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Abstract. Building adaptive systems with predictable emergent behav-
ior is a challenging task and it is becoming a critical need. The research
community has accepted the challenge by introducing approaches of vari-
ous nature: from software architectures, to programming paradigms, to
analysis techniques. We recently proposed a conceptual framework for
adaptation centered around the role of control data. In this paper we
show that it can be naturally realized in a reflective logical language
like Maude by using the Reflective Russian Dolls model. Moreover, we
exploit this model to specify and analyse a prominent example of adaptive
system: robot swarms equipped with obstacle-avoidance self-assembly
strategies. The analysis exploits the statistical model checker PVesta.

Keywords: Adaptation, autonomic, self-assembly, swarms, ensembles, Maude

1 Introduction

How to engineer autonomic system components so to guarantee that certain goals
will be achieved is one of todays’ grand challenges in Computer Science. First,
autonomic components run in unpredictable environments, hence they must be
engineered by relying on the smallest possible amount of assumptions, i.e. as
adaptive components. Second, no general formal framework for adaptive systems
exists that is widely accepted. Instead, several adaptation models and guidelines
are presented in the literature that offer ad hoc solutions, often tailored to a
specific application domain or programming language. Roughly, there is not even
a general agreement about what “adaptation” is. Third, it is not possible to mark
a b/w distinction between failure and success, because the randomized behaviour
of the system prevents an absolute winning strategy to exist. Fourth, efforts spent
in the accurate analysis of handcrafted adaptive components are unlikely to pay
back, because the results are scarcely reusable when the components software is
frequently updated or extended with new features.
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We address here some of the above concerns, presenting the methodology
we have devised for prototyping well-engineered self-adaptive components. Our
case study consists of modeling and analyzing self-assembly strategies of robots
whose goal is crossing a hole while navigating towards a light source. We specified
such robots with Maude, exploiting on one hand the Reflective Russian Dolls
(RRD) model [21] and on the other hand the conceptual framework we proposed
in [6], which provides simple but precise guidelines for a clean structuring of
self-adaptive systems. We report also on the results of the analysis of our model
using PVesta [2], as well as on relevant aspects of our experience using it.

When is a software system adaptive? Self-adaptation is a fundamental feature
of autonomic systems, that can specialize to several other so-called self-* prop-
erties (like self-configuration, self-optimization, self-protection and self-healing,
as discussed e.g. in [10]). Self-adaptive systems have become a hot topic in the
last decade: an interesting taxonomy of the concepts related to self-adaptation is
presented in [18]. Several contributions have proposed reference models for the
specification and structuring of self-adaptive software systems, ranging from archi-
tectural approaches (including the well-known MAPE-K [9, 10, 12], FORMS [23],
the adaptation patterns of [7], and the already mentioned RRD [21]), to ap-
proaches based on model-based development [24] or model transformation [11], to
theoretical frameworks based on category theory [17] or stream-based systems [5].

Even if most of those models have been fruitfully adopted for the design
and specification of interesting case studies of self-adaptive systems, in our view
they missed the problem of characterizing what is adaptivity in a way that is
independent of a specific approach. We have addressed this problem in [6], where
we have proposed a very simple criterion: a software system is adaptive if its
behaviour depends on a precisely identified collection of control data, and such
control data can be modified at run time. We discuss further this topic in §3.

Is Maude a convenient setting to study self-adaptation? A “convenient” frame-
work must provide a reusable methodology for modelling self-adaptive systems
independently of their application domain together with a flexible analysis toolset
to investigate formal properties of the semantics of such systems. There are
several reasons why we think that Maude [8] is a good candidate. First, the
versatility of rewrite theories can offer us the right level of abstraction for ad-
dressing the specification, modelling and analysis of self-adaptive systems and
their environments within one single coherent framework. Second, since Maude is
a rule-based approach, the control-data can be expressed naturally as a sub-set
of the available rules and the reflection capability of Maude can be exploited to
express control-data manipulation via ordinary rewrite rules, along the so-called
tower of reflection and its modular realization as the RRD approach [14]. Third,
the conceptual framework for adaptation described in [6], to be further elabo-
rated in §4, facilitates early and rapid prototyping of self-adaptive systems, to be
simulated. Fourth, the formal analysis toolset of Maude can support simulations
and analysis over the prototypes. In particular, given the probabilistic nature of
adaptive systems, where absolute guarantees cannot be proved, we think that
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the statistical model checker PVesta [2] is useful, because it allows to conduct
analysis that are parametric w.r.t. the desired level of statistical confidence.

Pragmatically, the possibility to rapidly develop and simulate self-adaptive
systems and to compare the behaviour emerging from different adaptation strate-
gies at the early stages of software development is very important for case studies
like the robotic scenario described in the next paragraphs. Indeed, such physical
devices require specialized programming skills and their experimentation in real
world testing environments involves long time consumption (6 hours or more
for each run) and only a limited number of pieces is available (around 25 units)
because their maintenance is expensive. Also, their hardware (both mechanic and
electronic parts) and software are frequently updated, making it harder to build,
to maintain and to rely on sophisticated simulators that can take as input exactly
the same code to be run on the robots. Even when this has been attempted, the
tests conducted on the real systems can differ substantially from the simulated
runs. Thus, early simulation on prototypes can at least speed-up debugging and
dispense the programmers from coding lowest-performance strategies.

Synopsis. In §2 we present the case study analysed in this paper. In §3 we
summarize the conceptual framework for adaptation proposed in [6], along which
we design adaptive systems in Maude. The general guidelines and principles to
be exploited in Maude for modelling self-adaptive systems are described in §4,
together with the software architecture used to realize our conceptual framework.
In §5 we illustrate the concrete implementation of the case study, while the
experimentations are described in §6; for the sake of presentation, we focus on
one of the self-assembly strategies. Some concluding remarks and ongoing research
avenues are discussed in §7.

