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We consider a dynamical model of distress propagation on complex networks, which we apply to
the study of financial contagion in networks of banks connected to each other by direct exposures.
The model that we consider is an extension of the DebtRank algorithm, recently introduced in the
literature. The mechanics of distress propagation is very simple: When a bank suffers a loss, distress
propagates to its creditors, who in turn suffer losses, and so on. The original DebtRank assumes
that losses are propagated linearly between connected banks. Here we relax this assumption and
introduce a one-parameter family of non-linear propagation functions. As a case study, we apply
this algorithm to a data-set of 183 European banks, and we study how the stability of the system
depends on the non-linearity parameter under different stress-test scenarios. We find that the system
is characterized by a transition between a regime where small shocks can be amplified and a regime
where shocks do not propagate, and that the overall the stability of the system increases between
2008 and 2013.

I. INTRODUCTION

Complex networks [1–3] have proved useful to describe systems characterised by pair-wise interactions. Properties
of dynamical processes on networks can be strongly affected by the underlying topology [4]. Examples include spread
of news [5], rumours [6], diseases [7], financial distress [8], random walkers travelling the graph [9–11], and avalanches
[12, 13].

In these cases stylized models, despite their apparent simplicity, can give meaningful indications on the large scale
dynamic of the system [7], also helping to shed light on the importance of the network topology [14]. For example,
models of epidemic contagion (such as SIS or SIR [15]) display dramatically different behaviors depending weather
they take place on regular lattices or on complex networks. Similarly, also the spread of distress [16–19] in financial
networks is deeply dependent on the pattern of connections among financial institutions. In particular, it is not
possible to identify a single topology that can considered robust with respect to all types of shocks [20, 21].

Financial institutions are strongly interconnected in a variety of ways (e.g. ownership relationships [22, 23], common
asset holdings [24–26], trading of derivatives [27, 28], possible arbitrage opportunities to exploit [29]) through which
distress can propagate and lead to amplification phenomena, such as default cascades. Here we focus on a single layer
of interconnectedness, namely that associated with interbank loans. To cope with fluctuations of liquidity, banks
constantly lend money to each other, at different maturities. Hence, lenders are subject to counterparty risk, i.e. the
risk that their borrowers could default and therefore not be able to fulfill their obligations. This, in turn, could lead
to the default of lenders, resulting in a further wave of distress.

In the literature on financial contagion, a bank is represented by its balance sheet, consisting of assets with a positive
economic value (such as loans, derivatives, stocks, bonds, real estate) and of liabilities with a negative economic value
(such as customers’ deposits, debits). The balance sheet identity for bank i defines its equity as the difference between
its total assets Ai and its total liabilities Li: Ei = Ai − Li. A bank with a negative equity would not be able to pay
back its debtors, even assuming that it could sell all of its assets. Therefore, usually a negative equity is considered a
good proxy for the default of a bank. An interbank loan extended by bank i to bank j is an asset for bank i and a
liability for bank j. A natural way to represent such relationships is by means of a directed weighted network [30, 31]
in which edges of weight AIBij correspond to a loan of amount AIBij from bank i to bank j. We call all other assets
and liabilities external (see Fig. 1).

The study of the interbank network has attracted considerable attention, also for its practical importance. Two
widely recognized algorithms to quantify losses due to financial contagion are the Furfine algorithm [12, 32] and
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FIG. 1. Sketch of a portion of the interbank network and stylised representation of the balance sheet of a bank, with interbank
assets and liabilities highlighted. The difference between assets and liabilities is the equity. A negative equity is usually
considered a good proxy for the default of a bank.

DebtRank [33–39]. The former is essentially a threshold model according to which a bank propagates distress to its
creditors only after its default. In contrast, DebtRank was introduced precisely to account for shock propagations
occurring also in absence of default. To this end, relative losses in the equity of a borrower translate into the same
relative devaluation of interbank assets of the corresponding lender. Those two mechanisms represent two extremes.
On one hand, the Furfine algorithm is likely to underestimate the build-up of systemic risk. On the other hand, in
DebtRank even tiny variations in the equity (as those deriving from daily market fluctuations) have a sizeable impact
on the value of interbank assets. As a realistic scenario is likely to lie in-between those two extremes, in this paper we
propose a model that interpolates between them and use it to perform stress tests to the European banking system.
We will refer to the introduced model as non-linear DebtRank.

The paper is organized as follows: In Section II we specify the model used and present a detailed characterization
of its behavior within the context of a case study. In Section III we discuss the main implications of our results, also
from a policy-making perspective, and point out some limitations of our approach. We refer the reader interested in
the details about the data used and a derivation of the algorithm to Section IV.

