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Abstract—In software performance engineering, what-if sce-

narios, architecture optimization, capacity planning, run-time

adaptation, and uncertainty management of realistic models typ-

ically require the evaluation of many instances. Effective analysis

is however hindered by two orthogonal sources of complexity.

The first is the infamous problem of state space explosion—the

analysis of a single model becomes intractable with its size. The

second is due to massive parameter spaces to be explored, but

such that computations cannot be reused across model instances.

In this paper, we efficiently analyze many queuing models with

the distinctive feature of more accurately capturing variability

and uncertainty of execution rates by incorporating general (i.e.,

non-exponential) distributions. Applying product-line engineering

methods, we consider a family of models generated by a core that

evolves into concrete instances by applying simple delta operations

affecting both the topology and the model’s parameters. State

explosion is tackled by turning to a scalable approximation based

on ordinary differential equations. The entire model space is

analyzed in a family-based fashion, i.e., at once using an efficient

symbolic solution of a super-model that subsumes every concrete

instance. Extensive numerical tests show that this is orders of

magnitude faster than a naive instance-by-instance analysis.

I. INTRODUCTION

In model-based software performance engineering [12], a
variety of analyses involve the evaluation of many instances of
a model. For instance, typical what-if questions investigate the
effect of changes in parameters on the performance of a sys-
tem; software architecture optimization methods look for the
best design alternative that satisfies certain constraints [1]; later
on in the software life cycle, e.g., at run-time, the violation of
a given quality-of-service agreement may trigger an on-line
reconfiguration process that examines a better alternative [10];
uncertainty can be cast into a problem of evaluating model in-
stances obtained from samples of the probability distributions
for the values of the unknown parameters [41].

These scenarios introduce two orthogonal sources of com-
plexity which may make the reasoning in general very difficult,
if not intractable, for complex software performance models
to be evaluated over large parameter spaces. The first is the
infamous problem of state-space explosion, arising in many
techniques based on a discrete state-space representation, such
Markov chains as typically adopted in the software perfor-
mance engineering literature [2]. Here, the issue is that the size
of the model, intended as the number of states on which it can
be found, grows very rapidly (in the worst case, exponentially),
with the number of components in the system (e.g., number
of jobs, service centres, and so on). The second source of

complexity comes from the fact that, in general, the analysis
of a model instance cannot be re-used to evaluate another
model drawn from the same parameter space (e.g., when a
rate value or a routing probability are changed). This creates a
multiplicative, combinatorial, effect on state-space explosion.

In this paper, we consider software performance models
with the distinctive capability of supporting, as first-class citi-
zens, general probability distributions for describing the dura-
tions of the activities in a system. More traditional approaches,
instead, are based on the assumption of exponential distri-
butions, which straightforwardly leads to a continuous-time
Markov chain (CTMC) model. Our peculiarity is particularly
relevant in practice because there is substantial evidence that
in many real-world situations, durations are not exponentially
distributed. For instance, Internet traffic has been fitted to
heavy-tailed distributions [15]; web objects have been shown
to be Zipf distributed [27]; events such as time-outs, with
low variability in their execution times, can be modeled using
Erlang distributions [32]. Unfortunately, apart from specific
classes of models (e.g., [6], [32]), the modeler must resort
to computationally expensive procedures such as stochastic
simulations in order to handle general distributions. As a
consequence, even the analysis of a single model instance—let
alone the efficient computation of large parameter spaces—can
be difficult under these conditions.

We present a class of software performance models which
enables a scalable evaluation of a single instance as well
as of the whole parameter space. Specifically, we consider
models expressed as queuing networks, a formalism which has
proven very popular in the software performance engineering
community (e.g., [13], [14], [3], [28], [17], [31]). In particular,
we study closed queuing network with a single class of users.
There is a rather immediate association between the constituent
elements of a queuing network and the components of a soft-
ware system. A service station may either represent a software
device (e.g., a web server) or a hardware resource (e.g., CPU
or disk). Routing probabilities, indicating the probability with
which a job enters a service station upon leaving another
station, can represent the operational profile of the workload.
In order to model parallelism we allow each station to be
composed of multiple, independent and identical servers (e.g.,
to represent thread concurrency levels for software resources
or multiple cores for hardware resources), with the crucial
characteristic that the service times are modeled by Coxian
distributions. This is a class of distributions that can be in-
formally considered as a “composition” of exponential stages.



It has the advantage of being able to approximate any given
general distribution arbitrarily closely [16], [32], while keeping
the model as a CTMC.

The combination of parallelism in service stations and non-
exponential service time distributions prevents the model to
enjoy analytical solutions (e.g., product forms [4]). To solve
this issue, we consider an alternative solution based on the
theory of fluid limits, which approximates the model by a
system of ordinary differential equations (ODEs) [26]. Its size
depends only on the queuing network’s topology and not on the
number of CTMC states, which instead grow combinatorially
with the number of stations and jobs in the queuing network.
This is a sound approximation in the sense that it is shown
to converge to the exact solution when the number of servers
and jobs grows to infinity, with excellent accuracy in the case
of realistic large-scale systems (e.g., [8], [24], [40]).

The ODE approximation tackles the size scalability prob-
lem well; for instance, the number of equations needed to
encode Coxian-distributed service times is linear with the
number of exponential stages. But, on its own, this does not
help tackle the complexity introduced by a large parameter
space. This is because the resulting ODEs are typically in a
nonlinear form in the most interesting cases. Hence, analytical
ODE solutions are out of reach in this context. However, the
ODE representation is a decisive factor to arrive at an efficient
solution technique that scales well also with large parameter
spaces. In particular, we show that the ODE estimates of the
network’s throughputs can always be obtained as a solution
of a system of linear equations. Remarkably, these equations
can be interpreted as the ODE counterparts of the well-
known traffic equations for queuing networks [6], [32], which
basically establish that the flux of jobs incoming at a service
centre must be equal to the outgoing flux of jobs (i.e., those
serviced at the centre) in the steady-state.

As a main technical contribution of this paper, we show that
the linear structure of these equations is somewhat preserved
under certain structural and parameter changes to the original
software performance model. Specifically, we provide a lan-
guage where such changes can be expressed systematically. For
this we are inspired by software product line engineering as a
highly successful and powerful approach to designing systems
exhibiting a high degree of variability, due, for instance, to
the number of possible configurations which are possible [29].
Following previous work of some of this authors [25], our
reference model is a Performance Annotated Activity Diagram
(PAAD) supported by a delta-oriented (cf. [30]) language. A
PAAD is a formalization of a subset of UML activity diagrams
with performance annotations, similarly to those used in the
literature e.g., [17], [3], [28], [39].

