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Much research has studied foundations for correct and reliable communication-centric systems. A
salient approach to correctness usessession typesto enforce structured communications; a recent
approach to reliability usesreversibleactions as a way of reacting to unanticipated events or failures.
This note develops a simple observation: the machinery required to define asynchronous semantics
and monitoring can also support reversible protocols. We propose a process framework of session
communication in which monitors support reversibility. A key novelty in our approach aresession
types with present and past, which allow us to streamline the semantics of reversible actions.

1 Introduction

Much research has studied foundations for reliablecommunication-centricsoftware systems. Our inter-
est is in process frameworks that, building on core calculi for concurrency, offer analysis techniques
for message-passing programs. While early frameworks focused on (static) verification of protocol
correctness, as enforced by properties such as safety, fidelity, and progress (deadlock-freedom) (see,
e.g., [15, 16, 4]), extensions with external mechanisms (such as, e.g., exceptions, interruptions, and com-
pensations [3, 12, 6], adaptation [14], monitoring [18], reversibility [25]) have been proposed to enforce
protocol correctness even in the presence of unanticipatedevents (say, failures or new requirements).

Comprehensive approaches to correctness and reliability,which address and enforce both kinds of
requirements, seem indispensable in the principled designof communication-centric systems. As these
systems are increasingly built using heterogeneous services whose provenance/correctness cannot always
be certified in advance, static validation techniques (suchas type systems) fall short. Correctness must
then be guaranteed by mechanisms for reliability, which mayinspect the (visible) behavior of interacting
services and take action if they deviate from prescribed communication protocols.

We report on ongoing work aimed at uniform approaches to correct, reliable communicating sys-
tems. We address the interplay betweensession typesand models ofreversible computation: models of
concurrency in which the usualforward semantics is coupled with abackwardsemantics that allows one
to “undo” process actions [11]. We explore to what extent type information can streamline the reversible
semantics for interacting processes. Our discovery is thatknown (run-time) mechanisms used to support
asynchronous (queue-based) semantics and monitoring can also support reversible protocol actions.

A key technical device in formalizing reversible semanticsarememories: these are run-time con-
structs which enable one to revert actions. Memories are thebulk of a reversible model; their mainte-
nance requires care, as demonstrated by Tiezzi and Yoshida [25], who adapt known reversible seman-
tics [11, 23] into the session typed setting. In this work, weexplore a different approach: we use monitors
as memories. We investigate to what extent queue-based semantics for session types can support re-
versibility. The key idea is simple: we use the type-checking component of queue-based semantics (i.e.,
the fact that session types enable process reductions) to support reversible process actions. Our approach
concerns directly the reduction semantics for sessions, sowe illustrate it via approximate reduction rules,
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which omit unimportant notational details. Consider the reduction rule for session communication, en-
hanced with session types and message queues, in the style of[19, 17, 21]:

s〈v〉.P ‖ s̄⌊!U.S1 · h̃1⌋ ‖ s(x).Q ‖ s⌊?U.S2 · h̃2⌋ −→ P ‖ s̄⌊S1 · h̃1⌋ ‖ Q ‖ s⌊S2 · h̃2,v⌋ (1)

In (1), processess〈v〉.P ands(x).Q denote output and input alongsession endpoints̄sands, respectively.
Notice that ¯s ands aredual endpoints. Given an endpoints, processs⌊S · h̃⌋ is amonitor, whereSand
h̃ are the session type and message queue fors, respectively. In the approach of [19, 17, 21], session
types enable communication actions: a synchronization canonly occur if the actions (in the processes)
correspond to the intended protocols (in the monitor types). After synchronization, portions of both
processes and monitor types are consumed. Our approach consists in keeping, rather than consuming,
these monitor types. For this to work, we need to distinguishthe part of the protocol that has been already
executed (its past), from the protocol that still needs to execute (its present). We thus introduce session
types withpresent and past: the typeSˆT says that actions abstracted byS are past protocol actions,
whereas actions inT are present steps. We may refine (1) as follows:

s〈v〉.P ‖ s̄⌊T ˆ !U.S1 · h̃1⌋ ‖ s(x).Q ‖ s⌊T ′ ˆ?U.S2 · h̃2⌋։ P ‖ s̄⌊T.!U ˆS1 · h̃1⌋ ‖ Q ‖ s⌊T ′
.?U ˆS2 · h̃2,v⌋