We assume the reader to have some familiarity with the Maude framework.

2 Case Study: Self-Assembly Robot Swarms

Self-assembly robotic systems are formed by independent robots capable to
connect physically when the environment prevents them from reaching their
goals individually. Self-assembly is a contingency mechanism for environments
where versatility is a critical issue and the size and morphology of the assembly
cannot be known in advance. Thus, self-assembly units must be designed in
a modular way and their logic must be more sophisticated than, say, that of
cheaper pre-assembled units. Such features make the self-assembly robot swarm
a challenging scenario to engineer.

In [16], different self-assembly strategies are proposed to carry out tasks that
range from hill-crossing and hole-crossing to robot rescue: case by case, depending
e.g. on the steep of the hill, the width of the hole, the location of the robot to be
rescued, the robots must self-assemble because incapable to complete the task
individually. We focus on the hole-crossing scenario as a running case study,
where “the robots in the swarm are required to cross a hole as they navigate to a
light source” and depending on the width of the hole “a single unit by itself will
fall off into the crevice, but if it is a connected body, falling can be prevented”.
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Fig. 1. Excerpt of the basic self-assembly response strategy (borrowed from [16]).

The experiments in [16] were conducted on the SWARM-BOT robotic plat-
form [15], whose constituents are called s-bots (see Fig. 6, bottom right). Each
s-bot has a traction system that combines tracks, wheels and a motorised rota-
tion system, has several sensors (including infra-red proximity sensors to detect
obstacles, ground facing proximity sensors to detect holes, and a 360 degrees view
thanks to a camera turret), and is surrounded by a transparent ring that contains
eight RGB colored LEDs (Light Emitting Diodes) distributed uniformly around
the ring. The LEDs can provide some indications about the internal state of the
s-bot to (the omni-directional cameras of) nearby s-bots. For example, the green
color can be used to signal the willingness to connect to an existing ensemble,
and the red color can be used for the willingness to create a new assembly. The
ring can also be grasped by other s-bots thanks to a gripper-based mechanism.

Roughly, the strategies described in [16] are: (i) the independent execution
strategy, where s-bots move independently one from the other and never self-
assemble; (ii) the basic self-assembly response strategy (see below), where each
s-bot moves independently (blue light) until an obstacle is found, in which case it
tries to aggregate (green light) to some nearby assembly, if some available, or it
becomes the seed of a new assembly (red light); (iii) the preemptive self-assembly
strategy, where the s-bots self-assemble irrespectively of the environment and
not by emergency as in the basic self-assembly response; (iv) the connected
coordination strategy, where the sensing and actuation of assembled robots is
coordinated according to a leader-follower architecture.

The experiments were conducted with different strategies in different scenarios
(with holes of different dimension and random initial positions of the s-bots)
and repeated for each strategy within each scenario (from a minimum of 20
times and 2 s-bots to a maximum of 60 times and 6 s-bots). Videos of the
experiments described in [16] are linked from the web page describing our Maude
implementation: http://sysma.lab.imtlucca.it/tools/ensembles.



Adaptative Self-Assembling Strategies with Maude 5

Basic self-assembly response strategy. We describe here the basic self-assembly
strategy of [16], which is the strategy on which we will focus in the rest of the
paper. The finite state machine of the strategy is depicted in Fig. 1. Each state
contains its name and the color of the LEDs turned on in that state, while
transitions are labelled with their firing condition.

This controller is executed independently in each individual s-bot (a con-
crete one in [16], or a software abstraction in this work). In the starting state
(Independent Phototaxis) each s-bot turns on its blue LEDs, and navigates
towards the target light source, avoiding possible obstacles (e.g. walls or other
robots). If an s-bot detects a hole (through its infra-red ground sensors), or sees
a green or red s-bot, then it switches to state Anti Phototaxis, i.e. it turns on
its green LEDs and retreats away from the hole.

After the expiration of a timeout, the s-bot passes to state Aggregate: it
randomly moves searching for a red (preferably) or a green s-bot. In case it sees
a red s-bot, it switches to state Self Assemble, assembles (grabs) to the red
s-bot, turns on its red LEDs and switches to state Wait. If instead it sees a green
s-bot, with probability Prob(Become seed) it switches to state Assembly Seed,
turns on its red LEDs, and becomes the seed of a new ensemble. Once in state
Assembly Seed, the s-bot waits until a timeout expires and switches to state
Wait, unless it sees another red s-bot, in which case it reverts to state Aggregate.
Once no green s-bots are visible, assembled “waiting” s-bots switch to state
Connected Phototaxis and navigate to the light source.

3 A Framework for Adaptation

Before describing how we modeled and analysed the scenario we just presented,
let us explain some guidelines that we followed when designing the system. The
main goal was to develop a software system where the adaptive behaviour of the
robots is explicitly represented in the system architecture. To this aim, we found it
necessary to first understand “when is a software system adaptive”, by identifying
the features distinguishing such systems from ordinary (“non-adaptive”) ones.

We addressed this problem in [6], proposing a simple structural criterion to
characterize adaptivity. Oversimplifying a bit, according to a common black-box
perspective, a software system is “self-adaptive” if it can modify its behaviour as
a reaction to a change in its context of execution. Unfortunately this definition is
hardly usable: accordingly to it almost any software system can be considered
self-adaptive. Indeed, any system can modify its behaviour (e.g. executing different
instructions, depending on conditional statements) as a reaction to a change in
the context of execution (like the input of a data from the user).