Parameter spaces are encoded in a variability model gen-
erated from a kernel model, the core, and a set of deltas.
A delta is a list of basic operations such as the addition,
removal, or modification of the performance annotations of
a node or edge of the PAAD. Overall, a delta transforms
the core model into a new model variant [30]. Each variant
can be solved for its ODE traffic equations one-by-one, thus
yielding a naive solution technique for the whole parameter
space. Instead, we exploit the commonalities across variants
(e.g., nodes whose parameters are never modified, or arcs
that are never removed by any delta) to build a single super-

model, the so-called 150% model [34], which keeps track of
the concrete variants where each PAAD element can be found
with a specific performance annotation. For the 150% model,
we construct a system of ODE traffic equations symbolically:
all parameters that never change across all variants are treated
as constant values; instead, those that are changed at least
once are treated as symbols. We then prove that the symbolic
solution of the 150% model, called the family-based solution,
is equal to the solution of any variant whenever we evaluate
the symbolic expression with the concrete values related to
that variant. This allows for the efficient treatment of large
parameter spaces, since the symbolic solution is computed
only once for the whole family. Numerical tests show that
this approach is one order of magnitude faster than the naive
instance-by-instance analysis.

II. RELATED WORK

There has been a considerable amount work on lever-
aging variability-aware models to improve the efficiency of
the analysis. For qualitative analyses, examples are feature-
aware model-checking algorithms [11] or behavioral equiv-
alences [19], [37]. For quantitative properties, Tawhid and
Petriu derive performance models from a UML software
product line model [33], but commonalities across model
instances are not exploited to provide an efficient family-
based analysis. Exteberria et al. consider the situation of a
feature-aware software performance design in the presence
of uncertainty [18]. Each concrete variant is still analyzed
in isolation, although its parametric uncertainty is handled
through an assumption of monotonicity of the performance
indices on the unknown values. In [22], Ghezzi and Sharifloo
provide instead a symbolic solution to quantitative analysis of
software product lines using a parametric probabilistic model
checker [20]. This approach requires the parametric Markov
chain to be built. When the focus is on energy/reliability
properties as in [22], this is feasible because it involves single-
user scenarios, yielding Markov chains of manageable size. For
performance analysis, as discussed, the size of the CTMC will
grow combinatorially with the number of jobs and servers. We
avoid a CTMC representation by considering parametric traffic
equations, whose size only depends on the network topology.

We are most closely related to recent previous work by
some of this paper’s authors [25], where PAADs were in-
troduced for the first time. In [25], the objective was still to
exploit commonalities across variants by building a symbolic
150% model solution. From a modeling viewpoint, there are
two major limitations in [25], imposed by certain syntactic
restrictions on the PAAD which are removed in this paper:
(i) activities are assumed to take exponentially distributed
service times; (ii) and they are assumed to be performed by
computational units without parallelism (i.e., single servers).

The assumptions of [25] led to an underlying PAAD
semantics based on Jackson queuing networks (e.g., [6]). The
parametric analysis was directly performed on the traffic equa-
tions of the network. In this paper we are essentially inspired
by an observation from [25] that parametric analysis is possible
if the problem is linear with a closed-form solution (such
as matrix inversion for the traffic equations). Despite using
similar definitions of PAADs and 150% model construction,
from a technical viewpoint the present contribution is starkly
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Fig. 1: A Performance Annotated Activity Diagram.

different: (i) with Coxian-distributed multi-server stations, the
traffic equations cannot be reused directly for a family-based
analysis; (ii) to overcome this issue we turned to an ODE
representation of the system; (iii) the ODEs are nonlinear,
yet we show that their traffic equations, defined here for the
first time to are knowledge, are linear. Through these steps,
which involve somewhat nontrivial mathematical analysis, we
are finally able to provide a family-based evaluation also for
our more expressive PAADs.

III. OVERVIEW OF MAIN RESULTS

Using a running example, in this section we present an
informal overview of the main contributions of this paper,
which will be made formal and precise in later sections.

Model specification using PAADs: A Performance An-
notated Activity Diagram (PAAD) is our reference model
that can capture UML activity diagrams with performance
annotations e.g., [17], [3], [28], [39]. Here, the main restriction
is the lack of support for fork/join synchronization barriers, as
in [17], [3] (see also [9] for a more general discussion on
this). Fig. 1 shows an example PAAD. Each node, labeled
with a boldface symbol, represents a service center and is
annotated (at its borders) with the following information:
service time distribution (top left and right vectors), number
of clients at that station in the initial condition (bottom left)
and server multiplicity (bottom right). Edges are annotated
with probabilities, with the usual interpretation useful to model
operational profiles: a job serviced at station 1 will go to
station 2 with probability 0.3, else it goes to station 3.

The only nonstandard annotation concerns the ser-
vice time distribution, which we now briefly explain.
The two vectors provide a canonical representation of
a CTMC that describes the service time at the station.

1 2
2/6

2/6

1/3

Fig. 2: Coxian CTMC for 3.

The length of either vector
gives the number of states
of such CTMC (the stages
of the distribution); the left
vector lists the rate of the ex-
ponential residence time at
each state; the right vector
gives the probability with which the service process moves
from one state to the next; if such probability is less than one,
the service ends. The time between the start of the process

in the first state and its exit from any state determines the
non-exponential distribution of a service at the station. For
instance, Fig. 2 shows a CTMC representation for the Coxian
distribution of station 3. Starting from state 1, the service will
be exponentially distributed with rate 2/6 + 2/6 = 2/3, but
with probability 1/2 it will be followed by a further exponen-
tial delay with rate 1/3. We remark the usefulness of Coxian
distributions. For instance, given a service time distribution
with given mean E and variance V , if the squared coefficient
of variation V/E

2 satisfies V/E2 � 1/2 (informally indicating
a distribution with high variability), a rate vector (2/E,E/V )
and a probability vector (E2

/2V, 1) give a Coxian distribution
that matches both the mean and the variance [32].

PAAD analysis: As discussed in Section I, a PAAD is
interpreted as a queuing network. Since each service centre
consists of exponential stages, the whole network is a CTMC.
A representative state is given by a population vector; each
element of the vector provides information about a service
centre, giving the number of jobs waiting in the queue and
those in each Coxian stage. For instance, the initial state of
the CTMC in Fig. 1 will give 0 jobs in stations 2–5, 19 jobs
in queue at station 1, while one job is serviced in stage 1 of
the two-stage Coxian distribution. We stress that, on its own,
this representation is not convenient because in general such
networks can be analyzed only through simulation, hindering
an efficient evaluation. However, this semantics corresponds
to the so-called Markov population process format, e.g., [7].
The most relevant consequence is that the behavior can be
approximated by a compact system of ODEs [26]. In this
system, there is one variable for each element of the population
vector, which provides an estimate of the average number of
jobs in that state. For instance, the number of jobs C

1
1 in

station 1 that are in stage 1 of the Coxian distribution and
the number of the server S5

1 that are serving the clients in the
first stage of the Coxian distribution in station 5 are given by
the following ODEs:

Ċ

1
1 = �2 ·min(C1

1 , S
1
1) +

1

5
·min(C5

1 , S
5
1) +

1

5
· S5

2 (1)

Ṡ

5
1 = �1

5
·min(C5

1 , S
5
1) +

1

5
· S5

2 (2)

where C

i
l denotes the number of clients in station i in Coxian

stage l, whereas S

i
k is the number of servers in station i

available for clients in the Coxian stage l. Notably, this ODE
is independent of the number of jobs and servers, which only
affect the initial condition, while the CTMC semantics grows
combinatorially with them, as discussed.