(2)
This is aforward reduction rule. Monitors ¯s⌊T ˆ !U.S1 · h̃1⌋ ands⌊T ′ ˆ?U.S2 · h̃2⌋ use type-checking to
enable forward and backward computations; they may also implement asynchronous communication.
Observe that we use the cursorˆ to preserve output and input protocol actions (noted !U and ?U , re-
spectively). Based on (2), we may state a correspondingbackwardreduction rule, which reverts the
intra-session synchronization at the level of processes, types, and message queues:

P ‖ s̄⌊T1.!U ˆS1 · h̃1⌋ ‖ Q ‖ s⌊T2.?U ˆS2 · h̃2,v⌋ s〈v〉.P ‖ s̄⌊T1 ˆ !U.S1 · h̃1⌋ ‖ s(x).Q ‖ s⌊T2 ˆ?U.S2 · h̃2⌋
(3)

Our main technical contribution is a core framework for session communication and reversibility whose
monitored semantics follows the spirit of rules (2) and (3).In our framework, session processes occur
within configurations, which add monitors and state for endpoints: while state conveniently implements
substitutions, monitors handle both communication and reversibility. Reduction is defined for configura-
tions following rules (2) and (3). We support session establishment and the consistent use of sent values
and open variables in the state (cf.v andx in (2) and (3)). Our semantics enjoys the so-called “loop
lemma”, which offers a basic consistency guarantee for the interplay of forward and backward actions.

In our opinion, the use of monitors with type-checking for reversible semantics is an observation that
has at least two significant implications. First, it is encouraging to discover that monitor-based semantics
with type-checking—introduced in [19, 17, 21] for asynchronous communications with events and used
in [13, 9] to define run-time adaptation—may also inform the semantics of reversible protocols. Monitors
have also been used for security purposes [5, 8] and, quite recently, for assigning blame to deviant session
processes [18]. Therefore, a monitor-based semantics encompasses an array of seemingly distinct con-
cerns in structured communications. Second, we see our developments as a first step towards validation
techniques for communication and reversibility based on run-time verification. Session frameworks with
run-time verification have been developed in, e.g., [2, 12].As these works do not support reversibility,
our work may suggest enhancements for their dynamic verification capabilities.

2 Syntax and Semantics

In this section we present our framework of session processes with monitored semantics and reversibility.
We assume the following denumerable infinite mutually disjoint sets: the setS of session names(or
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k,k′ ::= s,s | x,y u,u′ ::= a,b | x,y n,m ::= a,b | s,s

M,N ::= 0 |
〈
P, σ

〉
δ | a⌊H · x̃ · ũ⌋ | νn.M | M ‖ N

P,Q ::= u(x : S).P | u(x : S).P | k〈v〉.P | k(x).P | νa.P | 0

S,T ::= end | !U.S | ?U.S

H,K ::= ˆS | Sˆ | SˆT

Figure 1: Syntax of Configurations, Processes, and Session Types.

endpoints), the setC of channelsand the set ofvariablesX . The setN = S ∪C is called the set of
names. We assume a total bijection overN , noted·, relating names with their duals such thatn 6= n and
n= n, for any namen. We leta,b to range overC ; s, r (and their duals) to range overS ; m,n to range
over N andx,y to range overX . We useõ to denote a finite sequence of objects (names, sessions,
variables)o1,o2, . . . ,on, which we sometimes treat as a set or as an ordered list. We write δ , δ ′ to range
over finite, possibly empty sequences of session names.

