
Forward and Backward Bisimulations for Chemical
Reaction Networks
Luca Cardelli1, Mirco Tribastone2, Max Tschaikowski3, and
Andrea Vandin4

1 Microsoft Research & University of Oxford, UK
luca@microsoft.com

2-4 University of Southampton, UK
{m.tribastone,m.tschaikowski,a.vandin}@soton.ac.uk

Abstract
We present two quantitative behavioral equivalences over species of a chemical reaction network
(CRN) with semantics based on ordinary differential equations. Forward CRN bisimulation iden-
tifies a partition where each equivalence class represents the exact sum of the concentrations of
the species belonging to that class. Backward CRN bisimulation relates species that have the
identical solutions at all time points when starting from the same initial conditions. Both notions
can be checked using only CRN syntactical information, i.e., by inspection of the set of reactions.
We provide a unified algorithm that computes the coarsest refinement up to our bisimulations
in polynomial time. Further, we give algorithms to compute quotient CRNs induced by a bisim-
ulation. As an application, we find significant reductions in a number of models of biological
processes from the literature. In two cases we allow the analysis of benchmark models which
would be otherwise intractable due to their memory requirements.

1998 ACM Subject Classification D.2.4, G.1.7, J.2

Keywords and phrases Chemical reaction networks – ordinary differential equations – bisimula-
tion – partition refinement

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

At the interface between computer science and systems biology is the idea that biological
systems can be interpreted as computational processes [20, 11], leading to a number of formal
methods applied to study biomolecular systems [5, 16, 22]. In this context, chemical reaction
networks (CRNs), a popular mathematical model of interaction in natural sciences, can also
be seen as a kernel concurrent language for natural programming.

In this paper we present, for the first time to our knowledge, quantitative bisimulation
equivalences for CRNs with the well-known interpretation based on ordinary differential
equations (ODEs). (To make the paper self-contained, all background is given in Section 2.)
In this semantics, each species is associated with an ODE giving the deterministic evolution
of its concentration starting from an initial condition. Our bisimulations are equivalences
over species that induce a reduced CRN that exactly preserves the dynamics of the original
one. This is an important goal, especially in order to cope with the potentially very large
number of species and reactions in many biological networks [14, 15].

We study two equivalences, developed in the Larsen-Skou style of probabilistic bisim-
ulation [26], that are based on two distinct ideas of observable behavior. Forward CRN

© Luca Cardelli, Mirco Tribastone, Max Tschaikowski, and Andrea Vandin;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1–26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Forward and Backward Bisimulations for CRN

bisimulation yields an aggregated ODE where the solution gives the exact sum of the concen-
trations of the species belonging to each equivalence class. In backward CRN bisimulation,
instead, equivalent species have the same solution at all time points; in other words, backward
CRN bisimulation relates species whose ODE solutions are equal whenever they start from
identical initial conditions. The use of “forward” and “backward” has a long tradition in
models of computation based on labelled transition systems [17]. In the case of quantitative
variants, for instance those defined for process algebra with a continuous-time Markov chain
(CTMC) semantics [23, 24, 8, 4], forward bisimulations are equivalences that induce a CTMC
aggregation in the sense of ordinary lumpability [7], where the probability of an equivalence
class is equal to the sum of the probabilities of the states belonging to that class. This is found
by checking conditions on the outgoing transitions of related states in the transition diagram.
A backward bisimulation induces a CTMC aggregation in the sense of weak lumpability [19],
where all states in the same equivalence class have a time-invariant conditional probability
distribution; exact lumpability is a special case where the conditional probability distribution
is uniform, in the sense that any two states of each equivalence class have the same probability
at any point in time whenever they have the same initial probabilities. It is found by relating
states according to conditions on their predecessor states [19, 31, 7].

Despite being similar in spirit, technically our bisimulations are fundamentally different
for two reasons. First, they concern a continuous-state semantics based on ODEs instead of
a discrete-state CTMC. Second, they operate at the structural, syntactical level, because
they are defined with quantities that can be computed by only inspecting the reactions
of a CRN. Still, the repercussions of our bisimulations on the semantics are explained
according to certain theories of aggregation. In particular, forward CRN bisimulation yields
an aggregated system in the sense of ODE lumpability [33, 27]. This theory covers linear
transformations of the original state variables in general; here we consider an instance, which
we call ordinary fluid lumpability, where the transformation is induced by a partition of
state variables. (Forward bisimulation is presented in Section 3.1.) Backward bisimulation
(presented in Section 3.2) is related to exact fluid lumpability, introduced in the context
of process algebra with fluid semantics [34], identifying process terms with the same ODE
solution when initialized equally. The disadvantage of forward CRN bisimulation is that it is
lossy (yet exact) because, similarly to the forward stochastic analogues, from the aggregated
ODE system in general it is not possible to recover the solutions for the individual species
within the same equivalence class. On the other hand, it does not impose restrictions on the
initial conditions, which instead are present in our backward variant. As a further important
difference, forward CRN bisimulation (again, like its stochastic analogues) turns out to be
a sufficient condition for ODE lumpability. Instead, backward CRN bisimulation enjoys a
full characterization, in the sense that there exists a backward CRN bisimulation between
two species if and only if they have the same ODE solutions (provided that they start from
equal initial conditions). More in general, by means of a number of examples we will show
that the two equivalences are complementary because not comparable. In other words, there
exist models that can be reduced up to forward CRN bisimulation but not by the backward
variant, and vice versa; at the same time, there are models that can be reduced by both.

To enhance the usefulness of these notions, we present (in Section 5) a template partition-
refinement algorithm that is parametric with respect to the equivalence of interest, computing
the coarsest refinement up to either variant in polynomial time. To use our equivalences as
an automatic model reduction tool, we further give two algorithms (in Section 4) that provide
the quotient CRN induced by either bisimulation. With a prototype implementation available
at http://sysma.imtlucca.it/crnreducer/, we show (in Section 6) that we are able to

http://sysma.imtlucca.it/crnreducer/

L. Cardelli et al. 3

reduce a number of case studies taken from the literature. Our bisimulations yielded quotient
CRNs with number of reactions and species up to four orders of magnitude smaller than the
original CRNs, leading to speed-ups in the ODE solution runtimes of up to five orders of
magnitude. In two cases, it was possible to analyze models that were otherwise intractable
directly within our experimental environment due to excessive memory requirements.
Related work. Behavioral equivalences have been recently proposed in [29] for comparing
CRNs; however, the analysis is carried out at the qualitative level, i.e., ignoring the dynamical
evolution. In [34] is introduced the notion of label equivalence for process algebra with fluid
semantics, which captures exact fluid lumpability (processes are equivalent whenever their
ODE solutions are equal at all time points). However, unlike backward CRN bisimulation,
label equivalence is only a sufficient condition for ODE reduction. Indeed, it works at a
coarser level of granularity as it relates sets of ODE variables, each corresponding to the
behavior of a sequential process. Instead, backward CRN bisimulation relates individual
ODE variables. Further, the conditions for equivalence, specific to the process algebra, are
difficult to check automatically because of the universal quantifiers over the ODE variables.
More important, no algorithm for computing the coarsest partition was developed. Similar
considerations apply to the process-algebra specific ordinary fluid lumpability in [35].

Cardelli’s notion of emulation between two CRNs is a (structural) mapping of species and
reactions that, like backward CRN bisimulation, guarantees the equality between the ODE
solutions at all time points [10]. An emulation requires a source and a target CRN — the
modeler is intended to have the suspicion that, for some given CRN, another CRN might be
related to it. But emulation cannot be used when one wants to discover equivalences between
species within the same given CRN. Thus, emulation is not useful for model reduction because
a-priori information about the structure of a quotient CRN is not available. Furthermore,
no algorithm is provided in [10] to find emulations automatically. Since backward CRN
bisimulation fully characterizes exact fluid lumpability, it is not difficult to show that backward
CRN bisimulation generalizes emulation in the sense that any emulation between two CRNs
can be understood in terms of a backward CRN bisimulation over the species of a “union
CRN” that contains all the reactions of the two CRNs of interest.

Model reductions for the ODE semantics of CRNs have been studied in related models
for biomolecular networks, most notably for rule-based systems such as BioNetGen [5] and
the κ calculus [16]. These offer an intensional modeling approach, by providing graph-rewrite
rules of interaction instead of a complete enumeration of all chemical reactions involved.
Differential fragments for κ are self-consistent aggregates found by a static analysis on the
model, identifying sums of chemical species for which an ODE system can be explicitly
written [15]. In this sense, they are analogous to our CRN bisimulations, but with notable
differences. First, fragmentation works directly at the rule-based level. This has the
advantage that the analysis is performed on a set of rewrite rules, which is typically much
more compact than the fully enumerated CRN. However, fragmentation is domain-specific,
hence the model must be conveniently expressed as a biomolecular system (e.g., with complex
formation or internal state modification). On the other hand, CRN bisimulations work for a
generic language-independent CRN, which however must be explicitly given. Further, unlike
CRN bisimulations, fragmentation is performed on a “static” view of the model, without
information on the reaction rates. The ODE aggregations of both forward CRN bisimulation
and fragmentation introduce loss of information (in contrast to backward CRN bisimulation).
But, unlike our forward variant, In fragmentation the same species may be present in more
than one fragment. Thus, fragmentation can be seen as a form of improper lumping that
is not necessarily induced by a partition of the original state-space variables [27]. Overall,

4 Forward and Backward Bisimulations for CRN

because of these differences, it is not difficult to find models that can be reduced by our CRN
bisimulations and not by fragmentation, and vice versa. However, an empirical evaluation
suggests that CRN bisimulations and fragmentation may complement each other when they
can be both applied, i.e., in the case of rule-based models of biomolecular networks for which
an underlying CRN can be fully enumerated. This is presented in detail in Section 6.

2 Background

Notation. We write A→ B and BA for the functions from A to B. When f ∈ A→ B and
a ∈ A, we set fa := f(a). Moreover, for any X ⊆ A and b ∈ B, we define f(X) := {b ∈ B |
∃a ∈ X.(f(a) = b)}. Sets and multisets are denoted by {. . .} and {| . . . |}, respectively. Also,
we shall not distinguish among an equivalence relation and the partition induced by it, and
shall use the symbol ∼H to denote the equivalence relation with H = S/∼H. Finally, given
two partitions H1 and H2 of a given set S, we say that H1 is a refinement of H2 if for any
H1 ∈ H1 there exists a (unique) H2 ∈ H2 such that H1 ⊆ H2.

2.1 Chemical Reaction Networks
Formally, a CRN (S,R) is a pair consisting of a finite set of species S and a finite set of
chemical reactions R. A reaction is a triple written in the form ρ

α−−→ π, where ρ and π are
the multisets of species reactants and products, respectively, and α > 0 is the reaction rate. In
particular, we focus on basic chemistry where only elementary reactions are considered, where
at most two reactants (possibly of the same species) interact. No restrictions are instead
imposed on products. Several models found in the literature (including those discussed in
Section 6) belong to this class. Also, this is consistent with the physical considerations which
stipulate that reactions with more than two reactants are very unlikely to occur in nature [21].
We denote by ρ(X) the multiplicity of species X in the multiset ρ, and byMS(S) the set of
finite multisets of species in S. To adhere to standard chemical notation, we shall use the
operator + to denote multiset union, e.g., X + Y + Y (or just X + 2Y) denotes the multiset
{|X,Y, Y |}. We may also use X to denote either the species X or the singleton {|X|}.