We argue that to distinguish situations where the modification of behaviour
is part of the application logic from those where they realize the adaptation
logic, we must follow a white-box approach, where the internal structure of a
system is exposed. Our framework requires to make explicit that the behavior of
a component depends on some well identified control data. We define adaptation
as the run-time modification of the control data. From this definition we derive
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that a component is called adaptable if it has a clearly identified collection of
control data that can be modified at run-time. Further, a component is adaptive
if it is adaptable and its control data are modified at run-time, at least in some
of its executions; and it is self-adaptive if it can modify its own control data.

Under this perspective, and not surprisingly, any computational model or
programming language can be used to implement an adaptive system, just by
identifying the part of the data governing the behavior. Consequently, the nature
of control data can greatly vary depending on the degree of adaptivity of the
system and on the computational formalisms used to implement it. Examples of
control data include configuration variables, rules (in rule-based programming),
contexts (in context-oriented programming), interactions (in connector-centered
approaches), policies (in policy-driven languages), aspects (in aspect-oriented
languages), monads and effects (in functional languages), and even entire programs
(in models of computation exhibiting higher-order or reflective features).

Fig. 2. Control data in MAPE-K.

Fig. 3. Tower of adaptation.

In [6] we discussed how our simple criterion
for adaptivity can be applied to several of the
reference models we mentioned in the introduc-
tion, identifying what would be a reasonable
choice of control data in each case. Interest-
ingly, in most situations the explicit identifica-
tion of control data has the effect of revealing
a precise interface between a managed compo-
nent (mainly responsible for the application
logic) and a control component (encharged of
the adaptation logic). As a paradigmatical ex-
ample, consider the MAPE-K architecture [9],
according to which a self-adaptive system is
made of a component implementing the appli-
cation logic, equipped with a control loop that
monitors the execution through sensors, anal-
yses the collected data, plans an adaptation
strategy, and finally executes the adaptation of
the managed component through effectors; all
the phases of the control loop access a shared
knowledge repository. Applying our criterion
to this model suggests a natural choice for the
control data: these must include the data of
the managed component that are modified by
the execute phase of the control loop. Clearly,
by our definitions the managed component is
adaptive, and the system made of both com-
ponent and control loop is self-adaptive.

The construction can be iterated, as the
control loop itself could be adaptive. Think
e.g. of an adaptive component which follows a plan to perform some tasks.
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This component might have a manager which devises new plans according to
changes in the context or in the component’s goals. But this planning component
might itself be adaptive, where some component controls and adapts its planning
strategy, for instance determining the new strategy on the basis of a tradeoff
between optimality of the plans and computational cost. In this case the manager
itself (the control loop) should expose its control data (conceptually part of
its knowledge repository) in its interface. In this way, the approach becomes
compositional in a layered way, which allows one to build towers of adaptive
components (Fig. 3) as we do in §5 and §6 for robot prototypes.

4 Adaptivity in Maude

We argue here the suitability of Maude and rewriting logic as a language and
a model for adaptivity (§4.1), we describe a generic architecture for developing
adaptive components in Maude (§4.2) and we show that it conforms to well-
assessed conceptual models for adaptivity, including our framework (§4.3).

4.1 Maude, Logical Reflection and Adaptivity

As argued in [14], Rewriting Logic (RL) is well-suited for the specification of
adaptive systems, thanks to its reflective capabilities. The reflection mechanism
yields what is called the tower of reflection. At the ground level, a rewrite theory
R (e.g. a software module) allows to infer a computation step R ` t→ t′ from a
term t (e.g. a program state) to a term t′. A universal theory U lets infer the
computation U ` (R, t)→ (R, t′) at the “meta-level” where theories and terms
are meta-represented as terms. The process can be repeated as U itself is a rewrite
theory. This mechanism is efficiently supported by Maude and fostered many
meta-programming applications like analysis and transformation tools. Since a
theory can be represented by a term, it is also possible to specify adaptation rules
that change the (meta-representation of the) theory, as in r ` (R, t)→ (R′, t′),
so that the reduction continues with a different set of rules R′.

The reflection mechanism of RL has been exploited in [14] to formalize a
model for distributed object reflection, suitable for the specification of adaptive
systems. Such model, called Reflective Russian Dolls (RRD), has a structure of
layered configurations of objects, where each layer can control the execution of
objects in the lower layer by accessing and executing the rules in their theories,
possibly after modifying them, e.g. by injecting some specific adaptation logic in
the wrapped components. It is worth stressing that logical reflection is only one
possible way in which a layer can control the execution of objects of the lower level:
objects within a layer interact via message passing, thus objects of the higher
layer might intercept messages of the lower level, influencing their behaviour. But
even if the resulting model is still very expressive, some form of reflection seems
to be very convenient, if not necessary, to implement adaptivity. This is clearly
stated in [14] and at a more general level in [3], where (computational) reflection
is promoted as a necessary criterion for any self-adaptive software system.
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The RRD model has been exploited for modeling policy-based coordina-
tion [21] and for the design of PAGODA, a modular architecture for specifying
autonomous systems [22].

4.2 Generic Architecture

This section describes how we specialize the RRD architecture for modeling adap-
tive components. We focus on the structure of the layers and on the interactions
among them, abstracting from the details of our case study, discussed in §5.

Fig. 4. Intra-layer.

Intra-layer architecture Each layer is a component
having the structure illustrated in Fig. 4. Its main
constituents are: knowledge (K), effects (E), rules
(R) and managed component (M). Some of them are
intentionally on the boundary of the component, since
they are part of its interface: knowledge and effects
act respectively as input and output interfaces, while
rules correspond to the component’s control interface.
Therefore we will consider the rules R as the control data of a layer.

