Reversible Sessions Using Monitors

Claudio A. Mezzina Jorge A. Pérez
IMT School for Advanced Studies Lucca, Italy University of Groningen, The Netherlands

Much research has studied foundations for correct andotel@mmunication-centric system#é
salient approach to correctness usession typet enforce structured communications; a recent
approach to reliability usagversibleactions as a way of reacting to unanticipated events oréslu
This note develops a simple observation: the machineryiredjto define asynchronous semantics
and monitoring can also support reversible protocols. Vég@se a process framework of session
communication in which monitors support reversibility. Ayknovelty in our approach asession
types with present and pasthich allow us to streamline the semantics of reversiblmas.

1 Introduction

Much research has studied foundations for reli@lenmunication-centrisoftware systems. Our inter-
est is in process frameworks that, building on core calaulidoncurrency, offer analysis techniques
for message-passing programs. While early frameworksstation (static) verification of protocol
correctness, as enforced by properties such as safetyyfideid progress (deadlock-freedom) (see,
e.g., [15[16, 4]), extensions with external mechanismsh(si$, e.g., exceptions, interruptions, and com-
pensations [3, 12, 6], adaptation [14], monitoringl [18Yamsibility [25]) have been proposed to enforce
protocol correctness even in the presence of unanticigatedts (say, failures or new requirements).

Comprehensive approaches to correctness and reliabiliigh address and enforce both kinds of
requirements, seem indispensable in the principled dedfigommunication-centric systems. As these
systems are increasingly built using heterogeneous ssrwibose provenance/correctness cannot always
be certified in advance, static validation techniques (f&ctype systems) fall short. Correctness must
then be guaranteed by mechanisms for reliability, which mggect the (visible) behavior of interacting
services and take action if they deviate from prescribednsonication protocols.

We report on ongoing work aimed at uniform approaches toectirreliable communicating sys-
tems. We address the interplay betwesession typeand models ofeversible computatianmodels of
concurrency in which the usudrward semantics is coupled withlackwardsemantics that allows one
to “undo” process actions [11]. We explore to what extenetygormation can streamline the reversible
semantics for interacting processes. Our discovery isiawn (run-time) mechanisms used to support
asynchronous (queue-based) semantics and monitoringscasigpport reversible protocol actions.

A key technical device in formalizing reversible semantce memories these are run-time con-
structs which enable one to revert actions. Memories arbéuhleof a reversible model; their mainte-
nance requires care, as demonstrated by Tiezzi and Yo2&jawho adapt known reversible seman-
tics [11, 23] into the session typed setting. In this workexplore a different approach: we use monitors
as memories. We investigate to what extent queue-basedestor session types can support re-
versibility. The key idea is simple: we use the type-chegldomponent of queue-based semantics (i.e.,
the fact that session types enable process reductionsppogueversible process actions. Our approach
concerns directly the reduction semantics for sessionsgsthustrate it via approximate reduction rules,

*Research partly supported by EU COST Actions IC1201 and0614

D. Orchard and N. Yoshida (Eds.): Programming Language @dgugres to © C. A. Mezzina & J. A. Pérez
Concurrency- and Communication-Centric Software (PLAQBS6). This work is licensed under the
EPTCS 211, 2016, pp. 56364, d0i:10.4204/EPTCS.211.6 Creative Commoris Attribution License.

http://dx.doi.org/10.4204/EPTCS.211.6
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

C. A. Mezzina & J. A. Pérez 57

which omit unimportant notational details. Consider theution rule for session communication, en-
hanced with session types and message queues, in the sfi (@7 [21]:

S(V).PIS[IU.S - Py [s(0.Q S|V.S - ho) — P|8[S-Fu) Q| S|S - o,V (1)

In (@), processes(v).P ands(x).Q denote output and input alorsgssion endpointsands, respectively.
Notice thats ands aredual endpoints. Given an endpoigtprocesss|S- HJ is amonitor, whereSand

h are the session type and message queus, fi@spectively. In the approach 6f [19,/17] 21], session
types enable communication actions: a synchronizationoodnoccur if the actions (in the processes)
correspond to the intended protocols (in the monitor typeser synchronization, portions of both
processes and monitor types are consumed. Our approadstsdnkeeping, rather than consuming,
these monitor types. For this to work, we need to distingthstpart of the protocol that has been already
executed (its past), from the protocol that still needs tcaie (its present). We thus introduce session
types withpresent and pastthe typeS™T says that actions abstracted $wre past protocol actions,
whereas actions i are present steps. We may refinke (1) as follows:

S(v).P[|S[T V.S -] [s(x).Q | S[T" V.S - o] - P[|S[TIU"S - hy| | Q[[TV S - hp, V]