The (autonomous) ODE system V̇ = F (V) underlying a CRN (S,R) is F : RS≥0 → RS ,
where each component FX , with X ∈ S is defined as:

FX(V) :=
∑

ρ
α−−→π∈R

(π(X)− ρ(X)) · α ·
∏
Y ∈S

V
ρ(Y)
Y .

This represents the well-known mass-action kinetics, where the reaction rate is proportional
to the concentrations of the reactants involved. Since the ODE system of a CRN is given by
polynomials, the vector field F is locally Lipschitz. Hence, the theorem of Picard-Lindelöf
ensures that for any V (0) ∈ RS≥0 there exists a unique non-continuable solution of V̇ = F (V).
I Example 1. We now provide a simple CRN, (Se, Re), with Se = {A,B,C,D,E} and
Re = {A 6−−→ E,B

6−−→D,A+B 2−−→ C,C+D 5−−→ 2C+D,E+D 5−−→ 2E+D}, which will be
used as a running example throughout the paper. Its ODE system is given by

V̇A = −6VA − 2VA VB V̇B = −6VB − 2VA VB V̇C = 2VA VB + 5VC VD
V̇D = 6VB V̇E = 6VA + 5VE VD
In the following, we shall assume that the countable infinite universe of all species is

well-ordered with respect to v. We then say that a function µ : S → S is a choice function of
a partition H of S, if µ(X) = minvH for all H ∈ H and X ∈ H. Also, choice functions can
be trivially lifted to multisets applying them element-wise, e.g., µ(X + Y) = µ(X) + µ(Y).

L. Cardelli et al. 5

2.2 Fluid Lumpability
Ordinary Fluid Lumpability. We start by defining the notion of ordinary fluid lumpability,
which is an instance of ordinary lumpability for ODEs [33] specialized to CRNs.

I Definition 2 (Ordinary fluid lumpability). Let (S,R) be a CRN, F its vector field, and H =
{H1, . . . ,Hm} a partition of S. Then, H is ordinary fluid lumpable if for allH ∈ H there exists
a polynomial ℘H in |H| variables such that

∑
X∈H FX(V) = ℘H(

∑
X∈H1

VX , . . . ,
∑
X∈Hm VX)

for all V ∈ RS≥0.

Informally, a partition H is ordinary fluid lumpable if, for each H ∈ H, the polynomial∑
X∈H FX(V) in the variables {VX | X ∈ S} can be rewritten into a polynomial ℘H in the

variables {
∑
X∈H VX | H ∈ H}. In particular, if H is known to be an ordinary fluid lumpable

partition of (S,R) and V denotes the solution of V̇ = F (V) subject to V (0) ∈ RS≥0, the
solution of the aggregated ODE system (ẆH1 , . . . , ẆHm) = (℘H1(W), . . . , ℘Hm(W)) with
WH(0) =

∑
X∈H VX(0) is such that WH(t) =

∑
X∈H VX(t) for all t ∈ domain(V).

I Example 3. Consider the ODEs of (Se, Re) of Example 1, and letHO = {{A}, {B}, {C,E},
{D}}. By applying a variable renaming consistent with the blocks of HO, i.e., VCE = VC+VE ,
and by exploiting the linearity of the differential operator we get

V̇A=−6VA−2VAVB V̇B=−6VB−2VAVB V̇CE=2VAVB+6VA+5VDVCE V̇D=6VB

That is, we obtained an ODE system in terms of block variables only. J

Exact Fluid Lumpability. We extend to CRNs the notion of exact fluid lumpability in [34].

I Definition 4 (Exact fluid lumpability). Let (S,R) be a CRN, F its vector field, and H a
partition of S. We call V ∈RS constant on H if VXi = VXj for all H ∈ H, and all Xi, Xj ∈ H.
Then, H is exactly fluid lumpable if F (V) is constant on H whenever V is constant on H.

I Example 5. Consider the ODEs of (Se, Re) of Example 1, and letHE = {{A,B}, {C}, {D},
{E}}. It is easy to see that A and B have same concentrations at all time points if initialized
equally. In these cases, we can replace the ODEs of (Se, Re) with the ones aggregated
according to HE , obtained by removing V̇B and replacing all occurrences of VB with VA:

V̇A = −6VA − 2VA VA V̇C = 2VA VA + 5VC VD V̇D = 6VA V̇E = 6VA + 5VE VD

That is, we obtained a (lossless) aggregated ODE system written in terms of a variable per
block, chosen according to v. J

We remark that the above definition expresses exact fluid lumpability in terms of properties
of the ODE vector field of a CRN. Instead, in [34] exactly fluid lumpability was defined
directly in terms of the desired dynamical property, i.e., that the ODE solutions within any
equivalence class be equal at all time points. The following result is a new contribution
showing that this dynamical property is fully characterized by the vector-field based definition.

I Theorem 6. Let (S,R) be a CRN and F its vector field. A partition H of S is exactly
fluid lumpable if and only if, for any V (0) ∈ RS≥0 that is constant on H, the underlying
solution of V̇ = F (V) is such that V (t) is constant on H for all t ∈ domain(V). 1

1 Note to reviewers. The proofs are in the appendix that will be published in the case of acceptance.

6 Forward and Backward Bisimulations for CRN

3 CRN Bisimulations

Both notions of fluid lumpability given in Section 2 are not convenient to be used directly
because they involve a universal quantifier over the (uncountable) state space. We address
this problem by providing structural conditions that concern only the reactions of a CRN.

3.1 Forward CRN Bisimulation
We now introduce forward CRN bisimulation, an equivalence on species that will turn out
to induce ordinary fluid lumpability. We start with the notions of reaction and production
rate. The former collects the rates at which the concentration of a species X decreases when
reacting with a given partner. The latter collects the positive contribution that X exerts to
the concentration of a species Y , again when reacting with a certain partner.

I Definition 7 (Reaction rate and production rate). Let (S,R) be a CRN, X,Y ∈ S, and
ρ ∈ MS(S). The ρ-reaction rate of X, and the ρ-production rate of Y-elements by X are
defined respectively as

crr[X, ρ] := (ρ(X) + 1)
∑

X+ρ
α−−→π∈R

α, pr(X, ρ, Y) := (ρ(X) + 1)
∑

X+ρ
α−−→π∈R

α · π(Y)

Finally, for H ⊆ S we define pr[X, ρ,H] :=
∑
Y ∈H pr(X, ρ, Y).

I Definition 8 (Forward CRN Bisimulation). Let (S,R) be a CRN, R an equivalence relation
over S and H = S/R. Then, R is a forward CRN bisimulation (abbreviated FB) if for all
(X,Y) ∈ R, all ρ ∈MS(S), and all H ∈ H it holds that

crr[X, ρ] = crr[Y, ρ] and pr[X, ρ,H] = pr[Y, ρ,H] (1)

I Example 9. Consider HO = {{A}, {B}, {C,E}, {D}} of Example 3. It can be shown that
HO is an FB, as, e.g., crr[C,D]=crr[E,D]=5, and pr[C,D, {C,E}]=pr[E,D, {C,E}]=10.

We are interested in the coarsest FB, as well as in the coarsest one refining a given initial
partition of species.

I Proposition 10. Let (S,R) be a CRN, I a set of indices, and Ri an FB for (S,R), for all
i ∈ I. The transitive closure of their union R=(

⋃
i∈I Ri)∗ is an FB for (S,R). In particular,

if each Ri is such that S/Ri refines some partition G of S, then so does S/R.

I Theorem 11 (Forward bisimulation implies ordinary fluid lumpability). Let (S,R) be a CRN.
Then, H is an ordinarily fluid lumpable partition of S if H is an FB of S.

FB is only a sufficient condition for lumpability, as discussed in the next example. (However,
Section 6 shows that FB can be effectively applied to interesting existing models.)

I Example 12. Consider the CRN ({F,G}, {F α1−−→ G,G
α2−−→ F}), having ODEs

V̇F = −α1 VF + α2 VG V̇G = −α2 VG + α1 VF

If α1 6= α2, Hc = {{G,F}} is not an FB, as crr[F, ∅] = α1 and crr[G, ∅] = α2. Nevertheless,
the above ODE system is lumpable. Indeed, by applying the variable renaming consistent
with Hc, i.e., VFG = VF + VG, we get a single ODE for VFG, i.e., V̇FG = 0. J

L. Cardelli et al. 7

3.2 Backward CRN Bisimulation
We now introduce backward CRN bisimulation, an equivalence on species that will turn out
to characterize exact fluid lumpability. We start with the notion of cumulative flux rate,
which collects the overall contribution that reactions with a given multiset of reactants ρ
exert to the concentration of a species X.

I Definition 13 (Cumulative flux rate). Let (S,R) be a CRN, X ∈ S, ρ ∈ MS(S), and
M⊆MS(S). Then, we define

fr(X, ρ) :=
∑

ρ
α−−→π∈R

(π(X)− ρ(X)) · α, fr[X,M] :=
∑
ρ∈M

fr(X, ρ).

We call fr(X, ρ) and fr[X,M] ρ-flux rate and cumulativeM-flux rate of X, respectively.

I Definition 14 (Backward CRN bisimulation). Let (S,R) be a CRN, R an equivalence
relation over S, H = S/R and µ the choice function of H. Then, R is a backward CRN
bisimulation (BB) if for any (X,Y) ∈ R it holds that

fr[X,M] = fr[Y,M] for all M∈ {ρ | ρ α−−→ π ∈ R}/ ≈H, (2)

where any two ρ, σ ∈MS(S) satisfy ρ ≈H σ if µ(ρ) = µ(σ).

I Example 15. Consider HE = {{A,B}, {C}, {D}, {E}} of Example 5. We first note that
{|A|} ≈HE {|B|}, as ≈HE relates multisets with same number of HE-equivalent species. Also,
it can be shown that HE is a BB, as, e.g., fr[A,M] = fr[B,M] = −6 forM = {{|A|}, {|B|}}.

J

As for FB, there exists a coarsest BB (that refines a given partition of S).
I Proposition 16. Let (S,R) be a CRN, I a set of indices, and Ri a BB for (S,R), for all
i ∈ I. The transitive closure of their union R=(

⋃
i∈I Ri)∗ is a BB for (S,R). In particular,

if each Ri is such that S/Ri refines some partition G of S, then so does S/R.
We now state the mentioned characterization of exact fluid lumpability in terms of BB.

I Theorem 17 (Backward bisimulation characterizes exact fluid lumpability). Let (S,R) be a
CRN. Then, H is an exactly fluid lumpable partition of S if and only if H is a BB of S.

I Remark. We wish to stress that FB and BB are not comparable: First,HO is not a BB,
as fr[C,{A+B}]=2 and fr[E,{A+B}]=0; Second,HE is not an FB, as crr(A,B)=2 and
crr(B,B)=0; Third, for the same reasons, {{A,B}, {C,E}, {D}} is neither an FB nor a BB.
Similar examples on models of biological relevance are provided in Section 6. J

4 Reduced Chemical Reaction Networks up to CRN Bisimulations

We have shown that, given a CRN and a CRN bisimulation R, we can analyze the aggregated
ODE system according to R. We now provide the notion of reduced CRN from which the
aggregated ODEs can be directly generated, as depicted in Figure 1.