The managed component is a lower-level layer having the same structure:
clearly, this part is absent in the innermost layer. The knowledge represents the
information available in the layer. It can contain data that represent the internal
state or assumptions about the component’s surrounding environment. The
effects are the actions that the component is willing to perform on its enclosing
context. The rules determine which effects are generated on the basis of the
knowledge and of the interaction with the managed component. Typical rules
update the knowledge of the managed component, execute it and collect its
effects. In this case the layer acts as a sort of interpreter. In other cases rules can
act upon the rules of the managed component, modifying them: since such rules
are control data, the rules modifying them are adaptation rules according to §3.

Inter-layer architecture Layers are organized hierarchically: each one contains
its knowledge, effects, rules and, in addition, the managed underlying layer (see the
leftmost diagram of Fig. 5). The outermost layer interacts with the environment:
its knowledge represents the perception that the adaptive component has of the
environment, while its effects represent the actions actually performed by the
component. Each layer elaborates its knowledge and propagates it to the lower
one, if any. In general, while descending the hierarchy, the knowledge becomes
simpler, and the generated effects more basilar. Similarly to layered operating
systems, each layer builds on simpler functionalities of the lower one to compute
more complex operations.

The diagram in the middle of Fig. 5 shows the control and data flow of
ordinary behavior (without adaptations). Knowledge is propagated down to
the core (layer 0) and the effects are collected up to the skin (layer 2). This
flow of information is governed by the rules. Knowledge and effects are subject
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Fig. 5. Inter-layer architecture (left), ordinary flow (center), adaptation flow (right).

to modifications before each propagation. For example, layer 2 may decide to
propagate to layer 1 only part of the knowledge perceived from the environment,
possibly after pre-processing it. Symmetrically, layer 1 may decide to filter part
of the effects generated by layer 0 before the propagation to layer 2, for example
discarding all those violating some given constraints.

The rightmost diagram of Fig. 5 corresponds to a phase of adaptation. Here
the outermost layer triggers an adaptation at layer 1. This can be due to some
conditions on the knowledge of layer 2 or to the status of the managed component
(layer 1). The result is that the rules of layer 2 change (among other things) the
rules of layer 1 (as shown by the arrow crossing the corresponding R attribute).

4.3 Generic Architecture and Adaptation Frameworks

Let us relate the generic architecture just presented with some general frameworks
used for modeling adaptive systems. As suggested in §3, we identified explicitly
the control data of each layer, namely, its set of rules: this will allow us to
distinguish the adaptation behaviour from the standard computations of the
system.

Our architecture is a simplified version of the RRD of [14], because each layer
is a single object rather than a proper configuration. The interaction between
a layer and its managed component is realized both with logical reflection
and with access to shared data (knowledge and effects). Further, there is a
clear correspondence between the reflective tower of the RRD model and the
adaptation tower discussed in §3, as depicted in Fig. 6, showing that the rules of
each layer implement the MAPE control loop on the lower layer. Moreover, the
generic architecture imposes the encapsulation of all components of the tower,
apart from the robot itself. This offers several advantages: (i) management is
hierarchical (e.g. self- or mutually-managing layers are excluded); and (ii) at each
level in the hierarchy the adaptation logic of the underlying layer is designed
separately from the execution of basic functionalities, that are delegated to lower
layers.

5 Concrete Architecture and Case Study Implementation

This section instantiates the generic architecture shown in §4.2 to our case study
(§5.1), and presents some relevant details of its implementation (§5.2). We will
call s-bots simply robots in the following.
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Fig. 6. Architecture as an instance of the framework.

5.1 Architecture of the Case Study

The three layers of the concrete architecture of the case study (cf. Fig. 6, top-right)
essentially capture the informal description of [16], in the following sense.

Layer 0 (kernel). This layer models the core functionalities of a robot (see [16,
§3]). The rules implement basic movements and actioning of the gripper. Layer 0
corresponds to what some authors call hardware abstraction layer (see e.g. [22]).

Layer 1 (basic control). This layer represents the basic controller managing the
core functionalities of the robot according to the context. The controller may
allow to move only in some directions (e.g. towards a light source) or to search for
a robot to grab. This layer corresponds to the individual states of state machines
modeling the self-assembly strategies, like the one of Fig. 1 (see [16, §5 and §7]).

Layer 2 (adaptation). This is the layer of the adaptation manager, which reacts
to changes in the environment activating the proper basic controller. In our
case study, this layer corresponds to the entire state machine modelling the
self-assembly strategy of Fig. 1 and, in particular, it takes care of the transitions
between its states. This is done by constantly monitoring the environment and
the managed component M , and by executing an adaptation phase when needed,
which means changing the rules of M . A few other self-assembly strategies are
discussed in [16]: they can be implemented by changing the rules of this layer.

The three layers differ in their sets of rules and, of course, in the managed
component, but they share part of the signature for knowledge and effects. In
particular, knowledge includes predicates about properties of the ground (wall,
hole, free), the presence of robots in the surrounding (their LED emissions), and
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the direction of the light source (the goal). Effects include moving or emitting a
color towards a direction, and trying to grab a robot located in an adjacent cell.

Knowledge and effects are currently implemented as plain sets of predicates.
More sophisticated forms of knowledge representation based on some inference
mechanism (like prolog specifications, epistemic logics, ontologies or constraints)
may be possible but are not necessary in the presented case study.

Simulator. The execution environment of the robots is realized by a simulator
which consists of three parts: the orchestrator, the scheduler and the arena.

The orchestrator takes care of the actual execution of the actions required to
manage the effects generated by (the outermost layer of) a robot. For instance, it
decides if a robot can actually move towards the direction it is willing to move.

The scheduler, implemented as an ordinary discrete-event scheduler, activates
the scheduled events, allowing a robot or the orchestrator to perform its next ac-
tion. Intuitively, the emission of an effect e by the outermost layer of a component
c causes the scheduling of the event “execute effect e on c” for the orchestrator.
Symmetrically, the handling by the orchestrator of an effect previously generated
by a component c induces the scheduling of an event “generate next effect” for c.