Syntax. The syntax of configurationsM,N, processesP,Q, and session typesS,T is given in Fig. 1.
The syntax ofM includes the empty configuration0, therunningprocess

〈
P, σ

〉
δ , a monitors⌊S· x̃ · ũ⌋,

the name restrictionνn.M, and parallel compositionM ‖ N. A running process
〈
P, σ

〉
δ is univocally

identified byδ , the sequence of session endpoints occurring inP. The local storeσ is a list of pairs of
the form{x, ṽ} (see Def. 3). A monitors⌊S· x̃ · ũ⌋ is identified by the session names, contains its session
type S (see below), a list̃x containing all the variables used by the process, and a list of namesũ that
the process has used in the session. These two lists will be useful to rebuild prefixes. A monitor typeT
describes the behavior of its associated session. The syntax of types assumes a set of basicsorts(bool,
int, . . .), ranged overU . We also assumeU as the set of all possible values belonging to basic sorts;
this way,V = N ∪U is the set of values that processes can exchange. We usev,w (and their decorated
versions) to range overV . The type !U.S (resp. ?U.S) indicates that the owner of the monitor may send
(resp. receive) a value of typeT and proceed with the behavior prescribed byS.

Types !U.Sand ?U.Sare standard in session types disciplines. A novelty in our work is the (run-time)
typeS1 ˆS2: it indicates thatS1 is the past (already executed) behavior of the associated session, whileS2

represents the present behavior (yet to be executed). That is, the separator̂ is used as a cursor in a type; it
is inspired by the separator used in [7] to remember the past of sequential CCS processes. These session
types withpresent and pastoccur only at run-time; the intent is that each time that the process performs
a forward computation the cursor will be moved forward by oneaction; it will be moved backwards by
one action as result of a reversible action.

The syntax of processes follows standard lines: we considerthe idle process0, prefixes for session
establishment (notedu(x : S).P andu(x : S).Q, whereS is a session type), and prefixes for intra-session
communication (notedk(x).P and k〈v〉.P). We write P and M to indicate the set of processes and
configurations, resp. We callagentan element of the setA = M ∪P. We letP,Q (and their decorated
versions) to range overP; also, we useL,M,N to range overM andA,B,C to range overA .

Before formally presenting the operational semantics, we give some intuitions on the information
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(E.PARC) A ‖ B≡ B ‖ A (E.PARA) A ‖ (B ‖C)≡ (A ‖ B) ‖C (E.NIL M) A ‖ 0≡ A

(E.NEWN) νn.0≡ 0 (E.NEWC) νn.νm.A≡ νm.νn.A (E.NEWP) (νn.A) ‖ B≡ νn.(A ‖ B)

(E.α ) A=α B =⇒ A≡ B

Figure 2: Structural congruence

carried by monitors, in particular the variable lists. Consider the following configuration, withs∈ δ :
〈
P, σ

〉
δ ‖ s⌊S.?U ˆT · x̃,x · ũ,k⌋

By inspecting the type before the cursorˆ , we know the last action of the process, before becomingP,
was an input; also, by the additional information in the variable and name lists, we know that this input
action was of the formk(x). That is, the shape of the process right before the input action wask(x).P.

Operational Semantics. The operational semantics of our reversible calculus is defined via a reduction
relation→, which is a binary relation over configurations→⊂ M ×M , and a structural congruence
relation≡, which is a binary relation over processes and configurations≡⊂ P2∪A 2.

Definition 1 (Contexts). Configuration contexts, also called evaluation contexts, are configurations with
one hole “·” defined by the following grammar:E ::= · | (M ‖ E) | νn.E. General contextsC are pro-
cesses or configurations with one hole·”, and are obtained from processes or configurations by replacing
one occurrence of0 (either as process or as configuration) with·.

A congruence on processes and configurations is an equivalence relationR that is closed under
general contexts:PR Q =⇒ C[P]RC[Q] andMRN =⇒ C[M]RC[N]. The relation≡ is defined as
the smallest congruence, on processes and configurations, that satisfies rules in Figure 2. In defining
the rules we adopt Barendregt’s Variable Convention: If terms t1, . . . , tn occur in a certain context (e.g.
definition, proof), then in these terms all bound identifiersand variables are chosen to be different from
the free ones. This is why in Rule(E.NEWP) there is no check on free names.