II. RESULTS

We perform stress tests on N = 183 publicly traded European banks using data from their balance sheets for the
years from 2008 to 2013 (see Section IV for a detailed description of the data). Since data on bilateral exposures are
not publicly available, we employ a reconstruction technique to infer plausible values [40, 41] and sample for each year
100 instances of interbank networks for given values of connectivity p, defined as the number of reconstructed edges
divided by the number of possible edges (N(N − 1)) (see Section IV for more details about data).

As in the linear DebtRank [39], a stress test consists in applying an initial shock to the system. The shock will
then be propagated in time by an iterative map until convergence. From the point of view of risk management, the
relevant quantity is the relative equity loss of bank i at time t:

hi(t) =
Ei(0)− Ei(t)

Ei(0)
. (1)

The corresponding quantity at the aggregate level is the total relative equity loss:

H(t) =

∑N
i=1Ei(0)− Ei(t)∑N

i=1Ei(0)
=

N∑
i=1

(
hi(t)

Ei(0)∑N
j=1Ej(0)

)
. (2)

As we show in Section IV the dynamic equation for the relative equity loss is:

hi(t+ 1) = min

1, hi(t)+
∑
j

Λij
[
pDj (t)− pDj (t− 1)

] , (3)
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FIG. 2. Probability of default pDj (t) as a function of the relative equity loss hj(t) for different algorithms. The non-linear
DebtRank interpolates between the Furfine algorithm and the non-linear DebtRank.

where pD(t) is the probability of default of bank j at time t and Λij = AIBij /Ei(0) is the interbank leverage matrix.

In order to completely define the iterative map, we need to establish a relationship between pDj (t) and hj(t). In the
case of Furfine’s algorithm, the probability of default is equal to one only if the equity is zero, and it is equal to zero
otherwise, while in the linear DebtRank pDj (t) = hj(t). In the non-linear DebtRank we interpolate between these two
cases using the function:

pDj (t) = hj(t)e
α[hj(t)−1] , (4)

where for α = 0 we recover the linear DebtRank, while for α→∞ we recover the Furfine algorithm. In Fig. 2 we show
the probability of default as a function of the relative equity loss for Furfine, the linear DebtRank, and the non-linear
DebtRank for two different values of α. Such approach is purely “phenomenological”, in the sense that (4) is intended
to provide an effective description of how stresses propagate and it has not been derived from accounting principles.
α should be therefore tuned so that the probabilities of default can be calibrated (in principle also diversely) for
each bank. Intuitively, α is related to the characteristic scale over which a variation in the relative equity loss has a
negligible impact on the probability of the default. The importance of the interbank leverage matrix in the context
of distress propagation has been already highlighted by [36, 39, 42], pointing out that the stability of the system is
determined by its largest eigenvalue. Also in our case, using linear stability analysis, one can show that the stability
of the system still depends on Λ.

Our stress test consists in assuming a devaluation of external assets by a factor xshock for a fraction of banks equal
to pshock. All presented results are averaged both over the network samples and over the set of initially shocked banks
(10 realizations of such set for each network in the sample).

A first analysis is focused on the most critical year: 2008. In Fig. 3 we show the effects of the initial shock, as its
propagation through the network unravels in time. More in details, Fig. 3 shows S(t), the fraction of stressed banks,
D(t), the fraction of defaulted banks, and H(t), the total relative equity loss experienced by the system. Stressed
banks are those which have experienced equity losses, but have not defaulted yet. Defaulted banks at time t are those
for which hi(t) = 1. From left to right, plots correspond to α = 0, α = 1, and α = 2.

The qualitative behaviour of both stressed and defaulted banks is shared by all panels. Stressed banks sharply
increase in the first time steps and decrease afterwards, as defaults start to occur. This is consistent with the fact
that stress propagates even in absence of defaults. However, a clear dependence from α emerges. The most striking
feature is that the time scale over which the system reaches its steady state is a non-monotonous function of α. In
fact, in both panels A and C convergence is reached before the first 20 time steps, while in panel B the dynamic is
slower. This phenomenon can be intuitively understood as follows: α is related to a soft threshold in the value of the
relative equity loss that a bank needs to attain before it can propagate a shock. Such threshold is zero in the linear
case and approaches one in the strongly non-linear regime (α � 1). In the first case shocks are quickly propagated
through the network, while in the second case shocks are easily dampened. In the intermediate regime the build-up
of the stress happens gradually. Nevertheless, the total relative equity loss can still reach values comparable to those
of the linear case (see panels A and B).

Next, we present a comprehensive characterization of the steady state. Fig. 4 shows the surface plots of H∞, the
total relative equity loss in the steady state, as a function of α and xshock, for network connectivity p = 0.05, and for
different choices of pshock. For a given value of pshock, the range of xshock spanned has been tuned so that the ranges
of total shock pshock · xshock affecting the system are equal across all the cases considered.