Finally, the arena defines the scenario where robots run. We abstracted arenas
in discrete grids, very much like a chessboard. Each grid’s cell has different
attributes regarding for example the presence of holes or light sources. A cell
may also contain in its attributes (at most) one robot, meaning that the robot is
in that position of the arena. Each robot can move or perform an action in eight
possible directions (up, down, left, right and the four diagonals).

5.2 Implementation Details

On the structure of adaptive components. Our implementation, similarly
to the systems described in [14], relies on Maude’s object-like signature (see [8,
Chapter 8]). Such signature allows to model concurrent systems as configurations
(collections) of objects, where each object has an identifier, a class and a set of
attributes. Intuitively, < oid : cid | attr1, attr2 > is an object with identifier
oid, class cid and two attributes attr1, attr2.

Each layer is implemented as an object with attributes for knowledge (K),
effects (E), rules (R) and managed component (M): the first two are plain sets
of predicates, the third one is a meta-representation of a Maude module, and
the fourth one is an object. Three classes are introduced for the different layers,
namely AC0, AC1 and AC2. For design choice, the objects implementing the layers
of a robot have the same identifier: in terms of [14] we use homunculus objects.

Therefore a sample robot can have the following overall structure:

< c(0) : AC2 | K: gripper(open) on(right,none) towards(right,light) ...,

E: emitt(up,Green) go(right) ...,

R: mod_is_sorts_._____endm,

M: < c(0) : AC1 | K: ..., E: ..., R: ...,

M: < c(0):AC0 | K:..., E:..., R:...> > >
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On the structure of the simulator. The arena is implemented as a multi-
set of objects of class Cell. A cell may contain in the attributes an object of
class AC2 representing a robot, and the orchestrator implements the move of a
robot by changing the cell in which it is stored. This way the robots have no
information about the global environment or their current position, but only
about the contiguous cells and the direction to take to reach the goal.

The cell encapsulating a robot actually acts as a fourth layer over the object
of class AC2. In fact, it is responsible of updating its knowledge, of taking care of
its effects (e.g. the cell must expose the status of robot’s LEDs), and of handling
the interactions between the robot and the scheduler.

Rules of adaptive components. The behaviour of each layer is specified by
the rules contained in its attribute R, which is a term of sort Module consist-
ing of a meta-representation of a Maude module. This solution facilitates the
implementation of the behaviour of components as ordinary Maude specifica-
tions and their treatment for execution (by resorting to meta-level’s rewriting
features), monitoring and adaptation (by examining and modifying the meta-
representation of modules). In fact, on the one hand a generic meta-rule can be
used to self-execute an object: the object with rules R proceeds by executing R
in its meta-representation. On the other hand, rules are exposed to the outer
component, which can execute or manipulate the inner one, and analyse the
obtained outcome.

In order to give an idea on how the flows of execution and information of
Fig. 5 are actually implemented, we present one sample rule for each of the three
layers. For the sake of presentation we abstract from irrelevant details.

Layer 0. This layer implements the core functionalities of robots. For example,
the following rule computes the set of directions towards which a robot can move:

rl [admissibleMovements] :

< oid : AC0 | K: oneStep k0, E: e0 , A0 >

=> < oid : AC0 | K: k0, E: e0 canMoveTo(freeDirs(k0)), A0 > .

A rule, like admissibleMovements, can be applied to a Maude term t if its
left-hand side (LHS) (here the object < oid : AC0 | ... > preceding =>) matches
a subterm of t with some matching substitution σ, and in this case the application
consists of replacing the matched sub-term with the term obtained by applying
σ to the right-hand side, i.e. the object following =>. We shall also use Maude
equations: they have higher priority than rules, meaning that rules are applied
only to terms in normal form with respect to the equations.

Rule admissibleMovements rewrites an AC0 object to itself, enriching its effects
with the term obtained by simplifying equationally canMoveTo(freeDirs(k0)).
Notice that the constant oneStep is consumed by the application of the rule:
intuitively, it is a token used to inhibit further applications of the rule, obtaining a
one step rewriting. The equations will reduce freeDirs(k0) to the set of directions
containing each dir appearing in a fact on(dir,content) of k0 such that content
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does not contain obstacles. Operator canMoveTo instead is a constructor, hence it
cannot be further reduced.

Layer 1. Objects of class AC1 correspond to components of layer 1, implementing
individual states of the state machine of Fig. 1. Rules of this layer can execute the
component of the lower level providing additional knowledge, and can elaborate
the resulting effects. The following rule implements (part of) the logic of state
Independent Phototaxis, computing the desired direction towards which to move.

crl [IP-main]: < oid:AC1 | K: oneStep k1, E: e1 ,

M: < oid:AC0 | K: k0 , E: e0, R: m0, A0 >, A1 >

=> < oid:AC1 | K: k1, E: e1 go(dir),

M: < oid:AC0 | K: k0b, E: e0, R: m0, A0b >, A1 >

if < oid : AC0 | K: k0b, E: e0 canMoveTo(freeDirs), A0b > :=

execute(< oid : AC0 | K: oneStep update1To0(k1,k0), E: e0, A0 >, m0)

/\ preferredDirs := intersection(freeDirs, dirsToLight(k1))

/\ dir := uniformlyChooseDir(preferredDirs, freeDirs) .