2)
This is aforward reduction rule. Monitors|T“1U.S; - hy| ands| T~ .S, - hy| use type-checking to
enable forward and backward computations; they may alsdéeimgnt asynchronous communication.
Observe that we use the cursoto preserve output and input protocol actions (notécahd ®J, re-
spectively). Based ori{(2), we may state a corresponbdagkwardreduction rule, which reverts the
intra-session synchronization at the level of procesgpest and message queues:

Pls[TU"S -] | Qs|T2U S hp,v| ~ 5{(v).P || S[TL"IU.§ -] || S(X).Q | [T2" V.S - he

3)
Our main technical contribution is a core framework for ggssommunication and reversibility whose
monitored semantics follows the spirit of rulé€s$ (2) apd (8)our framework, session processes occur
within configurations which add monitors and state for endpoints: while stateeoiently implements
substitutions, monitors handle both communication andrssility. Reduction is defined for configura-
tions following rules[(2) and {3). We support session eshbient and the consistent use of sent values
and open variables in the state (af.andx in (@) and [3)). Our semantics enjoys the so-called “loop
lemma”, which offers a basic consistency guarantee forritegplay of forward and backward actions.

In our opinion, the use of monitors with type-checking foraesible semantics is an observation that
has at least two significant implications. First, it is eneming to discover that monitor-based semantics
with type-checking—introduced in [19, 117,]21] for asynalwas communications with events and used
in [13,[2] to define run-time adaptation—may also inform temantics of reversible protocols. Monitors
have also been used for security purposes|[5, 8] and, qaitatly, for assigning blame to deviant session
processed [18]. Therefore, a monitor-based semanticsrgrasses an array of seemingly distinct con-
cerns in structured communications. Second, we see oulogerents as a first step towards validation
techniques for communication and reversibility based ontimne verification. Session frameworks with
run-time verification have been developed in, eld.. [2, BY.these works do not support reversibility,
our work may suggest enhancements for their dynamic veidicaapabilities.

2 Syntax and Semantics

In this section we present our framework of session prosasith monitored semantics and reversibility.
We assume the following denumerable infinite mutually ditjsets: the set” of session namegr

58 Reversible Sessions Using Monitors

kK:= s35|xy uwu = ab | xy nm:= ab]ss

M\Nz= 0] (P,o); | alH-Xx-T] | vaM | M|IN
PQ:= ux:9.P|ux:9.P|kW.P|kx.P|vaP|o0
ST:i= end | US| U.S

HK:= "S|s |sT

Figure 1: Syntax of Configurations, Processes, and SesguesT

endpointy, the set# of channelsand the set ofariables.2™. The set/ = . U% is called the set of
names We assume a total bijection ovet’, noted-, relating names with their duals such tna¢ n and
n=n, for any namen. We leta,b to range ovefs’; s,r (and their duals) to range ovef’; m,n to range
over 4/ andx,y to range overZ. We use0O to denote a finite sequence of objects (names, sessions,
variables)oy,0,, . ..,0,, Wwhich we sometimes treat as a set or as an ordered list. Wedyd’ to range

over finite, possibly empty sequences of session names.

Syntax. The syntax of configurationsl,N, processe®, Q, and session typeS T is given in Fig[1.
The syntax oM includes the empty configuratidh therunning process(P, a>5, a monitors|S- X - U],

the name restrictiown.M, and parallel compositioM || N. A running process{P, a>5 is univocally
identified byd, the sequence of session endpoints occurring. ifhe local stores is a list of pairs of
the form{x, vV} (see Def[B). Amonitos|S- X - U] is identified by the session naraecontains its session
type S (see below), a lisk containing all the variables used by the process, and aflisamesu that
the process has used in the session. These two lists willddalus rebuild prefixes. A monitor typé
describes the behavior of its associated session. Thexsghtgpes assumes a set of basarts (bool,

int, ...), ranged ovetJ. We also assumé&’ as the set of all possible values belonging to basic sorts;
this way,? = A" U% is the set of values that processes can exchange. Wewsgand their decorated
versions) to range ovef’. The type U.S(resp. ®.S) indicates that the owner of the monitor may send
(resp. receive) a value of typgeand proceed with the behavior prescribeddy

Types U.Sand P .Sare standard in session types disciplines. A novelty in arkvs the (run-time)
type S " S: itindicates thaf is the past (already executed) behavior of the associassibse whileS,
represents the present behavior (yet to be executed). § hlaeiseparatoris used as a cursor in a type; it
is inspired by the separator used(in [7] to remember the gastiquential CCS processes. These session
types withpresent and pastccur only at run-time; the intent is that each time that ttueess performs
a forward computation the cursor will be moved forward by an#on; it will be moved backwards by
one action as result of a reversible action.