From the panel A of Fig. 4 we can clearly see that, for any value of xshock, H∞ decreases monotonically with α.
In particular, it appears to be close to one up to a certain value of α, after which it starts to decrease. At the same
time, we observe that for large values of α, H∞ decreases as xshock becomes smaller. Finally, in the limit xshock → 0
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FIG. 3. Fraction of stressed banks S(t) (blue line), fraction of defaulted banks D(t) (red line), and H(t) (violet line), total
relative equity loss experienced by the system as a function of the time t over which shock propagate. Banks experience a
shock in the external assets, which suffer a relative loss equal to xshock = 0.5%. All points are averaged over a sample of 100
reconstructed networks with connectivity p = 0.05 and compatible with 2008 balance sheets, and over 10 realisations of the
shock in which each bank is shocked with probability pshock = 0.05. Error bars span one standard deviation. α = 0 in panel A
and the algorithm reduces to the linear DebtRank, while α = 1 in panel B, and α = 2 in panel C. We see that the dynamics
unravels within a few time steps in the panels A and C, while it takes considerably more time steps in panel B.
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FIG. 4. Surface plot of H∞, the total relative equity loss in the steady state, as a function of the size of the shock suffered by
external assets of banks xshock and of the parameter α, which tunes the non-linearity of the algorithm. All points are averaged
over a sample of 100 reconstructed networks with connectivity p = 0.05, and compatible with 2008 balance sheets, and over
10 realization of the shock in which each bank is shocked with probability pshock = 0.05 (panel A) and pshock = 1 (panel B).
Note that the range of the total size of the shock pshock · xshock is the same for both panels. As α increases, the propagation
of the shock is dampened, resulting in smaller losses, and in two different regimes, whose separation is especially evident for
pshock = 1, i.e. when all banks are shocked.

the system displays a transition between a stable regime in which no losses occur, and an unstable regime in which
also infinitesimal shock can lead to large total relative losses. Such transition can be easily seen in panel B of Fig. 4,
where we present the results in the case in which all banks suffer the same initial shock. This can be interpreted as a
shock to a risk factor common to all banks, such as a sudden change in interest rates or similar to that experienced
during a major macroeconomic downturn. We note here that we have performed simulations for different values of
the connectivity parameter p ranging between p = 0.05 to p = 1 (fully connected network). Interestingly, we observed
that systems with very different connectivities behave in a similar way. A possible explanation is that, due to the
reconstruction technique used (see Section IV), p = 0.05 is already enough to connect systemically important banks.

Finally, in Fig. 5 we adopt the same setting as in Fig. 4 for different years. Overall, we observe that H∞ markedly
decreases from 2008 to 2013. It clearly emerges that the system was more prone to amplify shocks in 2008, when a
region in parameters space in which H∞ ' 1 exists. This is consistent with the intuition that banks in 2008 were
more fragile.
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FIG. 5. Analogous of Fig. 4, but for the years 2010 and 2013. Here the connectivity of the reconstructed networks is p = 0.05
and the fraction of shocked banks on average is pshock = 0.05. Going from 2008 (see Fig. 4, panel A) to 2013 H∞ is less and
less sensitive to changes in α and it generally smaller, meaning that banks are more and more robust.

III. DISCUSSION

In the present study, a general shock propagation mechanism is applied to an interbank network of 183 publicly
traded European banks. With probability pshock each bank is subject to an initial shock consisting in the devaluation
of their external assets by a factor xshock. The system reaction to shocks is measured in terms of the total relative
equity loss, which takes into account the contribution of each bank to the relative equity loss of the system. The
dynamic of shock propagation that we consider (non-linear DebtRank) interpolates through the parameter α between
two stress test algorithms: the Furfine algorithm and the linear DebtRank.

We notice that the propagation of shocks strongly depends on the parameter α. In particular, in all stress scenarios
that we have considered we observe a crossover between a regime of large losses (for small α), in which potentially all
banks could default, and a regime of small losses (for large α), in which most banks survive the shock. The width of
the intermediate region shrinks as the fraction of banks affected by the shock approaches one.

The model also shows that the interbank network was significantly more fragile in 2008, when the financial crisis
took place, than in the subsequent years. This observation holds qualitatively for all values of model parameters and
connectivities explored.

In addition to the properties of the steady state we have also looked into the dynamic of quantities such as the
number of stressed and defaulted banks, whose behavior highlights the existence of different time scales, depending
on the model parameters. For instance, we observe that the time needed to reach the steady state is a non-monotonic
function of α: in certain cases the shock produces a slow drive of the interbank network towards its collapse, while in
other cases the crash occurs immediately after the shock.