This is a conditional rule, as evident from the keyword crl and the if clause
following the RHS. Thus, it can be applied to a matched sub-term only if its
(firing) condition is satisfied under the matching. In this case the condition is the
conjunction (/\) of three sub-conditions, each consisting of a sort of assignment.
The sub-conditions are evaluated sequentially, and the LHS of symbol := will be
bound in the rest of the rule to the term obtained by reducing its RHS.

execute(obj,m) makes use of Maude’s meta-level functionalities to execute
object obj via the rules meta-represented in m. More precisely, in rule IP-main, the
operator execute will apply a single rule of module m0 to the managed component
< oid : AC0 ... >, after having updated its knowledge. In fact the operation
update1To0(k1,k0) implements a (controlled) propagation of the knowledge from
layer 1 to layer 0, filtering k1 before updating k0 (e.g. information about the
surrounding cells is propagated, but information about the goal is discarded).

The assignment of the first sub-condition also binds freeDirs to the directions
towards which the managed component can move. This is used in the second
sub-condition to compute the intersection between the directions in freeDirs and
those towards the light, evaluated reducing dirsToLight(k1). The resulting set
of directions is bound to preferredDirs. Finally, in the third sub-condition dir is
bound to a direction randomly chosen from preferredDirs, or from freeDirs if
the first set is empty. Comparing the LHS and the RHS, one sees that the overall
effect of rule IP-main is the production of a new effect at layer 1, go(dir), and
the update of the knowledge of the managed component of layer 0.

Notice that the rules of layer 0 (m0) are not affected by the rule: in fact in
our implementation rules of layer 1 never trigger an adaptation phase on layer 0.
This is just a design choice, as clearly our architecture does not forbid it.

Layer 2. A component of this layer corresponds to the entire state machine of
Fig. 1. It monitors the environment, and at each step it triggers a reduction of
the managed component of layer 1; if necessary, it also enforces a transition from



14 R. Bruni, A. Corradini, F. Gadducci, A. Lluch Lafuente, A. Vandin

the current state to a new one of the state machine by performing an adaptation
phase, i.e. by changing the rules of the managed component.

The following is the main rule governing this layer:

crl [adaptAndExecute]:

< oid : AC2 | K: nextEffect k2 , E: e2 ,

M: < oid : AC1 | K: k1 , E: e1 , R: m1 , A1 >, A2 >

=> < oid : AC2 | K: k2A, E: e2A schedule(event(oid,effect)),

M: < oid : AC1 | K: k1b, E: e1A, R: m1A, A1b >, A2A >

if < oid : AC2 | K: k2A, E: e2A,

M: < oid : AC1 | K: k1A, E: e1A, R: m1A, A1A >, A2A > :=

computeAdaptationPhase( < oid : AC2 | K: k2 , E: e2 ,

M: < oid : AC1 | K: k1 , E: e1 , R: m1 , A1 >, A2 > )

/\ < oid : AC1 | K: k1b, E: e1A effect, A1b > := execute(

< oid : AC1 | K: oneStep update2To1(k2A,k1A), E: e1A, A1A >, m1A ) .

The rule is triggered by the token nextEffect, generated by the orchestrator,
and propagated by the cell containing the robot. The execution of the rule consists
of an adaptation phase followed by an execution phase, both on the managed
component. The two phases are triggered by the two sub-conditions of the rule.

The adaptation phase is computed by the operation computeAdaptationPhase,
using the knowledge of layer 2 (k2) to enact a state transition, if necessary. Among
those defining the operation, the equation below encodes the transition of Fig. 1
from state Aggregate to state Self Assemble, labeled with Close to red:

ceq [AggToSA]: computeAdaptationPhase(

< oid2 : AC2 | K: state(Aggregate) k2, E: e2 ,

M: < oid1 : AC1 | R: m1 , E: e1 , A1 > , A2 >)

= < oid2 : AC2 | K: state(SelfAssemble) k2, E: emitt(green),

M: < oid1 : AC1 | R: m1b, E: none, A1 > , A2 >

if seeEffect(led(red),k2)

/\ m1b := upModule(’AC1-SELF_ASSEMBLE,false) .

The conditional equation states that if a robot in state Aggregate sees in its
neighborhood a robot with red LEDs on, then it must pass to state Self Assemble

and turn on its green LEDs. Also the rules of the managed component are
changed: the new module m1b is obtained with the operation upModule, producing
the meta-representation of the Maude module passed as first parameter.

We specified one equation for each transition of Fig. 1, plus the following one
where owise is a special attribute that tells the interpreter to apply the equation
only if none of the others is applicable:

eq [idle]: computeAdaptationPhase(obj) = obj [ owise ] .

Once the adaptation phase is concluded, the second sub-condition of rule
adaptAndExecute takes care of the one step execution of the (possibly adapted)
managed component, using operation execute. Finally, the effects generated by
layer 1 are wrapped in the constructors event and schedule, and are added to the
effects of layer 2, so that the cell containing it will propagate it to the scheduler.
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Fig. 7. Three states of a simulation: initial (left), assembly (middle), final (right).

6 Analysis of Adaptation Strategies

This section describes some of the analysis activities carried out with our im-
plementation, available at http://sysma.lab.imtlucca.it/tools/ensembles
together with some additional material such as animated simulations.

The analysis has been carried out in two phases: (§6.1) discrete event simula-
tion; and (§6.2) statistical model checking. The rationale is the following.

In the early development phases we have mainly concentrated on performing
single simulations that have been informally analyzed by observing the behavior
of the assemblies in the automatically generated animations. A couple of trial-and-
error iterations (where the model was fixed whenever some anomalous behavior
was spotted) were enough for the model to acquire sufficient maturity to undergo
a more rigorous analysis in terms of model checking.

Ordinary model checking is possible in the Maude framework (via Maude’s
reachability analysis capabilities, or LTL model checker) but suffers from the state
explosion problem and is limited to small scenarios and to qualitative properties.
To tackle larger scenarios, and to gain more insight into the probabilistic model by
reasoning about probabilities and quantities rather than possibilities, we resorted
to statistical model checking techniques.