We now briefly discuss how the ODEs (1-2) induce the
traffic equation of station 1. For this, we first note that the
negative part of the ODE Ċ

1
1 estimates the flux-out of station

1, T 1. Consequently, (1) implies that T 1 = 2 · min(C1
1 , S

1
1).

Moreover, we observe that setting the ODEs to zero (requiring
an equilibrium condition which must be satisfied in the steady
state), and plugging (2) into (1) yields 2 ·min(C1

1 , S
1
1) =

2
5 ·

min(C5
1 , S

5
1). Since the negative part of Ċ5

1 can be shown to be
2
5 ·min(C5

1 , S
5
1), the last statement rewrites to T

1 = r5,1 · T 5,
where r5,1 denotes the routing probability from station 5 to
station 1. Under the assumption that all derivatives are zero
(that is, we are in a steady state), it can be shown that the
throughputs satisfy T

i =
P

j rj,iT
j for all i. These equations,
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Fig. 3: PAAD variant obtained by applying �1.
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written for the unknown throughputs, now become linear. A
crucial technical result that we establish in this paper is that
the throughputs admit a closed form expressions which only
depend on the parameters of the queuing network. This will
be instrumental to find a symbolic solution for a family of
variants induced by our delta-based language, discussed next.

PAAD variability modeling: We use a delta-based lan-
guage to model parameter spaces. Our formalism generates a
family of models starting from a core PAAD to which we apply
deltas, sequences of basic operations. The operation may: add a
new node/edge; modify the annotation of a node/edge; remove
a node/edge. We require typical well-formedness conditions
that ensure that no dangling nodes are present, or that the sum
of all outgoing probabilities from a node is equal to 1. For
instance, let us assume that the PAAD of Fig. 1 is the core
model, and let us consider the following delta �1:

�1 = {rem (5, 1, 1), add (6, 0, 4, (1/2, 1/3), (1/2, 1)),

add (5, 1, 6), add (6, 1, 1),mod (2, 0, 2, (1, 1/2), (1/2, 1))}.

Its overall intent is to introduce an extra node between
station 5 and 1, and to add 1 more server to station 2. This is
implemented by the following sequence of basic operations:
removal of the arc between station 5 and 1 [rem (5, 1, 1)];
addition of a node 6 with 4 servers and a some Coxian
distribution [add (6, 0, 4, (1/2, 1/3), (1/2, 1))]; addition of an
arc between node 5 and 6 and 6 and 1, both with probability
1 [add (5, 1, 6) and add (6, 1, 1), respectively]; modification
of the annotations of node 2 [mod (2, 0, 2, (1, 1/2), (1/2, 1))].
Figure 3 shows the resulting PAAD after applying �1 to the
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Fig. 5: 150% PAAD for the core of Fig. 1 with �1 and �2.

core PAAD. As a further example, let us consider �2:

�2 = {rem (1, 3/10, 2), rem (2, 1, 5), rem 2,

mod (1, 7/10, 3) by 1}.

With similar meaning, the resulting PAAD is shown in Fig. 4.

We remark that typical studies such as sensitivity analysis
or what-if scenarios can be encoded in this delta-based frame-
work. For instance, understanding the performance when the
server multiplicity at station 1 varies from 1 to 10 can be
encoded with 10 different deltas

�k = {mod (1, 20, k, (2, 1), (1/2, 1))},with 1  k  10.

Notably, our framework also allows for structural changes in
addition to parametric ones.

Each PAAD variant can be solved in isolation, but this
does not exploit the commonalities across variants. We now
describe how an efficient family-based analysis can be done.

Family-based PAAD analysis: Following [25], we de-
fine the 150% as a super-variant that subsumes every concrete
variant of the family. We omit the details in this overview;
rather, we show in Fig. 5 a graphical representation of the
150% which subsumes the core model in Fig. 1 as well as the
two variants originated from �1 and �2. Notationally, nodes and
edges that do not occur in all variants are drawn with dashed
lines. Elements that do occur in every variant are marked with
solid lines. Labels shown at the bottom-middle of each node
indicate the presence conditions. For instance, label c refers to
the core model while label �1 in node 6 means that the node is
only present in the variant obtained by applying �1. A similar
labeling is used for arcs.

The main result of this paper is that ODE traffic equations
can too be written for the 150% PAAD model. To incorporate
variability, all elements that are added, removed, or modified
by at least one delta are replaced by symbolic expressions. A
soundness result guarantees that the symbolic solution of the
traffic equations evaluated with the concrete values of a given
delta provides the correct throughput estimates.

IV. PERFORMANCE-ANNOTATED ACTIVITY DIAGRAMS

We now begin with the formal definitions, starting from
the notion of PAAD.



Definition 1 (Performance-Annotated Activity Diagram). A
performance-annotated activity diagram (PAAD) is a tuple
(V, E , C,S, µ, p) where:

• V ✓ N is the set of vertices; in the following we shall use
V = {1, 2, . . . , n};

• E ✓ V ⇥ [0; 1]⇥ V is the set of labeled edges;

• S = (S1
, . . . , S

n) 2 Nn
>0 is the server multiplicity vector;

• C = (C1
, . . . , C

n) 2 Nn
�0 is the initial condition vector;

• µ = (µ1
, . . . , µ

n), with µ

i = (µi
1, . . . , µ

i
mi

) 2 Rmi
>0 for

mi > 0 are the Coxian rate vectors;

• p = (p1, . . . , pn), where p

i = (pi1, . . . , p
i
mi

) 2 Rmi
�0 with

p

i
mi

= 1 for 1  i  n are the Coxian probability vectors.

For instance, the PAAD of Fig. 1 has S

1 = 1, C2 = 0,
m3 = 3 and µ

3 = (2/3, 1/3), and p

3 = (1/2, 1). We remark
that mi is the number of stages of the Coxian distribution for
node i; the Coxian vectors for station i are denoted by µ

i =
(µi

1, . . . , µ
i
mi

) and p

i = (pi1, . . . , p
i
mi

). With this notation, the
mean service time at station i is (cf. [32])

Ei = 1/µi
1+p

i
1/µ

i
2+p

i
1p

i
2/µ

i
3+. . .+p

i
1 ·. . .·pimi�1/µ

i
mi

. (3)

We now provide conditions to be enjoyed by a PAAD to
yield a meaningful queuing model.