I Definition 18 (Forward reduction). Let (S,R) be a CRN, H an FB, and µ its choice
function. The (H, F)-reduction of (S,R) is given by (S,R)(H,F) = (S(H,F), R(H,F)), where
S(H,F) = µ(S) and R(H,F) is defined as follows: (F1) Discard all reactions ρ α−−→ π such
that ρ 6= µ(ρ); (F2) Replace all remaining reactions ρ α−−→ π with ρ α−−→ µ(π); (F3) Fuse all
reactions that have the same reactants and products by summing their rates.

8 Forward and Backward Bisimulations for CRN

CRN reduced CRN

ODEs lumped ODEs
semantics

reduce wrt H

lump wrt H

semantics

Figure 1 Relation among (H-reduced) CRNs and (H-lumped) semantics, with H a bisimulation.

The idea underlying forward reduction is to discard all reactions having non-representative
reagents, and to replace the products of the remaining reactions with their representatives.

I Example 19. Consider the FB HO = {{A}, {B}, {C,E}, {D}} used in Example 3. The
(HO, F)-reduction of (Se, Re) is (with C being the representative of its block) Se(HO,F) =
{A,B,C,D}, Re(HO,F) = {A 6−−→ C,B

6−−→D,A+B 2−−→ C,C+D 5−−→ 2C+D}. Note that the
reaction E+D 5−−→2E+D is discarded, as E is not a representative species. J

We now state that the (H, F)-reduction of an FB H induces the ODEs aggregated
according to H. For example, the (HO, F)-reduction of (Se, Re) induces the ODEs shown in
Example 3, if applying the renaming VC = VCE .

I Theorem 20 (Forward reduction induces aggregation). Let (S,R) be a CRN, H an FB and µ
its choice function. Then, (S,R)(H,F) is computed in at most O

(
|R| · |S| ·(log(|R|)+log(|S|))

)
steps. Crucially, if F is the vector field of (S,R) and F̂ the one of (S,R)(H,F), then∑

X∈H FX(V) = F̂µ(Y)(
∑
X∈H1

VX , . . . ,
∑
X∈Hm VX) for all V ∈ RS≥0, H ∈ H and Y ∈ H.

For the backward reduction, the underlying idea is to keep track only of differential
contributions that affect the representative species µ(S).

I Definition 21 (Backward reduction). Let (S,R) be a CRN, H a BB, and µ its choice
function. The (H, B)-reduction of (S,R) is given by (S,R)(H,B) = (S(H,B), R(H,B)), where
S(H,B) = µ(S) and R(H,B) is obtained as follows: (B1) Replace all reactions ρ α−−→ π with
ρ

α−−→ π̃ where π̃(Xi) := π(Xi) if Xi ∈ µ(S) and π̃(Xi) := ρ(Xi) otherwise; (B2) Replace all
such obtained reactions ρ α−−→ π with µ(ρ) α−−→ µ(π); (B3) Fuse all reactions that have the
same reactants and products by summing their rates.

I Example 22. Considering the CRN (Se, Re) and the BB HE , (B1) changes B 6−−→D in
B

6−−→D+B, and A+B 2−−→C in A+B 2−−→C+B, while(B2)yields{A 6−−→E,A 6−−→D+A,A+A 2−−→
C+A,C+D 5−−→2C+D,E+D 5−−→2E+D}. Finally, (B3) does not introduce any change. J

I Theorem 23 (Backward reduction induces aggregation). Let (S,R) be a CRN, H a BB and µ
its choice function. Then, (S,R)(H,B) is computed in at most O

(
|R| · |S| ·(log(|R|)+log(|S|))

)
steps. Crucially, if F̂ denotes the vector field induced by (S,R)(H,B), it holds that FX(V) =
F̂X(V) for all X ∈ µ(S) and V ∈ RS≥0 that are constant on H.

5 Partition Refinement Algorithms for CRN Bisimulations

We study a polynomial-time algorithm for the computation of the coarsest bisimulations that
refine an arbitrary input partition. We start introducing two auxiliary equivalence relations.

I Definition 24 (Splitter equivalences). Let (S,R) be a CRN and H a partition over S. Then,
we write X ∼FH Y if (1) is fulfilled by (X,Y). Similarly, write X ∼BH Y if (X,Y) satisfies (2).

L. Cardelli et al. 9

Algorithm 1 Template partition refinement algorithm for the construction of the coarsest
CRN bisimulations that refine some given initial partition G.
Require: A CRN (S,R), a partition G of S and χ ∈ {F,B}.
H ←− G
while true do
H′ ←− S/(∼χH ∩ ∼H)
if H′ = H then

return H
else
H ←− H′

end if
end while

Algorithm 1 iteratively computes the coarsest forward or backward bisimulation (when
χ = F or χ = B, respectively) that refines a given input partition of species of a CRN. Note
that, contrary to CRN reduction algorithms, one (parametric) algorithm suffices for both
bisimulations. Resorting to the above splitter equivalences, at each iteration the blocks of
the current partition S/∼H are split in sub-blocks of ∼χH-equivalent species S/(∼

χ
H ∩ ∼H).

The algorithm terminates when no refinement is performed.
The freedom in choosing the initial partition G is useful in both bisimulations. For FB it

allows to single out species that are the “observables” of the CRN. These are the species for
which the modeler is interested in obtaining distinct ODE solutions, information which would
otherwise be lost if such species are found in larger equivalence classes. BB is lossless, hence
this issue does not arise. However BB requires the same initial conditions for equivalent
species. In this case, an appropriate input partition may tell apart species for which it is
known that the initial conditions are different.

I Theorem 25 (Correctness). Given a CRN (S,R) and a partition G of S, Algorithm 1
calculates the coarsest forward and backward bisimulation that refines G. In both cases, the
number of steps needed is polynomial in the number of species and reactions.

Note that, due to space constraints, we only focussed on the existence of a polynomial-time
algorithm, and in the next section we provide numerical evidence of its scalability. The
proof of this theorem gives a bound of O(|R|2 · |S|5) on the number of steps. Tighter bounds
could be obtained by extending classical partition refinement approaches available for labeled
transitions systems [28, 1] to CRNs, which is however the subject of future work.

6 Evaluation

We now evaluate FB and BB. We first study their effectiveness in reducing the ODEs of a
number of biochemical models from the literature given in the .net format of BioNetGen [5],
version 2.2.5-stable. Using selected models we discuss how FB and BB relate with each
other, and provide a biological interpretation of the aggregatations. Finally, we compare
them against κ’s fragmentation. All experiments are replicable using a prototype available
at http://sysma.imtlucca.it/crnreducer/.
Numerical results. Table 1 lists our case studies: four synthetic benchmarks to obtain
combinatorially larger CRNs by varying the number of phosphorylation sites (M1–M4) [30];
a model of pheromone signaling (M5, [32]); two signaling pathways through the Fcε complex
(M6–M7, [18, 30]); two models of enzyme activation (M8–M9, [2]); a model of a tumor

http://sysma.imtlucca.it/crnreducer/

10 Forward and Backward Bisimulations for CRN

Original model Forward reduction Backward reduction

Id |R| |S| Red.(s) |R| |S| Speed-up Red.(s) |R| |S| Speed-up

M1 3538944 262146 4.61E+4 990 222 — 7.65E+4 2708 222 —
M2 786432 65538 1.92E+3 720 167 — 3.68E+3 1950 167 —
M3 172032 16386 8.15E+1 504 122 1.16E+3 1.77E+2 1348 122 5.34E+2
M4 48 18 1.00E–3 24 12 1.00E+0 2.00E–3 45 12 1.00E+0
M5 194054 14531 3.72E+1 142165 10855 1.03E+0 1.32E+3 93033 6634 1.03E+0
M6 187468 10734 3.07E+1 57508 3744 1.92E+1 2.71E+2 144473 5575 3.53E+0
M7 32776 2506 1.26E+0 16481 1281 6.23E+0 1.66E+1 32776 2506 x
M8 41233 2562 1.12E+0 33075 1897 1.12E+0 1.89E+1 41233 2562 x
M9 5033 471 1.91E–1 4068 345 1.04E+0 4.35E–1 5033 471 x
M10 5797 796 1.61E–1 4210 503 1.47E+0 7.37E–1 5797 796 x
M11 5832 730 3.89E–1 1296 217 1.32E+1 6.00E–1 2434 217 7.55E+0
M12 487 85 2.00E–3 264 56 1.88E+0 6.00E–3 426 56 1.31E+0
M13 24 18 1.20E–2 24 18 x 7.00E–3 6 3 1.00E+0

Table 1 Forward and backward reductions and corresponding speed-ups in ODE analysis. Speed-
up entries “—” indicate that the original model could not be solved; entries “x” indicate that the
coarsest bisimulation did not reduce the original model.

suppressor protein (M10, [3]); a model of tyrosine phosphorylation and adaptor protein
binding (M11, [12, 13]); a MAPK model (M12, [25]); and an influence network (M13, [10]).

Headers |R| and |S| give the number of reactions and species of the CRN (and of its
reductions), respectively. The reduction times (Red.) account also for the computation of the
quotient CRNs. The speed-up is the ratio between the time to solve the ODEs of the original
CRN and that of the reduced one including the time to reduce the CRN. Measurements
were taken on a 2.6 GHz Intel Core i5 with 4GB of RAM. The time interval of the ODE
solution was taken from the original papers; for M1–M4, where this data was not available,
time point 50.0 was used as an estimate of steady state. The initial conditions for the ODEs
were also taken from the original papers. The initial partition for FB was chosen to be the
trivial one containing the singleton block {S} (i.e., no species was singled out). Instead, the
initial partition for BB was chosen consistently with the ODE initial conditions; that is, two
species may be equivalent only if they have the same initial conditions in the original CRN.
This ensured that the backward reduced CRN was a lossless aggregation of the original CRN.

We make three main observations: (i) FB and BB can reduce a significant number of
models. In the two largest models of our case studies, M1 and M2, the bisimulations were
able to provide a compact aggregated ODE system which could be straightforwardly analyzed,
while the solutions of the original models did not terminate due to out-of-memory errors,
consistently with [30]. (ii) FB and BB are not comparable in general. For instance, both
reduce M5 to 10855 and 6634 species, respectively, while M6 is reduced to 3744 species by FB,
and to 5574 by BB. Also, FB was able to reduce M7–M10, while BB did not aggregate. The
influence network M13 shows the opposite; in fact, none of the influence networks presented
in [10] can be reduced up to FB (here we showed M13, which is the largest one from [10]).
(iii) Models M1–M4 and M12 show that the intersection between FB and BB is nonempty.
Biological interpretation. Models M1 and M2 enjoy significant reductions and ODE
analysis speed-ups. Here we use them to explain that FB and BB are effective at aggregating
species representing symmetric sites in a complex. For this, let us consider M4, chosen for space
reasons. A typical equivalence class is for instance {E(s!1).S(p1∼P, p2∼U !1), E(s!1).S(p1∼
U !1, p2∼P)}. According to the syntax of the BioNetGen language, the CRN species are
formed from basic molecules S and E. Molecule S has two binding sites (p1, and p2) which

L. Cardelli et al. 11

can be either in phosphorylated state (P) or not (U); E has one stateless binding site
(s) which can bind to those of S to form a complex. The two sites of S have equivalent
capabilities in terms of binding with other species or changing state. For instance, the
above equivalence class contains two species composed by S and E, with E bound to the
unphosphorylated site of S (here the exclamation mark links the binding sites used to form
the species). Models M1 and M2 exhibit a fast growth of the number of species due to
a larger number of symmetric sites, requiring distinct species to track exactly which site
exhibits a particular phosphorylation state. This form of symmetry has also been studied
in [9] where the authors propose a fragmentation approach to detect it directly at the κ
level. However, an experimental comparison could not be performed because [9] is not yet
implemented. Although both bisimulations give the same equivalence classes in these cases,
the reduced CRNs have different reactions, since FB provides the dynamics of the sums of
equivalent species, while BB considers the distinct dynamics of representative species.