A binary relationR on closed configurations isevaluation-closedif it satisfies the inference rules:

(CTX)
M R N

E[M]RE[N]
(EQV)

M ≡ M′ M′
R N′ N′ ≡ N

M R N

The reduction relation→ is defined as the union of two relations, theforward reduction relation։ and
the backward reduction relation : →=։ ∪ . Relations։ and are the smallest evaluation-closed
relations satisfying the rules in Figure 3. Before commenting them we need some definitions in place:

Definition 2 (Dual type). The dual type of a typeS, indicated asS, is inductively defined as follows:

!U.S=?U.S ?U.S=!U.S end= end

Sometimes we will writedual(S1,S2) to indicateS1 = S2.

Remark 1 (Store and Explicit Substitution). One of the main challenges in defining reversible semantics
for processes is how to treat substitutions, since in general a substitution is not a bijective function. There
are at least two possibilities. First, one may create a copy of a process before applying a substitution and
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(OPEN)
dual(S,T) s 6∈ δ s 6∈ δ ′ σ1(u) = σ2(u

′)〈
u(x : S).P, σ1

〉
δ ‖

〈
u′(y : T).Q, σ2

〉
δ ′ ։

(νs,s).
(〈

P, σ1[x 7→ s]
〉

δ ,s ‖ s⌊ ˆS · x · u⌋ ‖
〈
Q, σ2[y 7→ s]

〉
δ ′,s ‖ s⌊ ˆT · y · u′⌋

)

(OPEN⋆)
dual(S,T) σ1(u) = σ2(u

′)

(νs,s).
(〈

P, σ1
〉

δ ,s ‖ s⌊ ˆS · x · u⌋ ‖
〈
Q, σ2

〉
δ ′,s ‖ s⌊ ˆT · y · u′⌋

)
 〈

u(x : S).P, σ1\x
〉

δ ‖
〈
u′(y : T).Q, σ2\y

〉
δ ′

(COM)

σ1(k) = s s∈ δ σ2(k
′
) = s s∈ δ ′ σ2(y) = v

〈
k(x).P, σ1

〉
δ ‖

〈
k
′
〈y〉.Q, σ2

〉
δ ′ ‖ s⌊T. ˆ?U.S1 · x̃ · ñ⌋ ‖ s⌊T ′

. ˆ !U.S2 · ỹ · m̃⌋ ։〈
P, σ1[x 7→ v]

〉
δ ‖

〈
Q, σ2

〉
δ ′ ‖ s⌊T.?U. ˆS1 · x̃,x · ñ,k⌋ ‖ s⌊T ′

.!U. ˆS2 · ỹ,y · m̃,k′⌋

(COM⋆)

σ1(k) = s s∈ δ σ2(k
′
) = s s∈ δ ′

〈
P, σ1

〉
δ ‖

〈
Q, σ2

〉
δ ′ ‖ s⌊T.?U. ˆS1 · x̃,x · ñ,k⌋ ‖ s⌊T ′

.!U. ˆS2 · ỹ,y · m̃,k′⌋  〈
k(x).P, σ1\x

〉
δ ‖

〈
k〈y〉.Q, σ2

〉
δ ′ ‖ s⌊T. ˆ?U.S1 · x̃ · ñ⌋ ‖ s⌊T ′

. ˆ !U.S2 · ỹ · m̃⌋

Figure 3: Operational Semantics: Forward (։) and Backward ( ) Reduction Semantics.

then replace the process with its copy when reverting the substitution; this is the strategy developed
in [23]. Second, one may use a store and a mechanism with explicit substitution, following [24, 10].
The first technique creates a memory each time a value is substituted; here we implement the second
technique, in which one just has to remember the pair variable/value for each substitution.

We now formally define the storeσ and the operations on it.