The syntax of processes follows standard lines: we condiigeidle proces$, prefixes for session
establishment (noted(x : S).P andt(x: S).Q, whereSis a session type), and prefixes for intra-session
communication (noted(x).P andk(v).P). We write &2 and.# to indicate the set of processes and
configurations, resp. We calgentan element of the se¥ = .Z U &2. We letP,Q (and their decorated
versions) to range ove?’; also, we usé. M, N to range over# andA,B,C to range overy'.

Before formally presenting the operational semantics, we gome intuitions on the information

C. A. Mezzina & J. A. Pérez 59

(E.mMRC)A|B=B]J A (E.-mRA)A|(BlIC)=(A|IB)|IC (E.NILM) AJ0=A
(E.NEwN) vn.0=0 (E.NEWC) vn.vmA=vm.vn.A (E.NEWP) (vn.A) | B=vn.(A|| B)

(Ea)A=4B — A=B
Figure 2: Structural congruence

carried by monitors, in particular the variable lists. Ades the following configuration, witls € d:
(P,0)s[IS[SU"T-Xx-0k|

By inspecting the type before the cursgrwe know the last action of the process, before becorRing
was an input; also, by the additional information in the aalé and name lists, we know that this input
action was of the fornk(x). That is, the shape of the process right before the inputraetask(x).P.

Operational Semantics. The operational semantics of our reversible calculus isddfvia a reduction
relation —, which is a binary relation over configurationsC .# x .#, and a structural congruence
relation=, which is a binary relation over processes and configuration 272U <72

Definition 1 (Contexts) Configuration contextsalso called evaluation contexts, are configurations with
one hole *” defined by the following grammaitt ::= - \ (M| E) | vn.E. General context€ are pro-
cesses or configurations with one hdleand are obtained from processes or configurations bycega

one occurrence d (either as process or as configuration) with

A congruence on processes and configurations is an equiealefation# that is closed under
general contextsP#Z Q — C[P|Z C[Q] andMZN — C|[M|Z C|N]. The relation= is defined as
the smallest congruence, on processes and configurathmatssdtisfies rules in Figuté 2. In defining
the rules we adopt Barendregt’s Variable Convention: Hnl,...,t, occur in a certain context (e.g.
definition, proof), then in these terms all bound identifiansl variables are chosen to be different from
the free ones. This is why in Ru({&.NEwP) there is no check on free names.

A binary relationZ on closed configurations &valuation-closedf it satisfies the inference rules:

M %N M=M M’ ZN’ N =N

T EMZEN e VN

The reduction relation— is defined as the union of two relations, floeward reduction relation- and
the backward reduction relatior: —=— U ~~. Relations— and~- are the smallest evaluation-closed
relations satisfying the rules in Figure 3. Before comnrenthem we need some definitions in place:

Definition 2 (Dual type) The dual type of a typ§, indicated as, is inductively defined as follows:
IlUS=U.S U.S=IUS end = end

Sometimes we will writelual(S;,S) to indicateS, = S.

Remark 1 (Store and Explicit Substitution)One of the main challenges in defining reversible semantics
for processes is how to treat substitutions, since in géaenabstitution is not a bijective function. There
are at least two possibilities. First, one may create a copypoocess before applying a substitution and

60 Reversible Sessions Using Monitors

(OPEN)
dual(ST) s¢0 s¢d o(u)y=o(U)
(Ux:9).P,or)s || (U(y:T).Q,02)5;, —
(vs3). ((P, al[x»—>§]>6s |s[°S-x-1) || {Q, o2y S]>5/,s Is"T-y-uJ)

(OPENY)
dual(ST) o1(u) = ap(U)
V59 (P 02 TSSO (0, ey [T y-]) =
(U(x:9).P, a1\ x), || (U(y:T).Q, 02\Y)5

(Com)
ok =s sed o[K)=5 358 oy)=vV

(k(x).P,a1)s || (K¥).Q, 02)5 || SIT." . S -x-n | ST WU.S-y-m —
(P,oux—= V)5 | (Q,02)5 || SITU."S - Xx-Ak| [5[TIU."S -7y mK]

(Com™)

ok =s s€d oK)=3 358
|

(P,o1); || (Q,02)5 || SITU."S - X x-Ak| | 5[TU."S- ¥y MK| ~
<k().P,a1\x)5 || (k(y).Q,02)5 || SIT."U.S -X-A] | 3T."U.S-¥- M|

Figure 3: Operational Semantics: Forward)(and Backward~+) Reduction Semantics.

then replace the process with its copy when reverting thetgution; this is the strategy developed
in [23]. Second, one may use a store and a mechanism withcegxliostitution, following [[24/,_10].
The first technique creates a memory each time a value isitsibdt here we implement the second
technique, in which one just has to remember the pair vaatadlue for each substitution.