Symmetric sites are not the only property captured by our bisimulations. For instance in
both M8 and M9 one of the FB equivalence classes is given by:{

J(k!1).R(x!1, i∼on, l), J(k!1).L(r1!2, r2).R(x!1, i∼on, l!2),
J(k!1).L(r1, r2!2).R(x!1, i∼on, l!2), J(k!1).L(r1!2, r2!3).R(x!1, i∼on, l!3).R(x, i∼on, l!2)

}
.

A biological interpretation is that a species containing the molecule J behaves in the same
way as long as it is bound to a molecule R having binding site i in state “on”. This is
independent of whether R is further complexed with other molecules via its binding site l;
For instance, the first species models that R is only bound to J , while in the second and
third species it is also bound to L. Finally, in M5, one of the BB equivalence classes is{

Dig2(p!1).Ste12(dig1,dig2,dna!1,mapk), Fus3(p!1).Ste12(dig1,dig2,dna!1,mapk),
Msg5(p!1).Ste12(dig1,dig2,dna!1,mapk), Sst2(p!1).Ste12(dig1,dig2,dna!1,mapk),
Ste12(p!1).Ste12(dig1,dig2,dna!1,mapk), Ste2(p!1).Ste12(dig1,dig2,dna!1,mapk)

}
.

It captures that genes Dig2, Fus3, Msg5, Sst2, Ste12, and Ste2, bind to the protein Ste12
with equal rates. This yields equivalent dynamics for these Ste12-gene complexes, and all
those formed by them which are equal up to the gene bound to Ste12.
Experimental comparison with κ-based reduction techniques. We now experiment-
ally compare our CRN bisimulations and fragmentation in the case of rule-based biochemical
models for which the underlying CRN can be fully enumerated. All models in Table 1 belong
to this class; however, none of them was originally available in κ, the only language that
supports fragmentation. Thus, we performed a manual translation of a selection of the case
studies from the BioNetGen language into κ.2 We found: (i) Models that can be reduced by
our bisimulations but not by fragmentation: For instance, the κ encoding of M12 returned
85 fragments, equal to the size of the CRN, while both FB and BB reduced to 56 species. In
addition, fragmentation returned more fragments than species for M6 and M7 (58040 and
10930 fragments, respectively), while the two models are reduced by our bisimulations. (ii)
Models that can be reduced by fragmentation but not by our bisimulations: The κ model of
early events of the EGF pathway in [6] is reduced from 356 species to 38 fragments [15], while
no aggregation is obtained with either FB or BB. (iii) Models that can be reduced by both
our bisimulations and fragmentation: The κ encodings of models M1–M4 present different

2 All discussed κ-encodings are shown in Appendix A.4 and are available for download.

12 Forward and Backward Bisimulations for CRN

reductions than using either bisimulation, specifically 38, 34, 30 and 10 fragments (versus
222, 167, 122, and 12 FB and BB equivalence classes, respectively). It can be shown that, in
the latter examples, the reductions are complementary, in the sense that no two bisimilar
species are included in the same fragment. While our bisimulations captured symmetric sites,
fragments explain that the sites of S are independent, i.e., the state of a site does not affect
the dynamics of the other. For instance, one of the fragments for model M4 is

{S(p1∼P, p2∼P), S(p1∼P, p2∼U), E(s!1).S(p1∼P, p2∼U !1), F (s!1).S(p1∼P, p2∼P !1)}

which essentially collects all species where the p1 site of molecule S is phosphorylated.

7 Conclusion

Forward and backward bisimulations are equivalence relations over the species of a chemical
reaction network inducing a partition of the underlying mass-action system of ordinary
differential equations. An experimental evaluation has demonstrated their usefulness by
showing their complementarity as well as significant model reductions in a number of
biochemical models available in the literature. This has been supported by a prototype,
which currently allows a ready-to-use tool-chain with BioNetGen, a state-of-the-art tool.

Ongoing work is studying stochastic counterparts of both forward and backward bisimula-
tions, to obtain model reductions when the semantics of chemical reaction networks based on
continuous-time Markov chains is considered. Also, we plan to investigate the applicability
of our bisimulations in other model repositories, e.g., those using the well-known SBML
interchange format (http://sbml.org).

References
1 C. Baier, B. Engelen, and M. E. Majster-Cederbaum. Deciding bisimilarity and similarity

for probabilistic processes. J. Comput. Syst. Sci., 60(1):187–231, 2000.
2 D. Barua, J. R. Faeder, and J. M. Haugh. A bipolar clamp mechanism for activation of

jak-family protein tyrosine kinases. PLoS Computational Biology, 5(4), 2009.
3 D. Barua and W. S. Hlavacek. Modeling the effect of apc truncation on destruction complex

function in colorectal cancer cells. PLoS Comput Biol, 9(9):e1003217, 09 2013.
4 M. Bernardo. A survey of Markovian behavioral equivalences. In Formal Methods for Perf.

Eval., volume 4486 of LNCS, pages 180–219. Springer Berlin Heidelberg, 2007.
5 M. L. Blinov, J. R. Faeder, B. Goldstein, and W. S. Hlavacek. BioNetGen: software for

rule-based modeling of signal transduction based on the interactions of molecular domains.
Bioinformatics, 20(17):3289–3291, 2004.

6 M. L. Blinov, J. R. Faeder, B. Goldstein, and W. S. Hlavacek. A network model of early
events in epidermal growth factor receptor signaling that accounts for combinatorial com-
plexity. Biosystems, 83:136–151, 2006.

7 P. Buchholz. Exact and Ordinary Lumpability in Finite Markov Chains. Journal of Applied
Probability, 31(1):59–75, 1994.

8 P. Buchholz. Markovian Process Algebra: Composition and Equivalence. In Proc. 2nd
Workshop on Process Algebra and Performance Modelling, Erlangen, Germany, 1994.

9 F. Camporesi and J. Feret. Formal reduction for rule-based models. Electronic Notes in
Theoretical Computer Science, 276:29–59, 2011. MFPS XXVII.

10 L. Cardelli. Morphisms of reaction networks that couple structure to function. BMC
Systems Biology, 8(1):84, 2014.

11 L. Cardelli and A. Csikász-Nagy. The cell cycle switch computes approximate majority.
Sci. Rep., 2, 2012.

http://sbml.org

L. Cardelli et al. 13

12 J. Colvin, M. I. Monine, J. R. Faeder, W. S. Hlavacek, D. D. Von Hoff, and R. G. Posner.
Simulation of large-scale rule-based models. Bioinformatics, 25(7):910–917, 2009.

13 J. Colvin, M. I. Monine, R. N. Gutenkunst, W. S. Hlavacek, D. D. Von Hoff, and R. G.
Posner. Rulemonkey: software for stochastic simulation of rule-based models. BMC Bioin-
formatics, 11:404, 2010.

14 H. Conzelmann, J. Saez-Rodriguez, T. Sauter, B. Kholodenko, and E. Gilles. A domain-
oriented approach to the reduction of combinatorial complexity in signal transduction net-
works. BMC Bioinformatics, 7(1):34, 2006.

15 V. Danos, J. Feret, W. Fontana, R. Harmer, and J. Krivine. Abstracting the differential
semantics of rule-based models: Exact and automated model reduction. In LICS, pages
362–381, 2010.

16 V. Danos and C. Laneve. Formal molecular biology. TCS, 325(1):69–110, 2004.
17 R. De Nicola, U. Montanari, and F. Vaandrager. Back and forth bisimulations. In CONCUR,

volume 458 of LNCS, pages 152–165. Springer, 1990.
18 J. R. Faeder, W. S. Hlavacek, I. Reischl, M. L. Blinov, H. Metzger, A. Redondo, C. Wofsy,

and B. Goldstein. Investigation of early events in FcεRI-mediated signaling using a detailed
mathematical model. The Journal of Immunology, 170(7):3769–3781, 2003.

19 J. Feret, T. Henzinger, H. Koeppl, and T. Petrov. Lumpability abstractions of rule-based
systems. TCS, 431:137–164, 2012.

20 J. Fisher and T.A. Henzinger. Executable cell biology. Nature Biotechnology, 25(11):1239–
1249, 2007. See also correspondence in Nature Biotechnology 26(7):737-8;738-9, 2008.

21 D. Gillespie. The chemical Langevin equation. The Journal of Chemical Physics,
113(1):297–306, 2000.

22 J. Heath, M. Kwiatkowska, G. Norman, D. Parker, and O. Tymchyshyn. Probabilistic
model checking of complex biological pathways. TCS, 391(3):239–257, 2008.

23 H. Hermanns and M. Rettelbach. Syntax, semantics, equivalences, and axioms for MTIPP.
In Proceedings of Process Algebra and Probabilistic Methods, pages 71–87, Erlangen, 1994.

24 J. Hillston. A Compositional Approach to Performance Modelling. CUP, 1996.
25 P. Kocieniewski, J. R. Faeder, and T. Lipniacki. The interplay of double phosphorylation

and scaffolding in MAPK pathways. Journal of Theoretical Biology, 295:116–124, 2012.
26 K. G. Larsen and A. Skou. Bisimulation through probabilistic testing. Information and

Computation, 94(1):1–28, 1991.
27 M. S. Okino and M. L. Mavrovouniotis. Simplification of mathematical models of chemical

reaction systems. Chemical Reviews, 2(98):391–408, 1998.
28 R. Paige and R. Tarjan. Three partition refinement algorithms. SIAM Journal on Com-

puting, 16(6):973–989, 1987.
29 S. W. Shin, C. Thachuk, and E. Winfree. Verifying chemical reaction network implement-

ations: A pathway decomposition approach. In VEMPD, Vienna Summer of Logic, 2014.
30 M. W. Sneddon, J. R. Faeder, and T. Emonet. Efficient modeling, simulation and coarse-

graining of biological complexity with NFsim. Nature Methods, 8(2):177–183, 2011.
31 J. Sproston and S. Donatelli. Backward Bisimulation in Markov Chain Model Checking.

IEEE Trans. Software Eng., 32(8):531–546, 2006.
32 R. Suderman and E. J. Deeds. Machines vs. ensembles: Effective MAPK signaling through

heterogeneous sets of protein complexes. PLoS Comput Biol, 9(10):e1003278, 10 2013.
33 J. Toth, G. Li, H. Rabitz, and A. S. Tomlin. The effect of lumping and expanding on kinetic

differential equations. SIAM Journal on Applied Mathematics, 57(6):1531–1556, 1997.
34 M. Tschaikowski and M. Tribastone. Exact fluid lumpability for Markovian process algebra.