Definition 3. A local storeσ is a mapping from variables to an ordered list of values. Given a storeσ , a
variablex, and a valuev, we define theupdateσ [x 7→ v] andreverse updateσ \x as follows:

σ [x 7→ v] =

{
σ ∪{x,v} if x 6∈ dom(σ)

σ1∪{x, ṽ ·v} if σ = σ1∪{x, ṽ}
σ \x=

{
σ1 if σ = σ1∪{x,v}

σ1∪{x, ṽ} if σ = σ1∪{x, ṽ·v}

Theevaluationof namen under a local storeσ , writtenσ(n), is the valuev if {n,v} ∈ σ or {n, ṽ·v} ∈ σ ;
otherwise, it isn itself. Let us stress the fact that our store maintains a correspondence between variables
and lists of values in order to enable reversibility. The list represents at a given time the assignment
history of the variable to which it corresponds, with the actual value of the variable being at the top of
the list. If σ(n) = n thenn is not a variable.

The rules of the operational semantics are in Fig. 3. We briefly comment on them:

• Rule OPEN is the forward rule for session establishment. It creates two fresh, dual endpoints and their
associated monitors. Each monitor stores a session type; each store records the name of the fresh
session endpoints and of the channel. The monitor records the name on which the session has started
and the variable used by the process to refer to the endpoint.Establishing a new session requires type
duality and that the two process refer to the same name (cf. condition σ1(u) = σ2(u′)).
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• Rule OPEN⋆ is the exact opposite of Rule OPEN. In order to revert a session creation, the rule checks
that session types are at their initial position (e.g.,ˆSand ˆT). Moreover, the variable and name lists
should contain just one element each. The effect of the rule is to collect the two endpoint names and
to eliminate the two associated monitors, while restoring the prefixes in the processes.

• Rule COM describes intra-session communication. Two running processes can communicate if they
refer to the same session. The sent valuev is obtained by evaluating the sent valuey under the sender
storeσ2. The result of a communication is that the store of the receiver is updated with a new value,
bound to the read variable:σ1[x 7→ v]. Also, both monitor types are moved one step forward, and both
read and sent variables are put on the top of the list in their respective monitors; the same occurs for
the session names. This way we keep information about the prefixes (i.e.,k(x) andk

′
〈y〉).

• Rule COM⋆ undoes a communication: the sent value (along with the variable used to read it) is elim-
inated from the store of the receiving process. The variablelist of the monitor keeps information on
which variable to unbound: indeed, it is the variable at the top of this list the one that has to be elim-
inated, as we want to revert the input of its associated value. Moreover, information contained in the
name list of the monitors is used to recover output and input prefixes. Notice that the information
about the kind of prefix to be built again (input or output) is given by the type of the monitor. A further
consequence of undoing a communication is that the session types are moved one step backward.

Our process framework satisfies the so-calledloop lemma, a property that gives us a basic guarantee of
the consistency between forward and backward reductions. We require the following definition:

Definition 4 (Initial and Reachable Configurations). A configuration isinitial if there are no monitors
and all the running processes have an empty store and are identified by /0. A configuration isreachable
if it can be derived using→ from an initial configuration.

An easy induction on the structure of terms provides us with akind of normal form for configurations:

Lemma 1 (Normal Form). For any configuration M we have that:

M ≡ ν ã.

(

∏
i∈I

〈
Pi , σi

〉
δ i
‖∏

j∈J
sj⌊H j · ỹ j · ũ j⌋

)

Notice that, by convention, we assume that∏i∈I Ai = 0 if I = /0. Then we have:

Lemma 2 (Loop Lemma). For any reachable configuration M,N, we have M։ N ⇐⇒ N M.

Proof (Sketch).By induction on the derivation ofM ։ N for the if direction, and on the derivation of
N M for the converse. We will just show the forward case when the applied rule is OPEN; the other
cases are similar. By Lemma 1 we have that:

M ≡ ν ã.