Definition 2 (Well-formedness). A PAAD is well-formed if and
only if the following hold:

i)
P

(i,r,j0)2E r = 1 for all i 2 V;

ii) Any pair (i, r, j), (i, r0, j) 2 E yields r = r

0. Hence, we
let ri,j be the unique probability such that (i, ri,j , j) 2 E .

Condition i) imposes a closed topology: with probability
1 a job serviced at any station goes into some other station;
condition ii) requires that there be only one arc between any
two edges. All examples so far are clearly well formed.

A. Semantics of PAADs

As discussed, we first interpret a PAAD as a closed queu-
ing network with multi-server queues and Coxian distributed
service times. A node i is a queue with S

i servers. If the
number of jobs in station i at time t, denoted by C

i(t), is
less or equal Si, each job undergoes a service with a Coxian
distributed service time that is specified by vectors µi and pi.
If, instead, Ci(t) > S

i, the number of jobs that are queueing
for service at time t is given by C

i(t)�S

i. All stations have a
first-come-first-served policy. Finally, R = (ri,j)1i,jn is the
routing probability matrix, defining with which probability a
job in node i, after being serviced, moves to any node j. In the
following we assume that R is irreducible, meaning that any
two nodes are connected by a path with non-zero probability.

CTMC model: We provide a CTMC model where
the state of station i is characterized by the vector
(Ci

1,S
i
1,S

i
2, . . . ,S

i
mi

) where each element is a nonnegative
integer denoting the following (we use boldface symbols for
elements of the CTMC state descriptor):

• Ci
1 is the population of jobs that are either waiting for

service or which are in service in stage 1;

• Si
1 is the population of servers which are either idle or

servicing jobs in stage 1;

• Si
l , with l > 1, is the population of servers that serve jobs

in stage l.

Since the number of servers and jobs coincides at stages l > 1,
Si
l is also the number of jobs that are serviced in stage l > 1.

Therefore, the number of jobs in station i is given by Ci =
Ci

1 + Si
2 + . . .+ Si

mi
. (As expected, the number of servers in

station i is given by the constant Si = Si
1 + Si

2 + . . .+ Si
mi

.)
The network state descriptor is a vector from N

P
i(mi+1)

0 in
the form X = (C1

1,S
1
1, . . . ,S

1
m1

, . . . ,Cn
1 ,S

n
1 , . . . ,S

n
mn

). We
note that this model can also cover infinite-server (i.e., delay)
stations, by choosing the initial number at least equal to the
total population of jobs. For a network of size n � 1, we
assume in the following that stations 1, . . . , ⌫, with 1  ⌫ 
n are finite-server stations, whereas stations ⌫ + 1, . . . , n are
delay (i.e., infinite-server) stations.

We now define the transition rates of the CTMC, in the
customary form of jump vectors and associated transition
functions from a generic state X [7]. We denote by q(X,X0)
the transition rate from state X to state X0. Consider some
station 1  i  n and define, for all 1  j  n,

X+ h

i,i
1 = (Ci

1 � 1,Si
1 � 1,Si

2 + 1, . . .), (4)
X+ h

i,j
1 = (Ci

1 � 1,Cj
1 + 1, . . .), 8j, j 6= i, (5)

X+ h

i,i
l = (Si

l � 1,Si
l+1 + 1, . . .), 82  l  mi � 1, (6)

X+ h

i,j
l = (Si

l � 1,Si
1 + 1,Cj

1 + 1, . . .), 82  l  mi,

where we use ellipsis to denote all elements of X which are
not affected by a jump. Jump (4) describes a job in stage 1
which moves into stage 2, also causing a server element Si

1 to
decrease and become a server element Si

2; jump (5) describes a
job in stage 1 which completes service and moves into another
station j; jump (6) denotes a job in stage l which moves to
the next stage, whereas the last equation describes a job that
completes service at stage l and moves into station j.

According to this description and notation, the transition
rates from any state X are, for all 1  i, j  n, as follows:

q(X,X+ h

i,i
1 ) = p

i
1µ

i
1 min(Ci

1,S
i
1),

q(X,X+ h

i,j
1 ) = ri,j(1� p

i
1)µ

i
1 min(Ci

1,S
i
1) , 8j 6= i,

q(X,X+ h

i,i
l ) = p

i
lµ

i
lS

i
l, 82  l  mi � 1,

q(X,X+ h

i,j
l ) = ri,j(1� p

i
l)µ

i
lS

i
l, 82  l  mi

The CTMC is completely characterized by these transitions,
together with the initial condition given by C. We denote
the CTMC by (X(t))t�0. Thus, for instance, Ci

1(t) is the
stochastic process describing the number of jobs that are either
waiting or in service at stage 1 in station i.

Let us define the stochastic process

⇤i(t) := µ

i
1 min

�

Ci
1(t),S

i
1(t)

�

, 1  i  n. (7)

Informally, each ⇤i(t) represents a contribution given by the
first stage to the throughput at station i at time t. This is
because each copy of a server in stage 1 will serve at an



exponential rate µ

i
1, and the total number of jobs that are

simultaneously served is the minimum between the number
of clients waiting and the the number of servers available.
The total throughput at time t is given by summing across
the throughputs at all stages. Now, the crucial observation that
we make here is that in the steady state, the throughput at
stage 1 will equal the total station throughput. This is because
in the canonical Coxian representation herein used all jobs
start service at each station from stage 1. Thus the throughput
at stage 1 coincides with the total arrival rate of jobs into
station i. So, by definition of steady-state this must coincide
with the total exit rate of jobs from station i, which is in turn
the definition of throughput.

We make the following observations that summarize and
motivate the developments of this paragraph.

• A PAAD can be interpreted as queuing network with
CTMC semantics.

• The state space of such CTMC will grow combinatorially
with the number of jobs and servers in the network, given
by C and S , because we must enumerate all possible ways
in which a fixed number of jobs can be placed across all
queues and service stages.

• However, the CTMC is in the so-called Markov population
process format (e.g., [7]): that is, each element of the state
descriptor vector denotes a population of entities.

ODE model: The last observation is crucial, as we can
drop state-space complexity by defining a compact system of
ODEs, one for each element of the state descriptor, that provide
an estimate of the expected value of the stochastic process. The
procedure is based on a fundamental result by Kurtz [26] and
is well-known in the literature (see, e.g., [7] and references
therein). Here, we limit ourselves to providing the resulting
ODEs and briefly explaining their meaning and significance.

Definition 3 (ODE Semantics). The ODE semantics of a PAAD
(V, E , C, S, µ, p) is the set of ODEs ⌅1 [ . . . [ ⌅n, where ⌅i

is defined by

Ċ

i
1 = �µ

i
1 min(Ci

1, S
i
1) +

n
X

j=1

rj,i

h

(1� p

j
1)µ

j
1 min(Cj

1 , S
j
1)+

+

mj�1
X

l=2

(1� p

j
l )µ

j
lS

j
l + µ

j
mj

S

j
mj

i

(8)

Ṡ

i
1 = �p

i
1µ

i
1 min(Ci

1, S
i
1) +

mi�1
X

l=2

(1� p

i
l)µ

i
lS

i
l + µ

i
mi

S

i
mi

(9)
Ṡ

i
2 = �µ

i
2S

i
2 + p

i
1µ

i
1 min(Ci

1, S
i
1)

Ṡ

i
3 = �µ

i
3S

i
3 + p

i
2µ

i
2S

i
2

...
Ṡ

i
mi

= �µ

i
mi

S

i
mi

+ p

i
mi�1µ

i
mi�1S

i
mi�1

and the initial conditions are given by C

i
1(0) = C

1, Si
1(0) =

S

1, Si
2(0) = 0, . . . , Si

mi
(0) = 0.