In CONCUR, LNCS, pages 380–394, 2012.
35 M. Tschaikowski and M. Tribastone. A unified framework for differential aggregations in

Markovian process algebra. JLAMP, 84(2):238–258, 2015.

14 Forward and Backward Bisimulations for CRN

APPENDIX

A.1 Forward CRN Bisimulation
The following auxiliary lemma will be needed in the proofs of Propositions 10 and 16.

I Lemma 26. Let I be an index set and let Ri denote equivalence relations on S such that
S/Ri is a refinement of some partition G of S. Then, R = (

⋃
i∈I Ri)∗ is such that S/R is a

refinement of G.

Proof. We first note that R is an equivalence relation over S, as it is the transitive closure of
the union of equivalence relations over S. For i ∈ I, set Hi = S/Ri and H = S/R. Then, for
any (y0, y1) ∈ R, there exist x0, . . . , xk ∈ S such that x0Ri0x1Ri1 . . . Rik−1xk with y0 = x0,
y1 = xk and ij ∈ I for all 0 ≤ j ≤ k − 1. Moreover, x0 ∈ G for some (unique) G ∈ G. We
show that x0, . . . , xk ∈ G by induction. Since the base case j = 0 is trivial, let us consider
the induction step j − 1→ j. Then, xj−1Rij−1xj implies the existence of some H ∈ Hij−1

such that xj−1, xj ∈ H. Let Gj−1 ∈ G be such that H ⊆ Gj−1. Since xj−1 ∈ G by induction
hypothesis and xj−1 ∈ Gj−1, it holds that G ∩Gj−1 6= ∅. Since G is a partition, this implies
that G = Gj−1, yielding in turn xj ∈ G. J

Proof of Proposition 10. We first note that R is an equivalence relation over S, as it is the
transitive closure of the union of equivalence relations over S. For i ∈ I, set Hi = S/Ri
and H = S/R. Note that, for all i ∈ I, any H ∈ H is a union of blocks of Hi. For any
(y0, y1) ∈ R, there exist x0, . . . , xk ∈ S such that x0Ri0x1Ri1 . . . Rik−1xk with y0 = x0,
y1 = xk and ij ∈ I for all 0 ≤ j ≤ k − 1. Noting that xjRijxj+1 for all 0 ≤ j ≤ k − 1,
we infer that crr[xj , ρ] = crr[xj+1, ρ] and pr[xj , ρ,H] = pr[xj+1, ρ,H] for all ρ ∈ MS(S)
and H ∈ H. Thus, we infer that crr[x0, ρ] = crr[x1, ρ] = . . . = crr[xk−1, ρ] = crr[xk, ρ]
and pr[x0, ρ,H] = pr[x1, ρ,H] = . . . = pr[xk−1, ρ,H] = pr[xk, ρ,H]. The remainder of the
claim follows then from Lemma 26. J

We now provide a sort of commutative property for crr and pr for the case of singleton
ρ, used to prove Theorem 11.
I Proposition 27. Let (S,R) be a CRN and X,Y ∈ S. Then it holds

crr(X,Y) = crr(Y,X) (3)
pr(X,Y, Z) = pr(Y,X,Z) (4)

Proof. The statement follows from Definition 7, since (3) and (4) can be rewritten, resp., as:

{|X,Y |}(X) ·
∑

X+Y
α−−→π∈R

α = {|X,Y |}(Y) ·
∑

X+Y
α−−→π∈R

α

{|X,Y |}(X) ·
∑

X+Y
α−−→π∈R

α · π(Z) = {|X,Y |}(Y) ·
∑

X+Y
α−−→π∈R

α · π(Z)

J

Proof of Theorem 11

For (S,R) a CRN,H ⊆ S, and V a concentration function for (S,R), we use VH for
∑
X∈HVX ,

andXH orY H to denote any element of H. We first separate the influence exerted by each
reaction to the concentration of a species in a negative one (the depletion rate), and in a
positive one (the accretion rate).

L. Cardelli et al. 15

I Remark. Let (S,R) be a CRN, V a concentration function for (S,R), and X ∈ S. We
denote the depletion and accretion rates of X due to a reaction of R as, respectively,

Depl(ρ α−−→ π,X, V) = ρ(X) · α ·
∏
Y ∈S

V
ρ(Y)
Y

Accr(ρ α−−→ π,X, V) = π(X) · α ·
∏
Y ∈S

V
ρ(Y)
Y

We can then reformulate the definition of vector field of (S,R) given in Section 2.1 as:

FX(V) =
∑

ρ
α−−→π∈R

(
Accr(ρ α−−→ π,X, V)−Depl(ρ α−−→ π,X, V)

)
J

We now state that the aggregated accretion and depletion rates of an equivalence class of
an FB can be written in terms of the aggregate concentrations.

I Proposition 28 (Aggregated depletion and accretion rate). Let (S,R) be a CRN, V a
concentration function for (S,R), and H an FB. Then, for any H ∈ H

∑
X∈H

∑
ρ

α−−→π∈R

Depl(ρ α−−→ π, V,X) and
∑
X∈H

∑
ρ

α−−→π∈R

Accr(ρ α−−→ π, V,X)

can be written in terms of the aggregated concentrations VH1 . . . VHn .

Proof. We start addressing the depletion rate case. We have

∑
X∈H

∑
ρ

α−−→π∈R

Depl(ρ α−−→ π, V,X) =
∑
X∈H

∑
ρ∈MS(S)

∑
ρ

α−−→π∈R

ρ(X) · α ·
∏
Y ∈S

V
ρ(Y)
Y

=
∑
X∈H

∑
ρ∈MS(S)

∏
Y ∈S

V
ρ(Y)
Y

∑
ρ

α−−→π∈R

ρ(X) · α (5)

Given that we have unary or binary reactions only, we can rewrite (5) as:

∑
X∈H

∑
Y ∈S

VY
∑

Y
α−−→π∈R

{|Y |}(X) · α+ (6)

∑
X∈H

∑
Y+Y ′∈MS(S)

VY · V ′Y
∑

Y+Y ′
α−−→π∈R

{|Y, Y ′|}(X) · α (7)

Now, (6) can be easily rewritten in terms of the aggregated variables only:

∑
X∈H

∑
Y ∈S

VY
∑

Y
α−−→π∈R

{|Y |}(X) · α =
∑
X∈H

VX
∑

X
α−−→π∈R

α =
∑
X∈H

VX · crr[X, ∅],

from which by the condition on crr of Definition 8 we obtain crr[XH , ∅] · VH .

16 Forward and Backward Bisimulations for CRN

Instead, as regards (7) we have:∑
X∈H

∑
Y+Y ′∈MS(S)

VY · V ′Y
∑

Y+Y ′
α−−→π∈R

{|Y, Y ′|}(X) · α =

∑
X∈H

∑
X+Y ∈MS(S)

VX · VY
∑

X+Y
α−−→π∈R

{|X,Y |}(X) · α =

∑
X∈H

VX
∑

X+Y ∈MS(S)

VY · crr[X,Y] = (by the condition on crr of Definition 8)

∑
X∈H

VX
∑

X+Y ∈MS(S)

VY · crr[XH , Y] =

∑
X∈H

VX
∑
H̃∈H

∑
Y ∈H̃

VY · crr[XH , Y] = (by Proposition 27)

∑
X∈H

VX
∑
H̃∈H

∑
Y ∈H̃

VY · crr[Y,XH] = (by the condition on crr of Definition 8)

∑
X∈H

VX
∑
H̃∈H

crr[Y H̃ , XH]
∑
Y ∈H̃

VY =

∑
X∈H

VX
∑
H̃∈H

crr[Y H̃ , XH] · VH̃ =

∑
H̃∈H

VH̃ · crr[Y H̃ , XH]
∑
X∈H

VX =

∑
H̃∈H

VH̃ · crr[Y H̃ , XH] · VH = VH
∑
H̃∈H

VH̃ · crr[XH , Y H̃]

closing the case.
We now address the accretion rate case. We have

∑
X∈H

∑
ρ

α−−→π∈R

Accr(ρ α−−→ π, V,X) =
∑
X∈H

∑
ρ∈MS(S)

∑
ρ

α−−→π∈R

π(X) · α ·
∏
Y ∈S

V
ρ(Y)
Y

=
∑
X∈H

∑
ρ∈MS(S)

∏
Y ∈S

V
ρ(Y)
Y

∑
ρ

α−−→π∈R

π(X) · α (8)

Given that we have unary or binary reactions only, we can rewrite (8) as:∑
X∈H

∑
Y ∈S

VY
∑

Y
α−−→π∈R

π(X) · α+ (9)

+
∑
X∈H

∑
Y+Y ′∈MS(S)

VY · VY ′
∑

Y+Y ′
α−−→π∈R

π(X) · α (10)

Now, (9) can be easily rewritten in terms of the aggregated variables only:∑
Y ∈S

VY
∑
X∈H

∑
Y

α−−→π∈R

π(X) · α =
∑
Y ∈S

VY · pr[Y, ∅, H] =
∑
H̃∈H

∑
Y ∈H̃

VY · pr[Y, ∅, H] ,

from which, by the condition on pr of Definition 8, we obtain
∑
H̃∈H pr[Y H̃ , ∅, H] · VH̃ .

L. Cardelli et al. 17

Instead, as regards (10) we have:∑
Y+Y ′∈MS(S)

VY · VY ′
∑
X∈H

∑
Y+Y ′

α−−→π∈R

π(X) · α =

∑
Y+Y ∈MS(S)

V 2
Y

∑
X∈H

∑
Y+Y

α−−→π∈R

π(X) · α+

∑
Y+Y ′∈MS(S) s.t. Y 6=Y ′

VY · VY ′
∑
X∈H

∑
Y+Y ′

α−−→π∈R

π(X) · α = (see below)

1
2
∑
Y ∈S

V 2
Y

∑
X∈H

2
∑

Y+Y
α−−→π∈R

π(X) · α+ (11)

1
2
∑
Y ∈S

VY
∑

Y ′∈S s.t. Y 6=Y ′
VY ′

∑
X∈H

∑
Y+Y ′

α−−→π∈R

π(X) · α = (12)

1
2
∑
Y ∈S

V 2
Y · pr[Y, Y,H] + 1

2
∑
Y ∈S

VY
∑

Y ′∈S s.t. Y 6=Y ′
VY ′ · pr[Y, Y ′, H] =

1
2
∑
Y ∈S

VY
∑
Y ′∈S

VY ′ · pr[Y, Y ′, H] =

1
2
∑
H̃∈H

∑
Y ∈H̃

VY
∑
Y ′∈S

VY ′ · pr[Y, Y ′, H] = (by cond on pr of Definition 8)

1
2
∑
H̃∈H

VH̃
∑
Y ′∈S

VY ′ · pr[Y H̃ , Y ′, H] =

1
2
∑
H̃∈H

VH̃
∑
Ĥ∈H

∑
Y ′∈Ĥ

VY ′ · pr[Y H̃ , Y ′, H] = (by Proposition 27)

1
2
∑
H̃∈H

VH̃
∑
Ĥ∈H

∑
Y ′∈Ĥ

VY ′ · pr[Y ′, Y H̃ , H] = (by cond on pr of Definition 8)

1
2
∑
H̃∈H

VH̃
∑
Ĥ∈H

pr[Y Ĥ , Y H̃ , H]
∑
Y ′∈Ĥ

VY ′ = 1
2
∑
H̃∈H

VH̃
∑
Ĥ∈H

V
Ĥ
· pr[Y Ĥ , Y H̃ , H]

Where (11) is multiplied by 2/2, while (12) is divided by two because each multiset is
considered twice (e.g., Y + Y ′ and Y ′ + Y). J

Finally we can provide the proof of Theorem 11.