Clearly, establishing a coherent mapping between probability of defaults and changes in equity opens several possible
directions for future research. Obviously, calibrating α, possibly extracting a different value for each bank, would
represent a major achievement. Beyond the “phenomenological” approach adopted here, one could try to derive
such relationship in the context of standard financial risk management theory. Moreover, here we have limited our
analysis to direct exposures due interbank landing. A proper assessment of systemic risk should account for additional
types of interconnectedness, such as that associated with overlapping portfolios, exchange of derivates, and ownership
structure. Hence, another future extension of the model could be based on a multilayer network that incorporates
those effects. Complex interactions across different layers could lead to non-trivial amplification phenomena [43].
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IV. MATERIALS AND METHODS

A. Model dynamics

In order to derive (3) we start from the balance sheet identity introduced in Section I in which we distinguish
between external and interbank assets and liabilities:

Ei(t) = AEi (t)− Li +

N∑
j=1

AIBij (t)− LIBij , (5)

where assets depend explicitly on time, while liabilities do not. In fact, we can expect that the value of external assets
fluctuates, while, as it will be clear in the following, the value of interbank assets AIBij will be marked-to-market,
depending on the probability of default of the borrower j. However, the fact that bank i reassess the value of its
interbank claim towards bank j does not change the value of the debt that bank j owes to bank i: hence interbank
liabilities (and analogously external liabilities) always keep their face value, and therefore do not depend on time. As
a consequence, using (1) and (5) we can readily compute:

hi(t) =
AEi (0)−AEi (t)

Ei(0)
+

N∑
j=1

AIBij (0)−AIBij (t)

Ei(0)
. (6)

In a scenario without recovery it is reasonable to assume that:

AIBij (t+ 1) = AIBij (0)
(
1− pDj (t)

)
, (7)

which simply means that bank i updates the value of its interbank claims towards bank j such that it is equal to
their face value if the probability of default pDj of the borrower bank j is zero and it decreases proportionally to pDj
otherwise. By plugging (7) into (6) and using the definition of the interbank leverage matrix [36, 39]:

Λij =
AIBij (0)

Ei(0)
(8)

we can immediately compute:

hi(t+ 1)− hi(t) =
AEi (t)−AEi (t+ 1)

Ei(0)
+

N∑
j=1

Λij
[
pDj (t)− pDj (t− 1)

]
. (9)

In our stress test scenario we will initially shock external assets by a relative amount xshock, i.e. AEi (1) = xshockA
E
i (0),

such that hi(1) = (1− xshock)
(
AEi (0)/Ei(0)

)
. However, after the initial shock external assets do not change anymore

and the evolution of the relative equity losses is entirely due to the re-assessment of the value interbank assets. As
a consequence, the first term in the right-hand side of (9) is equal to zero, for t > 1. Finally, when the equity of
bank i becomes equal to zero the bank defaults and is not able neither to further propagate shocks nor to sustain any
additional losses. Hence, the maximum value attainable by the relative equity losses is one, which leads to (3).

From (3), we see that the results will depend on the relationship that we assume between the relative loss in equity
of a bank and its probability of default. In the Furfine algorithm we have that:

pDj (t) =

{
0 if hj(t) < 1

1 if hj(t) = 1 ,
(10)

while in the linear DebtRank:

pDj (t) = hj(t) . (11)

In the non-linear DebtRank we interpolate between this two extreme cases by means of the parameter α (see (4)):
for α = 0 we recover the linear DebtRank, while for α→∞ we recover the Furfine algorithm.
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B. Data

The original source for raw data about balance sheets of banks is the Bureau van Dijk Bankscope database, from
which we extract data for a subset of 183 among the largest European banks. In particular we use data about the
total interbank assets (liabilities) AIBi =

∑
j=1A

IB
ij (LIBi =

∑
j=1 L

IB
ij ) and we compute external assets (liabilities)

as the difference between total assets (liabilities) and interbank assets (liabilities): AEi = Ai −AIBi (LEi = Li −LIBi ).
The same data have already been used in [36, 39]. See [36] for all the details about the handling of missing data.

As already pointed out, the balance sheet of bank i contains only data about its total interbank lending and
borrowing, i.e. the values of AIBi and LIBi . As a consequence, the full matrix needs to be reconstructed by making
some assumptions. Here we proceed as in [39] and postulate that the probability that bank i extended a loan to bank
j is proportional to AIBi , the total amount of interbank lending of bank i and to LIBi , the total amount of interbank
borrowing of bank j. The fitness model [44] allows us to compute the values of the probabilities {pij} that an edge
i → j exists for a given value of connectivity p. We then use {pij} to build a sample of 100 directed un-weighted
networks for each year. For each network in the sample we assign weights using the iterative RAS algorithm [45]. See
[39] for a full account of the procedure.
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