We now provide the details of these analysis phases, centered around one
crucial question: How many robots reach the goal by crossing the hole?

6.1 Simulations

Simulations are performed thanks to the discrete-event simulator mentioned in
§5.2 along the lines of the ones reported in [1, 2, 20]. Valuable help has been
obtained implementing an exporter from Maude Configuration terms to DOT
graphs3, offering the automatic generation of images from states: they have
greatly facilitated the debugging of our code.

For example, Fig. 7 illustrates three states of one interesting simulation in
which robots execute the basic self-assembly response strategy. The initial state
(left) consists of three robots (grey circles with small dots on their perimeter) in
their initial state (emitting blue light), a wide hole (the black rectangle) and the
goal of the robots, i.e. a source of light (the orange circle on the right). After some
steps, where the robots execute the self-assembly strategy, two robots finally get

3 DOT is a well-established graph description language (http://www.graphviz.org/).
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assembled (middle of Fig. 7). The assembled robots can then safely cross the
hole and reach the goal (right of Fig. 7), while the not assembled one remains
abandoned in the left part of the arena.

While performing such simulations with different scenarios, varying the loca-
tion of the goal and number and distribution of the robots, and with different
parameters for duration of timeouts and actions, we observed several bizarre
behaviors. For instance, in various simulations we observed some not-assembled
robots erroneously believing to be part of an assembly, moving into the hole and
disappearing. In other simulations we instead noticed pairs of robots grabbing
each other. These observations triggered the following questions: Is there an error
in our implementation? Is there an error in the strategies defined in [16]?

Examining carefully the description of the strategy, we discovered that the
two behaviors are indeed not explicitly disallowed in [16] and originated by
the two transitions (see Fig. 1 in §2) outgoing from the state Assembly Seed

(willing to be grabbed). The first transition leads to state Wait, triggered by the
expiration of a timeout, while the second one leads to state Aggregate (willing to
grab), triggered by the event See red (i.e. another robot willing to be grabbed).
Considering the first behavior, a robot can change from state Assembly Seed to
state Wait even if no other robot is attached to it. The robot then evolves to state
Connected phototaxis believing to be assembled with other robots. Considering
instead the second behaviour, once a robot i grabs a robot j, i becomes itself
“willing to be grabbed” (turning on its red LEDs) to allow other robots to
connect to the assembly. Now, it is clear that if j is grabbed while being in state
Assembly Seed, then its transition towards state Aggregate is allowed, leading to
the second bizarre behaviour. Interestingly enough, we hence notice that the two
bizarre behaviors strongly depend on the duration of the timeout: a short one
favors the first behaviour, while a long one favors the second one.

Are these behaviors actually possible in real robots or are they forbidden by real
life constraints (e.g. due to the physical structure of the robots or to some real-time
aspects)? The answer to this question is being investigated within the ASCENS
project [4]. However, our experience makes it evident that the self-assembly
strategies described in [16] might be adequate for s-bots but not in general for
self-assembly settings where other constraints might apply. Fortunately, both
bizarre behaviors can be fixed easily by adding further conditions to the two
mentioned transitions of the adaptation strategy. In particular, the transition
from Assembly Seed to Aggregate requires a further condition to ensure that the
robot has been gripped. Conversely, the transition from Assembly Seed to state
Aggregate requires exactly the contrary, i.e. the robot must not be gripped.

6.2 Statistical Model Checking

A qualitative analysis can prove that an assembly strategy can result in different
degrees of success, from full success (all robots reach the goal) to full failure (no
robot reaches the goal). However, in the kind of scenario under study different
levels of success are typically of interest. The really interesting question is how
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likely are they? Moreover, another interesting measure could be the expected
number of robots reaching the goal.

An analysis based on statistical model checking (see e.g. [19, 20, 2]) is more
appropriate in these cases. Such techniques do not yield the absolute confidence of
qualitative model checking but allow to analyze (up to some statistical errors and
at different levels of confidence) larger scenarios and to deal with the stochastic
nature of probabilistic systems.

We consider the following properties: (P0) What is the probability that no
robot reaches the goal? ; (P1) What is the probability that at least one robot reaches
it? ; and (P2) What is the expected number of robots reaching the goal?.

We have used PVesta [2], a parallel statistical model checker, to perform some
comparative analysis. The tool performs a statistical evaluation (Monte Carlo
based) of properties expressed in the transient fragments of PCTL and CSL,
and of quantitative temporal expressions (QuaTEx)[1], allowing to query about
expected values of real-typed expressions of a probabilistic model.

We have performed a comparative analysis (with respect to the above prop-
erties) between two different strategies: namely the original basic self-assembly
response and the variant that fixes the bizarre behaviors discussed above. For
each experiment, where we fixed 120 as maximum number of sytem steps, all
robots execute the same strategy. The aim was to gain some intuition about the
success and performance impact of the absence of the bizarre behaviors rather
than to derive exact statistical measures. The arena was configured as follows
(cf. Fig. 8): an 11× 7 grid containing 3 robots, the goal (a source of light) and a
hole dividing the robots from the goal. We remind that a robot alone is not able
to cross the hole, and hence needs to cooperate (assemble) with other robots to
cross it.

Roughly, our variant of the strategy exhibits a better success rate. More
precisely, the analysis of P0 on the original strategy provides 0.48 (i.e. about half
of the cases ends up without any robot reaching the goal), while for our variant
we obtain 0.36. Regarding P1, our variant exhibits again a better rate (0.64) than
the original one (0.52). Finally, the expected number of successful robots (P2) is
1.07 in the original case, while in our variant case it is 1.38.

Fig. 8. An initial state.

These preliminary data of the statistical anal-
ysis seem to confirm our intuition. Forthcoming
experiments will consider other robot features and
strategies, and will validate our results against the
ones reported in [16].