Proof of Theorem 11. The theorem can be proved by showing that, for eachH ∈ H, the sum
of the ODEs of the species in H can be expressed in terms of the aggregated concentrations
of the blocks of H only. Such sum is:∑

X∈H

∑
ρ

α−−→π∈R

Accr(ρ α−−→ π, V,X)−
∑
X∈H

∑
ρ

α−−→π∈R

Depl(ρ α−−→ π, V,X)

Thus, the claim follows from Proposition 28. J

Proof of Theorem 20

Given a CRN (S,R) and an FB H, we hereby provide the technical results relating the
H-lumped ODEs of (S,R) and the ODEs of its (H, F)-reduction. In the following we use

18 Forward and Backward Bisimulations for CRN

XH to denote the canonical representative of the species in a block H ∈ H. In addition,
for X ∈ S and π ∈ MS(S), we may use µX for µ(X) and µπ for µ(π). Finally, given a
concentration function V for (S,R), we use V (H,F) for the corresponding concentration
function for (S,R)(H,F), having a component V (H,F)

XH = VH per block H ∈ H.
We start providing a proposition used in the proof of Theorem 20.

I Proposition 29. Let (S,R) be a CRN, R an FB, H = S/R, and µ its choice function. Let
V be a concentration function for (S,R). Then, for any H ∈ H we have∑

X∈H

∑
ρ

α−−→π∈R

Accr(ρ α−−→ π,X, V) =
∑

ρ
α−−→π∈R
ρ=µ(ρ)

Accr(ρ α−−→ µ(π),XH , V (H,F)) (13)

∑
X∈H

∑
ρ

α−−→π∈R

Depl(ρ α−−→ π,X, V) =
∑

ρ
α−−→π∈R
ρ=µ(ρ)

Depl(ρ α−−→ µ(π),XH , V (H,F)) (14)

Proof. We only address the Accr case, as the Depl one is similar (actually, the latter is
simpler). By the proof of Proposition 28 we obtain that we can rewrite the left-hand side of
Equation (13) as∑

H̃∈H

pr[Y H̃ , ∅, H] · VH̃ + (15)

1
2
∑
H̃∈H

VH̃
∑
Ĥ∈H

V
Ĥ
· pr[Y Ĥ , Y H̃ , H] (16)

Instead, we can rewrite the right-hand side of Equation (13) as∑
Y

α−−→π∈R
Y=µ(Y)

µπ(XH) · α · V (H,F)
Y + (17)

∑
Y1+Y2

α−−→π∈R
Y1=µ(Y1)∧Y2=µ(Y2)

µπ(XH) · α · V (H,F)
Y1

· V (H,F)
Y2

(18)

We close the proof showing that Equation (15) is equal to Equation (17) and that Equation (16)
is equal to Equation (18).

We focus on the first equality, which easily follows noting that Equation (17) can be
rewritten as∑

H̃∈H

V
(H,F)
X H̃

∑
Y

α−−→π∈R
Y=X H̃

µπ(XH) · α =
∑
H̃∈H

VH̃
∑
Z∈H

∑
Y

α−−→π∈R
Y=X H̃

π(Z) · α =
∑
H̃∈H

VH̃ · pr[X H̃ , ∅, H]

We now consider the case “Equation (16) equals Equation (18)”. We can rewrite Equa-
tion (18) as follows:∑

Y1+Y1
α−−→π∈R

Y1=µ(Y1)

µπ(XH) · α · V (H,F)
Y1

· V (H,F)
Y1

+ (19)

∑
Y1+Y2

α−−→π∈R,Y1 6=Y2
Y1=µ(Y1)∧Y2=µ(Y2)

µπ(XH) · α · V (H,F)
Y1

· V (H,F)
Y2

(20)

L. Cardelli et al. 19

Now, Equation (19) can be rewritten as∑
H̃∈H

VH̃ · VH̃
∑

Y1+Y1
α−−→π∈R

Y1=X H̃

µπ(XH) · α =

∑
H̃∈H

VH̃ · VH̃
∑
Z∈H

∑
Y1+Y1

α−−→π∈R

Y1=X H̃

π(Z) · α = (multiplying by 2
2)

1
2
∑
Ỹ ∈H

VH̃ · VH̃
∑
Z∈H

2
∑

Y1+Y1
α−−→π∈R

Y1=X H̃

π(Z) · α =

1
2
∑
Ỹ ∈H

VH̃ · VH̃ · pr[X H̃ ,X H̃ , H] (21)

Instead, Equation (20) can be rewritten as, where we divide Equation (22) by 2 because
each multiset is considered twice (e.g., Y1 + Y2 and Y2 + Y1):

1
2
∑
H̃∈H

VH̃
∑

Ĥ∈H,H̃ 6=Ĥ

V
Ĥ

∑
Y1+Y2

α−−→π∈R

Y1=X H̃∧Y2=X Ĥ

µπ(XH) · α = (22)

1
2
∑
H̃∈H

VH̃
∑

Ĥ∈H,H̃ 6=Ĥ

V
Ĥ

∑
Z∈H

∑
Y1+Y2

α−−→π∈R

Y1=X H̃∧Y2=X Ĥ

π(Z) · α =

1
2
∑
H̃∈H

VH̃
∑

Ĥ∈H,H̃ 6=Ĥ

V
Ĥ
· pr[X H̃ ,X Ĥ , H] (23)

By summing Equation (21) and Equation (23), we finally rewrite Equation (18) as
1
2
∑
Ỹ ∈H

VH̃ · VH̃ · pr[X H̃ ,X H̃ , H] + 1
2
∑
H̃∈H

VH̃
∑

Ĥ∈H,H̃ 6=Ĥ

V
Ĥ
· pr[X H̃ ,X Ĥ , H] =

1
2
∑
H̃∈H

VH̃
∑
Ĥ∈H

V
Ĥ
· pr[X H̃ ,X Ĥ , H]

This closes the case, and thus the proof is complete. J

We now provide the proof of Theorem 20.

Theorem 20. We first address the correctness of the reduction. For any H ∈ H we have∑
X∈H

FX(V) =
∑
X∈H

∑
ρ

α−−→π∈R

Accr(ρ α−−→ π,X, V)−
∑
X∈H

∑
ρ

α−−→π∈R

Depl(ρ α−−→ π,X, V)

As regards F̂ , by Definition 18, for any H ∈ H we obtain

F̂XH (V (H,F)) =
∑

ρ
α−−→π∈R
ρ=µ(ρ)

Accr(ρ α−−→ µ(π),XH , V (H,F))−

∑
ρ

α−−→π∈R
ρ=µ(ρ)

Depl(ρ α−−→ µ(π),XH , V (H,F))

20 Forward and Backward Bisimulations for CRN

We close the proof by showing that∑
X∈H

∑
ρ

α−−→π∈R

Accr(ρ α−−→ π,X, V) =
∑

ρ
α−−→π∈R
ρ=µ(ρ)

Accr(ρ α−−→ µ(π),XH , V (H,F)) (24)

∑
X∈H

∑
ρ

α−−→π∈R

Depl(ρ α−−→ π,X, V) =
∑

ρ
α−−→π∈R
ρ=µ(ρ)

Depl(ρ α−−→ µ(π),XH , V (H,F)) (25)

Both Equations (24) and (25) follow from Proposition 29.

We now address the complexity of the reduction, showing that (S,R)(H,F) can be
performed in O

(
|R| · |S| · (log(|S|) + log(|R|))

)
time.

Steps (F1) and (F2) of Definition 18 require to iterate (once) the reactions, (O(|R|)). In
particular, for each reaction we have to in turn iterate its reagents and products to perform
(F1) and (F2), respectively. This requires O(|S|) time. Finally, in order to efficiently perform
(F3) we assume that the reagents and products are stored as an ordered list, and thus we
have to sort the obtained canonized products (O(|S| · log(|S|))). To sum up, steps (F1) and
(F2) require O

(
|R| · |S| · log(|S|)

)
time.

Instead, step (F3) can be computed by first sorting the reactions obtained from (F1) and
(F2), requiring O(|R| · log(|R|) · |S|), where the |S| factor comes from the fact that in order to
compare two reactions it is necessary to scan (once) their reagents and products. Then, (F3)
is completed by iterating (once) the reactions to actually collapse them (O(|R| · |S|)). J

A.2 Backward CRN Bisimulation
Proof of Theorem 6. We first prove the if direction. Let µ : S → S be some choice function
of H, set Ŝ := µ(S) and define GX̂(V̂) := FX̂(V̂ ◦ µ) for any V̂ ∈ RŜ and X̂ ∈ Ŝ. Further,
let V̂ denote the unique ODE solution of d

dt V̂ (t) = G
(
V̂ (t)

)
subject to some given initial

condition V̂ (0). Then, for all X ∈ S, it holds that

d

dt
(V̂ (t) ◦ µ)X =

(d
dt
V̂ (t)

)
µ(X)

= Gµ(X)
(
V̂ (t)

)
= Fµ(X)(V̂ (t) ◦ µ) = FX(V̂ (t) ◦ µ)

Thus, t 7→ V̂ (t) ◦ µ is the unique solution of the ODE system d
dtV (t) = F (V (t)) subject to

V̂ (0) ◦ µ. Since t 7→ V̂ (t) ◦ µ is constant on H, the proof of the if direction is complete. We
now turn to the proof of the only-if direction. For this, let us assume that F is such that, for
any V (0) ∈ RS≥0 that is constant on H, the underlying solution of V̇ = F (V) is constant on
H as well. Fix arbitrary H ∈ H, X,Y ∈ H and V (0) ∈ RS≥0 with V (0) constant on H. Since
the solution of V̇ = F (V) is smooth, we can apply Taylor’s theorem to infer that there exist
δ > 0 and functions rX , rY such that limh↘0

1
hrX(h) = limh↘0

1
hrY (h) = 0 and

VX(h) = VX(0) + FX(V (0)) · h+ rX(h) VY (h) = VY (0) + FY (V (0)) · h+ rY (h)

for all 0 ≤ h < δ. Since V (0) is constant on H and X,Y ∈ H for some H ∈ H, this yields
limh↘0

1
h (VX(h) − VY (h)) = FX(V (0)) − FY (V (0)). Noting that VX(h) = VY (h) for all

0 ≤ h < δ because V (0) is constant on H, we thus infer FX(V (0))− FY (V (0)) = 0. J

Proof of Proposition 16. We first note that R is an equivalence relation over S, as it is the
transitive closure of the union of equivalence relations over S. For i ∈ I, set Hi = S/Ri
and H = S/R. Note that, for all i ∈ I, any H ∈ H is a union of blocks of Hi. From
this, in turn, it is easy to see that any M ∈ {ρ | ρ α−−→ π ∈ R}/≈H can be written

L. Cardelli et al. 21

as a union of blocks of {ρ | ρ α−−→ π ∈ R}/≈Hi . Observe that, for any (y0, y1) ∈ R,
there exist x0, . . . , xk ∈ S such that x0Ri0x1Ri1 . . . Rik−1xk with y0 = x0, y1 = xk and
ij ∈ I for all 0 ≤ j ≤ k − 1. Noting that xjRijxj+1 for all 0 ≤ j ≤ k − 1, we infer
that fr[xj ,M] = fr[xj+1,M] for all M ∈ {ρ | ρ α−−→ π ∈ R}/≈Hij . Thus, we infer that
fr[x0,M] = fr[x1,M] = . . . = fr[xk−1,M] = fr[xk,M] for allM ∈ {ρ | ρ α−−→ π ∈ R}/≈H.
The remainder of the claim follows then from Lemma 26. J

Proof of Theorem 17. Define JρKV :=
∏
X∈S V

ρ(X)
X and set Q := {ρ | ρ α−−→ π ∈ R}/≈H.