Each set of ODEs ⌅i refers to the equations for station
i. The left-hand sides denote time derivates using the dot

notation. Each variable can be interpreted as an estimate of
the corresponding stochastic process in the CTMC semantics.
For instance C

i
1(t), the solution to the first equation, is an

approximation to E[Ci
1(t)], the expected value of Ci

1(t). The
results in [26] guarantee that this approximation is sound, in
the sense that when the initial population of jobs and servers
is large enough, the ODE solution and the expectation of the
stochastic process become indistinguishable. The same rela-
tionship holds for well-behaved functions of these stochastic
processes. In particular, the partial throughputs in (7) satisfy

E
⇥

µ

i
1 min

�

Ci
1(t),S

i
1(t)

�⇤

⇡ µ

i
1 min

�

C

i
1(t), S

i
1(t)

�

. (10)

See for instance [40], [38] for a study of these results in
software performance models expressed in a process alge-
bra [23], and [35], [36] for an application to layered queuing
networks [21].

B. Product-Based Evaluation

We now provide a closed-form solution for the steady-state
ODE throughput of a single PAAD. This will be instrumental
for the family-based analysis, since we will show that the same
computations carry over (symbolically) to the 150% model.

Using (10) and the fact that the stage-1 throughput
equals the total station throughput in the steady state,
we define the steady-state ODE throughput by T

i :=
µ

i
1 min(Ci

1(1), Si
1(1)), computed by the solutions when

t ! 1. In the following, we shall drop (1) whenever
its usage is obvious from the context. We proceed with our
analysis by noting that any ODE steady state of ⌅ solves the
(nonlinear) system of equations obtained by setting each ODE
of ⌅ to zero. In particular, by setting all derivatives to zero,
we infer by plugging (9) into (8) that T

i =
P

1jn rj,iT
j

for all 1  i  n. This becomes, in matrix notation with (·)T
denoting matrix transposition,

R

T
T = T, T = (T 1

, . . . , T

n)T . (11)

This system is the ODE counterpart of the well-known traffic
equations [6], which relate station throughputs through the
routing probability matrix. Note that the steady state through-
puts T

i cannot be recovered from these equations. This is
because, by irreducibility of R, they are known only up to
a scaling factor [6]. Therefore, from (11) we can only deduce
the throughput ratios, i.e. the values T

1
/T

1
, . . . , T

n
/T

1. For-
tunately, by exploiting the closedness of the system and the
nature of the ODE semantics, it is possible to show that (11)
determines the ODE throughputs T of a PAAD.

Theorem 1. Fix a PAAD (V , E , C,S, µ, p) and consider its
underlying ODE semantics ⌅. Further, let (1, ⇣2, . . . , ⇣n)T

denote the unique solution of (11), and assume that the solution
to ⌅ converges towards an equilibrium. Then, whenever it
holds that

S

i
>

Ei
⇣

i

Pn
j=1 Ej

⇣

j

n
X

j=1

C

j
, for all 1  i  ⌫, (12)

the ODE steady state throughputs are given by T

i =
⇣

i(
Pn

j=1 Ej
⇣

j)�1
Pn

j=1 C
j for all 1  i  n. If, in-

stead, (12) is violated, the throughputs are given by T

i =

⇣

i min
n

S

j(⇣jEj)�1
�

�

�

1  j  ⌫

o

, where 1  i  n.



For instance, in the PAAD model of Fig. 1 we get that
(T 1

, T

2
, T

3
, T

4
, T

5) = (0.20, 0.59, 0.14, 0.07, 0.20).

The above theorem is our first major result because it
provides a closed form expression for the ODE steady state
throughputs. It allows to propose the following definition,
which permits the analysis of a (well-formed) PAAD. We call
this product-based (PB) evaluation as it concerns a given,
concrete PAAD, unlike the family-based (FB) evaluation,
which will be discussed later.

Definition 4 (Product-based evaluation). The product-based
(PB) evaluation of a PAAD is given by the expressions for T

derived in Theorem 1.

Note that the above definition is known to coincide with
the steady state throughputs of a PAAD only if the underlying
ODE system ⌅ converges towards an equilibrium. While a
formal proof of this is out of reach (the common approach via
Lyapunov stability theory fails essentially because ⌅ admits
several equilibrium points in general), we conjecture that
an ODE systems induced by a PAAD fulfills always this
condition.

V. VARIABILITY OF PAADS

Analyzing PAAD involves solving a system of linear
equations (11). Here we wish to exploit commonalities in a
variability model in order to perform this calculation only once
on the 150% model.

We start by formally defining the notion of delta for a
PAAD. To this end, we first recall that any vector can be seen
as a function on natural numbers. For instance, an x 2 R2 is
a function x : {1, 2} ! R such that x = (x(1), x(2)). This
view becomes usefull whenever the nodes V of a PAAD form
not {1, . . . , n} but an arbitrary finite set of N. This can easily
happen, for instance, when nodes are removed or replaced by
other nodes. With this in mind, we interpret in the following
vectors as functions and identify S

i, Ci, µi and p

i by S(i),
C(i), µ(i) and p(i), respectively.

Definition 5 (PAAD deltas). A PAAD delta is a set of delta
operations � ✓ Op, where

Op = {add (i, C(i),S(i), µ(i), p(i)) | i 2 N, C(i) 2 N�0,

S(i) 2 N>0 and µ(i), p(i) define a Coxian distribution}
[ {rem e | e 2 N⇥ (0; 1]⇥ N}
[ {add (i, rij , j) | i, j 2 N, rij > 0} [ {rem i | i 2 N}
[ {mod (i, rij , j) by r̃ij | (i, rij , j) 2 E , r̃ij > 0}
[ {mod (i, C(i),S(i), µ(i), p(i)) by

(C̃(i), S̃(i), µ̃(i), p̃(i)) | C̃(i) 2 N�0, S̃(i) 2 N>0

and µ̃(i), p̃(i) define a Coxian distribution}

For simplicity, in this paper we assume that each variant
is induced by a single delta operation. This is without loss of
generality, since a sequence of deltas can be combined into a
single composite delta through the definition of an appropriate
delta composition operation.