A Sample QuaTEx Expression. We conclude
this section discussing the quantitative temporal
expression we defined to estimate the expected
number of robots reaching the goal.

QuaTEx [1] is a language to query quantitative aspects of probabilistic systems.
Exactly as temporal logics allows to express temporal formulae, QuaTEx allows
to write quantitative temporal expressions.
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PVesta statistically evaluates quantitative temporal expressions with respect
to two parameters: α and δ. Specifically, expected values are computed from
n independent simulations, with n large enough to grant that if a QuaTEx
expression is estimated as x, then, with probability (1 − α), its actual value
belongs to the interval [(1− δ)x, (1 + δ)x]. For the experiments in §6.2 we fixed
α = δ = 0.05.

In the rest of this section we see how the mentioned QuaTEx expression has
been defined, and how its value is actually computed for single simulations. We
do not detail how PVesta performs one-step executions, since this is out of the
scope of this paper. Details can be found in [1].

Before defining our expression it is necessary to define real-typed Maude
operations representing the states predicates we are interested in. We defined the
state predicate completed : Configuration -> Float, reducing to 1.0 for terminal
states, and to 0.0 otherwise. A terminal state is a state with no more robots, a state
with all the robots in goal, or the state obtained after a given maximum number
of steps. We also defined the state predicate countRobotInGoal : Configuration

-> Float, counting the number of succesful robots.
Then we defined the equations necessary to PVesta to access such predicates

(where C is a variable with sort Configuration): eq val(0,C) = completed(C),
and eq val(1,C) = countRobotInGoal(C). Actually QuaTEx’s syntax requires to
indicate the term “val(n,s)” with “s.rval(n)”, where n and s are respectively
terms with sort Natural and Configuration.

Finally, the QuaTEx expression to estimate the expected number of robots
reaching the goal is easily expressed as

count_s-bots_in_goal() = if { s.rval(0) == 1.0 } then s.rval(1)

else #count_s-bots_in_goal() fi;

eval E[ count_s-bots_in_goal() ] ;

Informally, a QuaTEx expression consists in a list of definitions of recursive
temporal operators, followed by a query of the expected value of a path expression
obtained (arithmetically) combining the temporal operators. Our formula defines
the temporal operator count s-bots in goal(), which also corresponds to the
estimated path expression eval E[ count s-bots in goal() ].

The path expression is evaluated by PVesta in the initial state (s) of the
system (e.g. the state depicted in Fig. 8). The tool first evaluates the guard
of the if then else statement, i.e. s.rval(0) == 1.0. The condition reads as
“is the state predicate rval(0) equal to 1.0 if evaluated in the state s?”, and
corresponds to “is the current state a final state?”. If the guard is evaluated to
true, then the path expression is evaluated as s.rval(1), that is in the number
of robots that reached the goal in the state s. If the guard is evaluated to false,
then the path expression is evaluated as #count s-bots in goal(), read “evaluate
count s-bots in goal() in the state obtained after one step of execution”. The
symbol #, named “next”, is in fact a primitive temporal operator.

To conclude, the evaluation of the QuaTEx expression consists in performing
step-wise system simulations, and is evaluated as the (mean of the) number of
robots that reached the goal in the terminal states of each simulation.
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7 Conclusion

The contributions of our paper are: (i) a description (§4, §5) of how to realize in
Maude our recently proposed approach to adaptive systems [6] in a simple and
natural way; and (ii) a description (§6) of how to exploit the Maude toolset for
the analysis of our models, and PVesta [2] in particular.

Our work is inspired by early approaches to coordination and adaptation
based on distributed object reflection [14, 21] and research efforts to apply formal
analysis onto such kind of systems (e.g. [13]), with a particular focus on adaptive
systems (e.g. [22, 4]). Among those, the PAGODA project [22] is the closest in
spirit and shape. Our work is original in its clear and neat representation and role
of control data in the architecture, and in the fact that this is, as far as we know,
the first analysis of self-assembly strategies based on statistical model checking.

The case study of self-assembly strategies for robot swarms [16] has contributed
to assess our approach. Overall, the conducted experimentation demonstrates that
Maude is well-suited for prototyping self-assembly systems in early development
phases, and that the associated simulation can be useful to discover and resolve
small ambiguities and bugs in self-assembly strategies. Furthermore, statistical
model checking can provide preliminary estimations of success rate, that can be
used to compare different strategies and also to validate/confute/refine analogous
measures provided by other tools or in real world experiments.

We plan to further develop our work by considering other case studies, more
realistic abstractions and more modular implementations. However, the key
challenging question we want to tackle is: can we exploit the proposed architecture
to design smarter adaptation strategies or to facilitate their analysis? We envision
several interesting paths in this regard. First, we are investigating how logical
reflection can be exploited at each layer of the architecture, for instance to equip
components with dynamic planning capabilities based on symbolic reachability
techniques. Second, we are developing a compositional reasoning technique that
exploits the hierarchical structure of the layered architecture.

All in all, we believe that our work is a promising step towards the non-trivial
challenges of building predictive adaptive systems, and to analyze them.

Acknowledgements. We are grateful to the anonymous reviewers for their fruitful

criticism and to the organizers of the AWASS 2012 summer school for the opportunity

to mentor a case study based on the experience of this paper.

References

1. Agha, G.A., Meseguer, J., Sen, K.: PMaude: Rewrite-based specification language
for probabilistic object systems. In: Cerone, A., Wiklicky, H. (eds.) QAPL 2005.
ENTCS, vol. 153(2), pp. 213–239. Elsevier (2006)

2. AlTurki, M., Meseguer, J.: PVeStA: A parallel statistical model checking and
quantitative analysis tool. In: Corradini, A., Klin, B., Ĉırstea, C. (eds.) CALCO
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