Fix some arbitrary Xi, Xj ∈ H and H ∈ H and note that

FXk(V) =
∑

ρ
α−−→π∈R

α(π(Xk)− ρ(Xk))JρKV =
∑

[ρ0]∈Q

∑
ρ∈[ρ0]

fr(Xk, ρ)JρKV

=
∑

[ρ0]∈Q

(∑
ρ∈[ρ0]

fr(Xk, ρ)
)

︸ ︷︷ ︸
c(Xk,[ρ0])

Jρ0KV

whenever V is constant on H. Observe also that the function V 7→ FXk(V), where V is
constant on H, defines a polynomial in |Q| variables with the monomials {c(Xk, [ρ0]) · Jρ0KV |
[ρ0] ∈ Q}. At last, recall that the multi dimensional version of Taylor’s theorem implies
that two real polynomials are equivalent if and only if they have the same monomials. Thus,
FXi(V) = FXj (V) for all V that are constant on H if and only if c(Xi, [ρ0]) = c(Xj , [ρ0]) for
all [ρ0] ∈ Q. J

Proof of Theorem 23. By encoding µ : S → S, ρ and π as arrays of length |S|, it is easy to
see that the first operation needs at most O(|R| · |S|) steps. For the second operation, note
that the renaming of species according to µ can be done in again in O(|R|·|S|). However, since
elements ofMS(S) are stored as ordered lists to allow for performant processing, the second
operation needs O

(
|R| · |S| · log(|S|)

)
. To accomplish the third operation, instead, we first

sort the reactions with respect to the lexicographical order which takes O(|R| · log(|R|) · |S|).
Afterwards, the rates of the reactions that coincide in reactants and products can be summed
in O(|R| · |S|).

We now turn to the correctness of algorithm. Let (X,V) 7→ GiX(V) denote the vector field
that arises from R after applying (B1), . . . , (Bi), with G0 being F itself. We next prove that
GiXk(V̂ ◦µS) = FXk(V̂ ◦µS) for all V̂ ∈ RŜ≥0, Xk ∈ Ŝ and i ∈ {1, 2}. For this, let us first apply
the reaction changes ρ→α π 7→ ρ→α π̃ of (B1). Then, G0

Xk
(V̂ ◦µ) = G1

Xk
(V̂ ◦µ) because of

π(Xk)− ρ(Xk) = π̃(Xk)− ρ(Xk). Let us now consider a reaction changes ρ→α π 7→ ρ̃→α π̃

of (B2). Then, G1
Xk

(V̂ ◦ µ) = G2
Xk

(V̂ ◦ µ) because
∏
X∈S(V̂ ◦ µ)ρ(X)

X =
∏
X∈S(V̂ ◦ µ)ρ̃(X)

X

and π(Xk)− ρ(Xk) = π̃(Xk)− ρ̃(Xk). Since G2
Xk

(V̂ ◦ µ) = G3
Xk

(V̂ ◦ µ) is trivially true, we
infer the claim. J

A.3 Partition Refinement
The following auxiliary results will be needed to prove the correctness of Algorithm 1.

I Lemma 30. Given a CRN (S,R), let H1,H2 be two partitions of S such that H1 is a
refinement of H2. Then, the following holds true.

1. Xi ∼FH1
Xj implies Xi ∼FH2

Xj.
2. Xi ∼BH1

Xj implies Xi ∼BH2
Xj.

22 Forward and Backward Bisimulations for CRN

Algorithm 2 Algorithm to calculate the quotient A/ ∼. We assume that A is implemented
as an array of objects {a[1], . . . , a[n]} where each object contains, among the actual data, a
pointer that is initialized with zero at the beginning.
Require: A set A and an equivalence relation ∼ on A.

for i = 1 to n do
if a[i].p != null then

continue
end if
a[i].p← &a[i]
for j = i+ 1 to n do

if a[j].p == null && a[j] ∼ a[i] then
a[j].p← &a[i]

end if
end for

end for

Proof. Let us assume that Xi ∼FH1
Xj , i.e. it holds that crr[Xi, ρ] = crr[Xj , ρ] and

pr[Xi, ρ,H1] = pr[Xj , ρ,H1] for all ρ ∈ MS(S) and H1 ∈ H1. Since any H2 ∈ H2
can be written as a disjoint union of blocks from H1, we thus infer that Xi ∼FH2

Xj .
Let us now assume that Xi ∼BH1

Xj , i.e. it holds that fr[Xi,M1] = fr[Xj ,M1] for all
M1 ∈ {ρ | ρ

α−−→ π ∈ R}/≈H1 . Since anyM2 ∈ {ρ | ρ
α−−→ π ∈ R}/≈H2 can be written as a

disjoint union of blocks from {ρ | ρ α−−→ π ∈ R}/≈H1 , we deduce that Xi ∼BH2
Xj . J

I Lemma 31. Let (S,R) be a CRN and H a partition of S. Then, the following holds.

1. H is an FB if and only if Xi ∼FH Xj for all Xi, Xj ∈ H and H ∈ H. Moreover, it holds
that H is an FB if and only if H = S/(∼FH ∩ ∼H).

2. H is a BB if and only if Xi ∼BH Xj for all Xi, Xj ∈ H and H ∈ H. Moreover, it holds
that H is a BB if and only if H = S/(∼BH ∩ ∼H).

Proof. The first parts of 1. and 2. are straightforward. The second parts, instead, follow
from the corresponding first parts by observing that H = S/(∼χH ∩ ∼H) if and only if H is a
refinement of S/ ∼χH. J

The following auxiliary results will be needed to establish polynomial complexity of
Algorithm 1. We implement ρ ∈ MS(S) as maps with keys in S. Moreover, we store a
partition of a set A by means of a map that associates to each element of A a pointer to its
representative. That is, each element of a partition block has a pointer to the representative
of the block.

I Lemma 32. Fix a CRN (S,R), pick A ∈ {S,R} and assume that deciding a1 ∼ a2 for
some equivalence relation ∼ on A can be done in O(|R|e1 · |S|e2) steps. Then, A/ ∼ can be
calculated in O(|A|2 · |R|e1 · |S|e2) steps.

Proof. It can be easily seen that Algorithm 2 calculates A/ ∼ in O(|A|2 · |R|e1 · |S|e2). J

I Lemma 33. For a CRN (S,R) and a partition H of S, deciding X ∼FH Y can be done in
O(|R|2 · |S|2).

L. Cardelli et al. 23

Proof. We first note that, for a given ρ ∈ MS(S), deciding crr[X, ρ] = crr[Y, ρ] can be
done in O(|R| · |S|) because the comparison of two ρ1, ρ2 ∈MS(S) needs O(|S|). Similarly,
for given ρ ∈ MS(S) and Z ∈ S, the calculation of pr[X, ρ, Z] can be done in O(|R| · |S|).
Note also that D(Z) := {ρ | ∃Z + ρ

α−−→ π ∈ R} can be calculated in O(|R| · |S|) steps. We
are now in a position to infer the claim. For this, note that crr[X, ρ] = crr[Y, ρ] for all
ρ ∈MS(S) if crr[X, ρ] = crr[Y, ρ] for all ρ ∈ D(X)∪D(Y). Consequently, deciding whether
crr[X, ρ] = crr[Y, ρ] for all ρ ∈MS(S) can be done in O(|R|2 · |S|) steps. Similarly, we note
that pr[X, ρ,H] = pr[Y, ρ,H] for all ρ ∈MS(S) and H ∈ H if pr[X, ρ,H] = pr[Y, ρ,H] for
all ρ ∈ D(X) ∪ D(Y) and H ∈ H. Thus, deciding whether pr[X, ρ,H] = pr[Y, ρ,H] for all
ρ ∈MS(S) and H ∈ H holds true can be done in O(|R|2 · |S|2). J

I Lemma 34. For a CRN (S,R) and a partition H of S, deciding X ∼BH Y can be done in
O(|R|2 · |S|).

Proof. Note that we can decide whether ρ ≈H σ in O(|S|). Thus, since R = {ρ | ρ α−−→
π ∈ R} can be calculated in O(|R| · |S|) steps, Lemma 32 implies that Q = R/ ≈H can be
calculated in O(|R|2 · |S|). Moreover, we note that, for a given ρ ∈MS(S), deciding whether
fr[X, ρ] = fr[Y, ρ] can be done in O(|R| · |S|). Consequently, deciding whether X ∼BH Y can
be done in O(|R|2 · |S|). J

We now are in a position to prove Theorem 25.

Proof of Theorem 25. For the proof of correctness, let us assume thatH denotes the coarsest
bisimulation that refines H0 := G and define Hk+1 := S/(∼χHk ∩ ∼Hk) for all k ≥ 0. Then,
the sequence H0,H1,H2, . . . is such that

1. H is a refinement of Hk
2. Hk is a refinement of Hk−1
for all k ≥ 1. We prove this by induction on k.

k = 1: Since H is a refinement of H0, Lemma 30 ensures the first claim. The second
claim is trivial.
k → k + 1 : Thanks to the fact that H is a refinement of Hk by induction, Lemma 30
ensures the first claim. The second claim is trivial.