Up to this point, it is not ensured that the application of
such a delta also leads to a well-formed PAAD variant. To this

end, we require that any delta must be applicable and consis-
tent. A delta is applicable to a PAAD if all elements (nodes
including all associated values and edges with probabilities),
which should be removed or modified in this delta, already
exist in the variant. Similarly, it is forbidden to add elements
that already exist in a PAAD. Finally, the underlying routing
matrix has to remain irreducible, meaning that the probabilities
of the outgoing edges of a node have to sum up to one. A delta
is consistent if it adds, removes or modifies each element at
most once [30]. Moreover, we require that a delta does not
lead to loose edges in the resulting variant. That is, a delta
that removes a node must also remove the edges connected to
the node at some point. Edges are never added between nodes
that are removed in the delta. If a node of an added edge does
not exist in the core PAAD, the necessary source and/or target
edges are also added in the delta.

The following definition formalizes how to obtain an
arbitrary variant through application of a delta to a PAAD;
see, e.g., Figs. 3–4 in Section III.

Definition 6 (PAAD delta application). The application
of an applicable and consistent delta � ✓ Op to a
PAAD = (V, E , C,S, µ, p) is defined by the function PAAD0 =
apply(PAAD, �), where PAAD0 = (V 0

, E 0
, C0

,S 0
, µ

0
, p

0). It is
recursively defined as follows.

1) Case � = ;: PAAD0 = PAAD.

2) Case: � = �

0 [ �

00 ^ �

0
, �

00 2 Op: PAAD0 =
apply(apply(PAAD, �

0), �00).

3) Case: � = add (i, C(i),S(i), µ(i), p(i)):

C0 = C [ {(i, C(i))} S 0 = S [ {(i,S(i))} V 0 = V [ {i}
µ

0 = µ [ {(i, µ(i))} p

0 = p [ {(i, p(i))}

4) Case: � = add (i, rij , j): E 0 = E [ {(i, rij , j)}.

5) Case: � = rem i: V 0 = V \ {i}.

6) Case: � = rem e: E 0 = E \ {e}.

7) Case: � = mod (i, rij , j) by r̃ij: E 0 =
�

E\{(i, rij , j)}
�

[
{(i, r̃ij , j)}.

8) Case: � = mod (i, C(i),S(i), µ(i), p(i))
by (C̃(i), S̃(i), µ̃(i), p̃(i)) :

C0 =
�

C \ {(i, C(i))}
�

[ {(i, C̃(i))}
S 0 =

�

S \ {(i,S(i))}
�

[ {(i, S̃(i))}
µ

0 =
�

µ \ {(i, µ(i))}
�

[ {(i, µ̃(i))}
p

0 =
�

p \ {(i, p(i))}
�

[ {(i, p̃(i))}

Note that Case 3) in the above definition exploits the fact
that a (total) function f : A ! B is a subset of A ⇥ B, i.e.
f = {(x, f(x)) | x 2 A}. Also, since we have assumed that
our deltas are applicable, we know that adding, for instance,
(i, C(i)) to C will give rise to a well-defined function as i /2 V .
The total application order of a delta set can be obtained by,
e.g., adding an ordered list to a delta definition including the
names of all previously required deltas as it is done in [5].

Let us consider a core PAAD with a set of deltas �.
As stated earlier, the 150%-model is an over-saturated PAAD



consisting of all nodes and transitions that are added or
modified by some � 2 �. Although, it is not a valid PAAD
variant in general, we have the necessary information to derive
a specific variant of the considered system. This information is
stored in the 150%-model with the help of a labeling function
L. The definition is inspired by [25].

Definition 7 (150%-model). Let PAADc =
(Vc, Ec, Cc,Sc, µc, pc) be the core model and �
be a set of consistent and applicable deltas. Let
L = {c} [ {�, !� | � 2 �} be the set of labels. The 150%-
model is PAAD150 = (V150, E150, C150,S150, µ150, p150,L),
where:
V150 = Vc [ {i | 9� 2 � : add (i, C(i),S(i), µ(i), p(i)) 2 �},
E150 = Ec [ {(i, rij , j) | 9� : add (i, rij , j) 2 �_

mod (i, rij , j) by r

0
ij 2 �}.

For any X 2 {C,S, µ, p}, we define the partial functions

X150 : V150 ⇥ L ! R�0, X150(i, l) =
8

>

>

>

>

>

<

>

>

>

>

>

:

Xc(i) if l = c ^ i 2 Vc,

X(i) if l = � ^ add (i, C(i),S(i), µ(i), p(i)) 2 �,

X

0(i) if l = � ^ mod (i, C(i),S(i), µ(i), p(i))
by (C0(i),S 0(i), µ0(i), p0(i)) 2 �,

0 if l = !� ^ rem i 2 �,

At last, L is the labeling function defined as

L : V150 [ E150 ! 2L,

L(i) =
⇢

c if i 2 Vc,

; otherwise,
[ {� | add (i, C(i),S(i), µ(i), p(i)) 2 �}
[ {!� | rem i 2 �}.

L(e) =
⇢

c if e 2 Ec,
; otherwise,

[ {� | add e 2 �} [ {!� | rem e 2 �}

[ {� | mod (i, rij , j) by r

0
ij 2 � ^ e = (i, r0ij , j)}

[ {!� | mod (i, rij , j) by r

0
ij 2 � ^ e = (i, rij , j)}.

The 150%-model is based on all nodes V150 and edges E150
that are either part of the core model or added in delta. Delta
modeling allows us to change the probabilities on existing
edges as well. For each modified probability, we have to add
an additional edge into the 150%-model to ensure that no
information is lost. As a result, we have an edge with the old
probability and an edge with the modified one. The domain of
the partial function X150, with X 2 {C,S, µ, p}, is a pair,
where the first element indicates the node or edge that is
labeled and the second parameter specifies a delta label. In
addition, the labeling function L keeps track of the deltas that
affect a node or an edge. For instance, L(e) = {c, !�} says
that the edge e is present in the core model and is removed
by �. Instead, L(e) = {�} expresses the fact that e is not
present in the core model and is added by �. The complexity
of constructing a 150%-model is linear with the number of
deltas. Given our labeling function, we can iterate through all
deltas in a sequential order and add the information about their
specific operations to the core model, which ultimately results
in the 150%-model. A prerequisite is that the set of deltas
is consistent, which should be ensured beforehand. However,

the full construction process can be automated and does not
necessarily require expert knowledge.

VI. FAMILY-BASED EVALUATION

We now discuss the symbolic evaluation of the previously
constructed 150% model in detail. The notion of concretization
allows to obtain a specific variant from the 150% model.

Definition 8. Let PAAD150 be a 150% model. The concretiza-
tion PAAD� = (V�, E�, C�,S�, µ�, p�) of PAAD150 for � 2 �
is given by

V� =
�

i 2 V150 :
�

c 2 L(i) ^ !� 62 L(i)
�

_ � 2 L(i)
 

E� =
�

e 2 E150 :
�

c 2 L(e) ^ !� 62 L(e)
�

_ � 2 L(e)
 

X�(i) =

8

<

:

X150(i, �) if defined,
X150(i, c) if defined and X150(i, �) is not defined,
0 otherwise,

where X 2 {C,S, µ, p} and i 2 V� .

