈e

(πr(x)− ρr(x)) · αr︸ ︷︷ ︸
=φ(x,r)

=
∑
r̂∈ê

(π̂r̂(µ(x))− ρ̂r̂(µ(x))) · α̂r̂︸ ︷︷ ︸
=φ(µ(x),r̂)

simplifies, under the assumption of ∼-uniformity, to∑
e∈σ−1(ê)

∑
r∈e

(πr(x)− ρr(x)) · αr

=
∑
r̂∈ê

(π̂r̂(µ(x))− ρ̂r̂(µ(x))) · α̂ê

In particular, note that the proof of Theorem 9 goes also through if,
for all ê ∈ R̂/∼, it holds that

• either (π̂r̂(µ(x))− ρ̂r̂(µ(x)) ≤ 0 for all r̂ ∈ ê and x ∈ S,
• or (π̂r̂(µ(x))− ρ̂r̂(µ(x))) ≥ 0 for all r̂ ∈ ê and x ∈ S.

Observe that since (Ŝ, R̂) is a unimodal influence network, Ŝ =⋃
j∈I{x̂

j
0, x̂

j
1, x̂

j
2} for some index set I . Fix an arbitrary ê ∈ R̂/∼

and x ∈ S. Let us assume that µ(x) = x̂j0 for some j ∈ I . We note
that (π̂r̂(µ(x)) − ρ̂r̂(µ(x)) = 0 for all reactions r̂ in which x̂j0
acts solely as an activator or inhibitor. Consequently, the only two
reactions in R̂ that may lead to (π̂r̂(µ(x)) − ρ̂r̂(µ(x))) 6= 0 are
x̂j0 + i→α01 i+ x̂j1 and x̂j1 + a→α10 a+ x̂j0 (where x̂j0 ∈ {i, a}
is possible as well). Since activators and inhibitors can be only low
and high species, the aforementioned reactions cannot belong to
ê at the same time, meaning ê satisfies the desired condition if
µ(x) = x̂j0 for some j ∈ I .

The case where µ(x) = x̂j2 for some j ∈ I is similar, so let us
assume that µ(x) = x̂j1 for some j ∈ I . Since (Ŝ, R̂) is a unimodal
influence network, it cannot act as an activator or inhibitor, meaning
that the only reactions in which x̂j1 appears are

x̂j0 + i→α01 i+ x̂j1, x̂j1 + i→α12 i+ x̂j2,

x̂j2 + a→α21 a+ x̂j1, x̂j1 + a→α10 a+ x̂j0.

Let us first assume that x̂j0 + i→α01 i+ x̂j1 = r̂ ∈ ê. Then, since
activators and inhibitors can be only low and high species, we have
x̂j1 + i →α12 i + x̂j2 /∈ ê and x̂j1 + a →α10 a + x̂j0 /∈ ê. Instead,
if i = x̂j2 and a = x̂j0, x̂j2 + a →α21 a + x̂j1 ∈ ê, but this is
fine because x̂j1 has, similarly to r̂, a positive stoichiometry in this
reaction. Similar arguments apply also to the other three cases, thus
showing the claim.

Theorem 18. Thanks to Theorem 17, we know that there exists
a rate change ι : R → R′′ such that µ is also an emulation
of the networks (S,R′′) and (Ŝ, R̂′). We next show that all rate
coefficients of R′′ are equal to one, i.e. R′′ = R′. To this end, we
work on (S,R′′) and (Ŝ, R̂′). Let us fix some triplet (x0, x1, x2) in
(S,R) and assume first that (µ(x0), µ(x1), µ(x2)) = (x̂0, x̂1, x̂2).
Then, the reactions underlying node x in (S,R) are

x0 + yi →α01 yi + x1, x1 + yi →α12 yi + x2,

x2 + zj →α21 zj + x1, x1 + zj →α10 zj + x0,

for some i, j ∈ {0, 2}, whereas the reactions underlying node x̂ in
(Ŝ, R̂′) are

x̂0 + ŷk →α̂01 ŷk + x̂1, x̂1 + ŷk →α̂12 ŷk + x̂2,

x̂2 + ẑl →α̂21 ẑl + x̂1, x̂1 + ẑl →α̂10 ẑl + x̂0,

for some k, l ∈ {0, 2}. This yields
v̇x0 = −α01vx0vyi + α10vx1vzj
˙̂vx̂0 = −α̂01v̂x̂0 v̂ŷk + α̂10v̂x̂1 v̂ẑl (4)

Let v(0) ∈ RS be such that v(0) = v̂(0)◦µwhere v̂â1(0) = 0 and
v̂â0(0) = v̂â2(0) = 1 for all triplets (â0, â1, â2) in (Ŝ, R̂). Since
µ is an emulation, we know that vx0 ≡ v̂x̂0 , yielding v̇x0 ≡ ˙̂vx̂0 .
This and (4) imply
−α01vx0vyi + α10vx1vzj ≡ −α̂01v̂x̂0 v̂ŷk + α̂10v̂x̂1 v̂ẑl

Exploiting vx0 ≡ v̂x̂0 and vx2 ≡ v̂x̂2 yields

vx0(α̂01v̂ŷk − α01vyi) ≡ v̂x̂1(α̂10v̂ẑl − α10vzj )

Since vx0(0) = 1 and v̂x̂1 = 0, we get (α̂01v̂ŷk (0)−α01vyi(0)) =
0. This, the choice of v and v̂ and the fact that k, i ∈ {0, 2}, in
turn, imply that (α̂01 − α01) = 0. Since α̂01 = 1, this shows that
α01 = 1.

Now, let v(0) ∈ RS be such that v(0) = v̂(0) ◦ µ where
v̂â0(0) = v̂â1(0) = v̂â2(0) = 1 for all triplets (â0, â1, â2) in
(Ŝ, R̂′). Arguing as above, we infer that

vx0(α̂01v̂ŷk − α01vyi) ≡ v̂x̂1(α̂10v̂ẑl − α10vzj )

By using the established relation α01 = α̂01 = 1 and evaluating
the above equation for t = 0, we infer that 0 = (α̂10 − α10),
thus showing α̂10 = α10 = 1. Similarly, it can be shown that
v̇x2(0) = ˙̂vx̂2(0) implies that α21 = 1 and α12 = 1.

The case (µ(x0), µ(x1), µ(x2)) = (x̂2, x̂1, x̂0) is shown in a
similar fashion. Since the triplet (x0, x1, x2) was chosen arbitrar-
ily, this shows the claim.
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