Since H is a refinement of any Hk, it holds that H = Hk whenever Hk is a bisimulation.
Thanks to the fact that Hk is a refinement of Hk−1 for all k ≥ 1 and S is finite, we can fix the
smallest k ≥ 1 such that Hk = Hk−1. Since this implies Hk−1 = Hk = S/(∼χHk−1

∩ ∼Hk−1),
Lemma 31 yields the claim. We now turn to the complexity analysis. Note that since deciding
X ∼H Y needs a constant number of steps, Lemma 33 and Lemma 34 imply that X ∼χH Y
can be decided in O(|R|2 · |S|2) steps. Thus, Lemma 32 ensures that S/ ∼χH can be calculated
in O(|R|2 · |S|4) steps. Noting that the algorithm makes at most |S| iterations, we conclude
that the algorithm needs at most O(|R|2 · |S|5) steps. J

A.4 κ-encodings discussed in Section 6
M1-M4

We start providing the κ-encoding of model M4 of Table 1, whose original (BNGL) version
has been taken from [30]. M4 is a special case in which almost no changes are necessary
to convert it in κ. The encoding is given in Listing 1, where we omit unnecessary details.
Each κ rule is preceded by the corresponding original BNGL rule (starting with #). The
encodings for all other models of the same benchmark, M1-M3, are similar and thus we omit
them here. They are available for download at http://sysma.imtlucca.it/crnreducer/.

http://sysma.imtlucca.it/crnreducer/

24 Forward and Backward Bisimulations for CRN

Listing 1 Encoding of M4 from BNGL into κ

1 ### SITE 1 ###
2 #E(s) + S(p1~U) <-> E(s !1).S(p1~U !1)
3 E(s) , S(p1~U) <-> E(s!1) ,S(p1~U!1)
4
5 #E(s !1) .S(p1~U!1) -> E(s) + S(p1~P)
6 E(s!1) ,S(p1~U!1) -> E(s) , S(p1~P)
7
8 #F(s) + S(p1~P) <-> F(s !1).S(p1~P !1)
9 F(s) , S(p1~P) <-> F(s!1) ,S(p1~P!1)

10
11 #F(s !1) .S(p1~P!1) -> F(s) + S(p1~U)
12 F(s!1) ,S(p1~P!1) -> F(s) , S(p1~U)
13
14
15 ### SITE 2 ###
16 #E(s) + S(p2~U) <-> E(s !1).S(p2~U !1)
17 E(s) , S(p2~U) <-> E(s!1) ,S(p2~U!1)
18
19 #E(s !1) .S(p2~U!1) -> E(s) + S(p2~P)
20 E(s!1) ,S(p2~U!1) -> E(s) , S(p2~P)
21
22 #F(s) + S(p2~P) <-> F(s !1).S(p2~P !1)
23 F(s) , S(p2~P) <-> F(s!1) ,S(p2~P!1)
24
25 #F(s !1) .S(p2~P!1) -> F(s) + S(p2~U)
26 F(s!1) ,S(p2~P!1) -> F(s) , S(p2~U)

M6-M7

Models M6 and M7 are not directly encodable in κ, as they contain the molecule Lig(l, l)
having two identical binding sites l, which is forbidden in κ. In fact, BioNetGen supports
the aggregation of identical binding sites 3. Intuitively, the rule

Rec(a) + Lig(l, l)→ Rec(a!1).Lig(l!1, l) (26)

gives rise to only one chemical complex in the underlying CRN, Rec(a!1).Lig(l!1, l). This
represents the (forward and backward) canonical representative of a ligand bound to a single
receptor Rec(a). To see this, let us rename the two sites and expand the rule appropriately:

Rec(a) + Lig(l1, l2)→ Rec(a!1).Lig(l1!1, l2)
Rec(a) + Lig(l1, l2)→ Rec(a!1).Lig(l1, l2!1) (27)

Then, this underlying CRN will distinguish the two sites. However, applying either of our
bisimulations leads to the CRN for Equation (26).

We remark that the sizes of M6 and M7 given in Table 1 already account for the
aggregations obtained with BioNetGen. Nevertheless, our bisimulations allow for further
(significant) reductions. E.g., part of the reductions for M6 are due to the presence of
Rec(a, b, g1, g2), a molecule with symmetric sites g1 and g2, similarly to those of M4 discussed
in Section 6.

In order to encode M6 and M7 in BNGL we thus first expanded the BNGL rules of the
two models similarly to as done to that in Equation (26) to obtain the ones in Equation (27),
and then we encoded the expanded BNGL rules in κ. This led to initial CRNs with 21174
and 4858 species, respectively. In these cases fragmentation returned more fragments than

3 See Faeder, J.R., Blinov, M.L., Hlavacek, W.S.: Rule-Based Modeling of Biochemical Systems with
BioNetGen. In: Maly, I.V. (ed.) Systems Biology, Methods in Molecular Biology, vol. 500, pp. 113–167.
Humana Press (2009)

L. Cardelli et al. 25

species (58040 and 10930 fragments, respectively). Instead, resorting to our bisimulations we
obtained the same reductions as for the original models. For presentation reasons, we do not
provide the κ-encodings of the expansions of M6 and M7, which however are available for
download.

M12

We conclude this appendix providing in Listing 2 the κ-encoding of M12, whose BNGL
version has been taken from [25]. As for M4, each κ rule is preceded by the corresponding
original BNGL rule.

26 Forward and Backward Bisimulations for CRN

Listing 2 Encoding of M12 from BNGL to κ

1 # MAP3K (s,S~I) -> MAP3K (s,S~A)
2 MAP3K (s,S~I) -> MAP3K (s,S~A)
3
4 # MAP3K (s,S~A)+ Scaff (map3k) <-> MAP3K (s!1,S~A). Scaff (map3k !1)
5 MAP3K (s,S~A),Scaff (map3k) <-> MAP3K (s!1,S~A),Scaff (map3k !1)
6
7 # MAP3K (s!1,S~I). Scaff (map3k !1) -> MAP3K (s,S~I)+ Scaff (map3k)
8 MAP3K (s!1,S~I),Scaff (map3k !1) -> MAP3K (s,S~I),Scaff (map3k)
9

10 # MAP2K (s,R1~Y,R2~Y)+ Scaff (map2k) <-> MAP2K (s!1, R1~Y,R2~Y). Scaff (map2k !1)
11 MAP2K (s,R1~Y,R2~Y),Scaff (map2k) <-> MAP2K (s!1,R1~Y,R2~Y),Scaff (map2k !1)
12
13 # MAP2K (s,R1~Yp ,R2~Y)+ Scaff (map2k) <-> MAP2K (s!1, R1~Yp ,R2~Y). Scaff (map2k !1)
14 MAP2K (s,R1~Yp ,R2~Y),Scaff (map2k) <-> MAP2K (s!1,R1~Yp ,R2~Y),Scaff (map2k !1)
15
16 # MAP2K (s,R1~Y,R2~Yp)+ Scaff (map2k) <-> MAP2K (s!1, R1~Y,R2~Yp). Scaff (map2k !1)
17 MAP2K (s,R1~Y,R2~Yp),Scaff (map2k) <-> MAP2K (s!1,R1~Y,R2~Yp),Scaff (map2k !1)
18
19 # MAP2K (s,R1~Yp ,R2~Yp)+ Scaff (map2k) <-> MAP2K (s!1, R1~Yp ,R2~Yp). Scaff (map2k !1)
20 MAP2K (s,R1~Yp ,R2~Yp),Scaff (map2k) <-> MAP2K (s!1,R1~Yp ,R2~Yp),Scaff (map2k !1)
21
22 # MAPK (s,R1~Y,R2~Y)+ Scaff (mapk) <-> MAPK (s!1, R1~Y,R2~Y). Scaff (mapk !1)
23 MAPK(s,R1~Y,R2~Y),Scaff (mapk) <-> MAPK(s!1,R1~Y,R2~Y),Scaff (mapk !1)
24
25 # MAPK (s,R1~Yp ,R2~Y)+ Scaff (mapk) <-> MAPK (s!1, R1~Yp ,R2~Y). Scaff (mapk !1)
26 MAPK(s,R1~Yp ,R2~Y),Scaff (mapk) <-> MAPK(s!1,R1~Yp ,R2~Y),Scaff (mapk !1)
27
28 # MAPK (s,R1~Y,R2~Yp)+ Scaff (mapk) <-> MAPK (s!1, R1~Y,R2~Yp). Scaff (mapk !1)
29 MAPK(s,R1~Y,R2~Yp),Scaff (mapk) <-> MAPK(s!1,R1~Y,R2~Yp),Scaff (mapk !1)
30
31 # MAPK (s!1, R1~Yp ,R2~Yp). Scaff (mapk !1) -> MAPK (s,R1~Yp ,R2~Yp) + Scaff (mapk)
32 MAPK(s!1,R1~Yp ,R2~Yp),Scaff (mapk !1) -> MAPK(s,R1~Yp ,R2~Yp) , Scaff (mapk)
33
34 # MAP3K (s!1,S~A). Scaff (map3k !1, map2k !2). MAP2K (s!2, R1~Y) -> MAP3K (s!1,S~A). Scaff (map3k !1,

map2k !2) . MAP2K (s!2, R1~Yp)
35 MAP3K (s!1,S~A),Scaff (map3k !1, map2k !2) ,MAP2K (s!2,R1~Y) -> MAP3K (s!1,S~A),Scaff (map3k !1,

map2k !2) ,MAP2K (s!2,R1~Yp)
36
37 # MAP3K (s!1,S~A). Scaff (map3k !1, map2k !2). MAP2K (s!2, R2~Y) -> MAP3K (s!1,S~A). Scaff (map3k !1,

map2k !2) . MAP2K (s!2, R2~Yp)
38 MAP3K (s!1,S~A),Scaff (map3k !1, map2k !2) ,MAP2K (s!2,R2~Y) -> MAP3K (s!1,S~A),Scaff (map3k !1,

map2k !2) ,MAP2K (s!2,R2~Yp)
39
40 # MAPK (s!1, R1~Y). Scaff (mapk !1, map2k !2) . MAP2K (s!2, R1~Yp ,R2~Yp) -> MAPK (s!1, R1~Yp). Scaff (

mapk !1, map2k !2) . MAP2K (s!2, R1~Yp ,R2~Yp)
41 MAPK(s!1,R1~Y),Scaff (mapk !1, map2k !2) ,MAP2K (s!2,R1~Yp ,R2~Yp) -> MAPK(s!1,R1~Yp),Scaff (

mapk !1, map2k !2) ,MAP2K (s!2,R1~Yp ,R2~Yp)
42
43 # MAPK (s!1, R2~Y). Scaff (mapk !1, map2k !2) . MAP2K (s!2, R1~Yp ,R2~Yp) -> MAPK (s!1, R2~Yp). Scaff (

mapk !1, map2k !2) . MAP2K (s!2, R1~Yp ,R2~Yp)
44 MAPK(s!1,R2~Y),Scaff (mapk !1, map2k !2) ,MAP2K (s!2,R1~Yp ,R2~Yp) -> MAPK(s!1,R2~Yp),Scaff (

mapk !1, map2k !2) ,MAP2K (s!2,R1~Yp ,R2~Yp)
45
46 # MAP3K (S~A) -> MAP3K (S~I)
47 MAP3K (S~A) -> MAP3K (S~I)
48
49 # MAP2K (R1~Yp) -> MAP2K (R1~Y)
50 MAP2K (R1~Yp) -> MAP2K (R1~Y)
51
52 # MAP2K (R2~Yp) -> MAP2K (R2~Y)
53 MAP2K (R2~Yp) -> MAP2K (R2~Y)
54
55 # MAPK (R1~Yp) -> MAPK (R1~Y)
56 MAPK(R1~Yp) -> MAPK(R1~Y)
57
58 # MAPK (R2~Yp) -> MAPK (R2~Y)
59 MAPK(R2~Yp) -> MAPK(R2~Y)

	Introduction
	Background
	Chemical Reaction Networks
	Fluid Lumpability

	CRN Bisimulations
	Forward CRN Bisimulation
	Backward CRN Bisimulation

	Reduced Chemical Reaction Networks up to CRN Bisimulations
	Partition Refinement Algorithms for CRN Bisimulations
	Evaluation
	Conclusion