The next theorem states that the concretization of a 150%-
model with respect to a given delta coincides with the appli-
cation of the delta to the core model. This statement will be
needed later to relate the PB evaluation to the FB evaluation.

Theorem 2. Let PAAD150 be a 150% model and � 2 �.
Then, it holds that PAAD� = apply(PAADc, �). Let R

T
� be

the routing probability matrix of PAAD� and R

T
� T = T be

its traffic equations. Denote by ⇣� the unique solution of the
traffic equations when ⇣

1
� = 1. Then, the PB evaluation of

apply(PAADc, �) is given by T

i
� , for i 2 V� , where

T

i
� =

8

>

<

>

:

⇣

i
�(
Pn

j=1 E
j
�⇣

j
� )

�1
Pn

j=1 C�(j) if (12)
⇣

i
� min

�

S�(j)(⇣jEj
�)

�1 |
with j 2 V150 such that S�(j) < 1

 

else
,

Instead of solving the traffic equations RT
� ⇣� = ⇣� for each

variant PAAD� separately, we provide a closed form solution
for all traffic equations of the family. The key idea relies on
the introduction of a routing matrix Rs on the set V150 with
entries that are either constants or symbolic variables.

Theorem 3. Let PAAD150 be a 150% model and � 2 �,
and assume without loss of generality that 1 2 Vc. Let Rs =
(rsi,j)i,j2V150 denote the 150% routing matrix, where

r

s
i,j =

8

<

:

r if 9e = (i, r, j) 2 E150 ^ L(e) = {c},
0 if 6 9e = (i, r, j) 2 E150,
r

⇤
i,j otherwise

Let r⇤ denote the vector of symbolic variables present in Rs.
Let ⇣s denote the symbolic solution of RT

s ⇣s = ⇣s with ⇣

1
s = 1.

Then, it holds that ⇣is = ⇣

i
� for all i 2 V� if r⇤ is such that

r

s
i,j =

⇢

(R�)i,j if i, j 2 V�

0 otherwise.

Let us illustrate Theorem 3 using the 150% model of Fig. 5.



The symbolic routing matrix Rs is given by:

Rs =

0

B

B

B

B

B

@

0.0 r

⇤
1,2 r

⇤
1,3 0.0 0.0 0.0

0.0 0.0 0.0 0.0 r

⇤
2,5 0.0

0.0 0.0 0.0 0.5 0.5 0.0
0.0 0.0 0.0 0.0 1.0 0.0
r

⇤
5,1 0.0 0.0 0.0 0.0 r

⇤
5,6

r

⇤
6,1 0.0 0.0 0.0 0.0 0.0

1

C

C

C

C

C

A

Its unique solution ⇣s when the first component is equal to
one, is given by

⇣s =
�

1, r⇤1,2, r
⇤
1,3, r

⇤
1,3/2, r

⇤
2,5r

⇤
1,2+r

⇤
1,3, r

⇤
5,6(r

⇤
2,5r

⇤
1,2+r

⇤
1,3)

�

.

The theorem states that evaluating ⇣s with the probability
values of a delta � coincides with the product-based solution of
the concrete variant obtained by applying � to the core model.
For instance, instantiating Rs with the values of �2 yields

Rs(r�2) =

0

B

B

B

B

B

@

0.0 0.0 1.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.5 0.5 0.0
0.0 0.0 0.0 0.0 1.0 0.0
1.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0

1

C

C

C

C

C

A

while applying �2 to the core give the routing matrix

R�2 =

0

B

@

0.0 1.0 0.0 0.0
0.0 0.0 0.5 0.5
0.0 0.0 0.0 1.0
1.0 0.0 0.0 0.0

1

C

A

We can observe that the elimination of rows 2 and 5 and
columns 2 and 5 from Rs(r�2) gives rise to R�2 . More impor-
tantly, eliminating the coordinates 2 and 5 of ⇣s(r�2) will give
us the unique solution of the traffic equations R

T
�2
⇣�2 = ⇣�2 .

A similar result can be obtained for �1.

Overall, by solving symbolically R

T
s ⇣s = ⇣s, we have a

closed form solution for the whole family. This is due to
Theorem 2, which gives the throughput of each variant directly
in terms of ⇣� and the model parameters. This underpins the
importance of our approach in the case where the number of
variants is large, see also Section VII. For instance, the steady
state throughput for node 1 will be given by either of the
following symbolic expressions:

• If (12) holds, T1 is calculated with:

T1 = 20
�

10r⇤1,3 + E⇤
2r

⇤
1,2 + 5r⇤1,2r

⇤
2,5+

E⇤
6r

⇤
5,6(r

⇤
1,3 + r

⇤
1,2r

⇤
2,5) + 1)�1

,

where E⇤
i is the symbolic expression corresponding to the

average service time of node i, computed according to (3).

• Otherwise, if (12) does not hold, T1 is the minimum of
(

1,
S

⇤
2

E⇤
2r

⇤
1,2

,

2

3r⇤1,3
,

1

r

⇤
1,3

,

1

5r⇤1,3 + 5r⇤1,2 ⇤ r⇤2,5
,

S

⇤
2

E⇤
6r

⇤
5,6(r

⇤
1,3 + r

⇤
1,2r

⇤
2,5)

)

(13)

Notice that also condition (12) can be treated symbolically.
Hence, for instance, a performance analysis of the core PAAD

will result in a violation of (12), and we will look for the
minimum in (13). It turns out that the minimum is given by
the fifth element of the set in (13), which gives us 0.20. This
is identical to the product-based solution in Section IV. The
last element is not relevant for the core PAAD, since it refers
to node 6 which is introduced by �1.

VII. NUMERICAL EVALUATION

We compared the PB approach, where each variant is
solved numerically for a given set of concrete parameter
values, against the FB analysis in terms of execution times. The
experimental set-up was as follows. We considered randomly
generated 150%-models of PAADs with sizes between 16 and
430 nodes. Additionally, we varied the number of symbolic
variables for each network size to observe the impact on the
symbolic evaluation time. Each symbol represents a parameter
that may take any value in the reals. Hence, even a single
symbol in the system can produce an infinite number of
variants. We wish to verify the hypothesis that a FB analysis
is increasingly more efficient considering larger networks.

In particular, let n be the number of nodes (equivalent to
the network size) in the evaluation, r denotes the number of
symbols in the routing probability matrix, E represents the
number of symbols in the mean service times and S stands
for the number of symbols in the servers. For any given
selection of (n, r, E, S), all other parameters were randomly
generated given the following boundaries. The mean service
time at each node ranged from [1.0; 10.0], the servers were
chosen from [1; 20] for each node and the jobs were set to 50
circulating simultaneously through the network. For instance,
the symbolic evaluation of the running example corresponds
to a configuration with (n, r, E, S) = (6, 6, 2, 2).