(

∏
i∈I

〈
Pi , σi

〉
δ i
‖∏

j∈J
sj⌊H j · ỹ j · ũ j⌋

)

and since rule OPEN is applied, then there exist two indexesw,z∈ I such thatPw = u(x : S).Qw and
Pz = u′(y : T).Qz with dual(S,T), s 6∈ δw, s 6∈ δz andσ1(u) = σ2(u′). We have then:

M։ ν ã,s,s.
(

∏
i∈I ′

〈
Pi , σi

〉
δ i
‖ ∏

j∈J
sj⌊H j · ỹ j · ũ j⌋ ‖

〈
Pw , σw[x 7→ s]

〉
δw,s

‖
〈
Pz, σz[y 7→ s]

〉
δz,s

‖ sw⌊ ˆT · x · u⌋ ‖ sz⌊ ˆS · y · u⌋
)

with I ′ = I \{w,z}. It is easy to see that by applying OPEN⋆ we get back toM, as desired.
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Another property that a reversible calculus should enjoy isthe so-calledsquare lemma, which may be
informally described as follows. Assume a configuration from which two reductions are possible: if these
reductions areconcurrentthen the order in which the two reductions are applied does not matter, and the
same configuration is reached. This lemma therefore relies on the definition of concurrent transitions. In
our setting, thanks to the information carried by the monitors and to linearity of sessions, we may decree
that two reductions are concurrent if they operate on different sessions/channels (service names). One
may instrument the reduction semantics→ with a labelλ containing the endpoints used by the rule and

the service name (if any):M
λ
−→ N. Then, reductionsM

λ1−→ N andM
λ2−→ N are concurrent ifλ1∩λ2 = /0.

Using the square lemma one may then show that the reversible semantics iscausally consistent,
i.e., that an action can be reverted only after all the actions causally depending on it have already been
reverted. We leave for future work establishing these further results for our framework.

3 Concluding Remarks and Future Work

We have proposed a fresh approach to reversible semantics for session processes: it builds upon a style
of process semantics in which monitors (which include session types) enable process reductions. Even if
this style of process semantics is not new—it was introducedin [19] and later used in [17, 21, 13, 9]—to
our knowledge this is the first time that this formulation is used to support reversibility.

We rely on monitors which contain types that describe past and future structured interactions; these
types offer a natural form of memories for supporting forward and backward semantics. We motivated
our approach by introducing a simple process framework withsession establishment and communication;
extensions with other usual session constructs (labeled choice and recursion) are straightforward. To
highlight the simplicity of our approach, we have considered binary session types. We believe that
our approach scales to account for multiparty structured communications; in such a setting, monitors
would be generated after multiparty session establishment, and would be equipped with local projections
of global types, as in [2, 8]. A multiparty, asynchronous semantics may need to consider forms of
coordinatedreversibility among different partners; we plan to addressthese challenges in future work.

Most models of reversible processes (cf. [11]) do not consider (behavioral) types, and so their re-
versible semantics must account for arbitrary forms of concurrent behavior. In reversing the untyped
π-calculus, substitutions and scope extrusion are known to be challenging issues [10]. Reversing session
processes is a seemingly simpler problem, as behavior is disciplined by types: once a session is estab-
lished, concurrency interactions proceed in a deterministic, confluent manner. Also, in sessionπ-calculi
scope extrusion is limited. To our knowledge, the work [25] is the first to address reversibility for a
synchronousπ-calculus with binary session types. A key difference between our work and [25] is the
role that session types play in the reversible semantics. Wehave used session types to define forward and
backward semantics for session processes; in contrast, thereversible semantics in [25] establishes key
results for reversibility (e.g., the square lemma and causal consistency) using an untyped reduction se-
mantics. Hence, although the reversible sessionπ-calculus in [25] is shown to be typable using standard
binary session types, the influence of types on the reversible semantics of [25] is indirect at best.

As further topics for future work, we plan to establish the precise savings involved from moving from
(i) an untyped reversible semantics to (ii) a monitored reversible semantics with types, as proposed here.
We plan to compare the (untyped) reversible higher-order processes in [23] and the core higher-order
session calculus in [20], which may precisely encode the first-order sessionπ-calculus. Another direction
concernscontrolled reversibility[22]. Some recent approaches have proposed types with controlled
roll-back and explicit checkpoints among parties [1]. We believe that by adding explicit rollback into
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(run-time) type information, we could achieve intuitive mechanisms for controlled reversibility.
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