For each tuple (n, r, E, S), we then calculated the steady
state throughputs for 200 randomly generated variants using
the both FB and the PB analysis. In detail, we randomly
generated 200 vector of parameters, each of size r + E + S,
representing a specific realization of the symbolic parameters
in the 150% model. In the FB analysis, each vector was
used to evaluate the symbolic expressions of the steady state
throughputs as in Theorem 3. Instead, the PB approach uses
the concrete parameters to numerically solve the system of
equations (11) and calculate the steady state throughputs as
in Theorem 1 for each variant in isolation. We measured
the execution runtimes for both the FB and the PB analysis
methods. The experiment was repeated three times to reduce
noise in the results. The case study was executed in Matlab
R2014a, using the Symbolic Math Toolbox for the FB analysis.
The results were computed on an Intel Core i7 4.50 GHz with
16 GB RAM. For replicability, the Matlab code is available at
https://www.isf.cs.tu-bs.de/data/Matlab Experiment.zip.

Table 1 reports the resulting execution times for the
analysis of the 200 different variants, averaged across the
three repetitions of the experiment for both the FB and PB
analyses. We calculated the speed-up ratio PB/FB for each
tuple configuration and the time taken to symbolically solve
the system of linear equations (last column, SS). We were able
to make the following observations based on these results.

• The FB analysis is always more effective compared to the
PB approach, with speed-ups up to one order of magnitude



TABLE I: Numerical results.

Variables Runtimes (s)

n r E S FB PB PB/FB SS

16 1 0 0 0.008 0.021 2.625 0.442
16 0 1 0 0.008 0.021 2.625 0.240
16 0 0 1 0.008 0.021 2.625 0.209
16 1 1 1 0.008 0.021 2.625 0.261
16 2 2 2 0.009 0.021 2.333 0.350
16 0 6 0 0.008 0.021 2.625 0.222
16 8 8 8 0.009 0.022 2.444 0.776
16 16 16 16 0.009 0.022 2.444 9.131

32 1 0 0 0.015 0.035 2.333 0.554
32 0 1 0 0.015 0.032 2.133 0.315
32 0 0 1 0.014 0.032 2.285 0.319
32 1 1 1 0.015 0.032 2.133 0.307
32 2 2 2 0.015 0.033 2.200 0.790
32 0 6 0 0.014 0.032 2.285 0.297
32 8 8 8 0.014 0.032 2.285 0.416
32 16 16 16 0.015 0.033 2.200 6.813

142 1 0 0 0.125 0.207 1.656 1.334
142 0 1 0 0.116 0.203 1.750 1.007
142 0 0 1 0.100 0.195 1.950 1.042
142 1 1 1 0.085 0.187 2.200 1.018
142 2 2 2 0.087 0.179 2.057 1.039
142 0 6 0 0.092 0.174 1.891 1.029
142 8 8 8 0.096 0.204 2.125 1.172
142 16 16 16 0.089 0.161 1.808 1.149

430 1 0 0 0.078 0.844 10.82 4.304
430 0 1 0 0.078 0.848 10.87 4.278
430 0 0 1 0.081 0.864 10.66 4.359
430 1 1 1 0.078 0.884 11.33 4.445
430 2 2 2 0.079 0.864 10.93 4.408
430 0 6 0 0.084 0.869 10.34 4.380
430 8 8 8 0.081 0.874 10.79 4.449
430 16 16 16 0.080 0.885 11.06 4.436

that increase with the size of the 150% model n. The
symbolic expressions are only computed once for the whole
family; thus, the time needed to compute them (column SS)
can be neglected with an increasing number of variants. In
addition, in two cases we calculated the break-even point
intended as the number of variants have to be analyzed
numerically to match the same cumulative analysis time of
the symbolic analysis. For the first row, we have to analyze
6802 variants, while for the last row the break-even point
is at 1104 variants. We remark that these many evaluations
may be done in large optimization problems, for instance.

• For a fixed n, the impact of varying the number parameters
r, E, and S seems to be quite negligible on the FB and PB
execution runtimes. This is because theese parameters do
not affect the PB runtimes, since all values are concrete.
Instead, the small range of FB execution runtimes indicates
that, although the symbolic expressions become larger, the
symbolic engine is quite effective at evaluating them.

• On the other hand, varying the number parameters r,
E, and S for a fixed value of n seem to have a large
impact on the symbolic process of solving the family based
model once (column SS). In particular, the numerical results
suggest that it depends on the ratio between the size of

the 150% model and the number of symbolic parameters.
For instance, the configuration (16, 16, 16, 16) takes almost
12 times longer to compute compared to the configuration
(16, 8, 8, 8); however, for network sizes of 142 and 430 the
difference between the last two rows becomes negligible.

• Speed-ups of up to two orders of magnitude were reported
in [25], using a similar experimental set-up for Jackson-
type networks. We explain the lower effectiveness found
here by the more complex formulae needed for the ODE
approximation, see Theorem 1. Similarly to [25], however,
we observe the general trend that the FB analysis outper-
forms the PB analysis in the case of large product lines.

VIII. CONCLUSION

We studied the combined problem of solving complex
software performance models, multiple times. Complexity is
caused by an expressive model that features two important
characteristics: support for general (i.e., non-exponential) dis-
tributions, in order to more appropriately capture more realistic
durations of activities; and the ability to express concurrency
levels. This makes the analysis of a single model difficult,
preventing an effective use when a large number of distinct
evaluations are needed. This is relevant because such a sit-
uation presents itself in a number of different occasions in
model-based software performance engineering, ranging from
what-if scenarios, capacity planning, and uncertainty.

We have tackled this problem in the case of so-called
performance-annotated activity diagrams, understood as closed
single-class queuing networks with multiple-server stations and
Coxian distributed service times, which can capture the two
aforementioned desired modeling features. Exploiting software
product line ideas and techniques, our family-based analysis
leverages the commonalities across variants in terms of both
parametric changes, which only affect the values of certain
performance annotations, and structural changes, which may
affect the topology of the model by addition or removal of
nodes and arcs. The numerical tests have demonstrated that
this analysis is increasingly convenient for larger-scale models.

Our approach represents a significant advance with respect
to the state of the art [25], which was limited to queuing
networks with exponential single-server stations. More impor-
tant, the techniques used here are entirely novel and seem to
provide a more general route to finding family-based solutions.
This involves first casting the analysis question into a linear
problem of “manageable” size, i.e., independent from the
state-space size of the model; then, it has to be proven that
linearity is preserved by the structural modifications made by
deltas. In this more general view, the work of [25] is a rather
straightforward application of this strategy, the analysis already
being a linear problem to start with.

In future work we wish to test the hypothesis that this route
is applicable to more expressive formalisms. For instance, we
would like to remove the limitation of the lack of support
for fork/join synchronization barrier, and extend family-based
analyzed to extended queuing networks such as layered queues.
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