We now formally define the store and the operations on it.

Definition 3. A local storeo is a mapping from variables to an ordered list of values. a&storeo, a
variablex, and a valuer, we define theipdateo[x — v] andreverse update \ x as follows:

B ouU{x,v} if x¢domo) B 01 ifo=01U{xV}
dind/ _{ orU{x,V-v} if 0 =01U{xV} G\X_{ alu{x,\“/i if a:aiu{x,v-v}

Theevaluationof namen under a local store, written o(n), is the valuevif {n,v} € o or {n,v-v} € o;
otherwise, it imitself. Let us stress the fact that our store maintains aspondence between variables
and lists of values in order to enable reversibility. The list reprdseat a given time the assignment
history of the variable to which it corresponds, with theuattvalue of the variable being at the top of
the list. If o(n) = nthennis not a variable.
The rules of the operational semantics are in Eig. 3. We pragfinment on them:
¢ Rule OPENis the forward rule for session establishment. It createsftesh, dual endpoints and their
associated monitors. Each monitor stores a session typh; stare records the name of the fresh
session endpoints and of the channel. The monitor recoedsaime on which the session has started
and the variable used by the process to refer to the endistablishing a new session requires type
duality and that the two process refer to the same name (ofliton o1 (u) = 02(U')).

C. A. Mezzina & J. A. Pérez 61

e Rule OPEN is the exact opposite of Ruler@N. In order to revert a session creation, the rule checks
that session types are at their initial position (e’@and~T). Moreover, the variable and name lists
should contain just one element each. The effect of the suie ¢ollect the two endpoint names and
to eliminate the two associated monitors, while restorirggprefixes in the processes.

e Rule CoM describes intra-session communication. Two running @sE® can communicate if they
refer to the same session. The sent valissobtained by evaluating the sent valpender the sender
stored,. The result of a communication is that the store of the rezasrupdated with a new value,
bound to the read variabler; [x — v]. Also, both monitor types are moved one step forward, and bot
read and sent variables are put on the top of the list in tespactive monitors; the same occurs for
the session names. This way we keep information about tHixgsdi.e.,k(x) andR’(y}).

e Rule Com* undoes a communication: the sent value (along with the bariased to read it) is elim-
inated from the store of the receiving process. The varibidti@f the monitor keeps information on
which variable to unbound: indeed, it is the variable at tyedf this list the one that has to be elim-
inated, as we want to revert the input of its associated vall@eover, information contained in the
name list of the monitors is used to recover output and inpefix@s. Notice that the information
about the kind of prefix to be built again (input or output) ilgem by the type of the monitor. A further
consequence of undoing a communication is that the sesgies aire moved one step backward.

Our process framework satisfies the so-calt@p lemmaa property that gives us a basic guarantee of
the consistency between forward and backward reductioesieduire the following definition:

Definition 4 (Initial and Reachable Configurationsh configuration isinitial if there are no monitors
and all the running processes have an empty store and atdi@kby 0. A configuration iseachable
if it can be derived using~ from an initial configuration.

An easy induction on the structure of terms provides us whiln@ of normal form for configurations:
Lemma 1 (Normal Form) For any configuration M we have that:

M=va R,o)s || [1silHj V- Uj]
(a1 st 90
Notice that, by convention, we assume tfipt; Ai = 0if | = 0. Then we have:

Lemma 2 (Loop Lemma) For any reachable configuration NN, we have M- N <= N ~» M.

Proof (Sketch).By induction on the derivation df1 — N for the if direction, and on the derivation of
N ~~ M for the converse. We will just show the forward case when fi@ied rule is GEN; the other
cases are similar. By Lemrh& 1 we have that:

M= va (|‘| (R, o)s |l |_LSJ' [Hj - ¥j '@'J)
e J€

and since rule ®eN is applied, then there exist two indexesz € | such thatR, = T(x: S).Q, and
P,=U(y:T).Q,with dual(ST),5¢ dw, S¢ &, ando; (u) = g»(U'). We have then:

M — va,ss(I (R, o5 |l I_lJSj [Hj -5 G || (Rus owlx =)5 s | (P Ozly = 85
e

iel’

| swl"T-x-0] ||"S-y-ul)

with I’ =1\ {w,z}. Itis easy to see that by applyingP@N* we get back tiM, as desired. O

62 Reversible Sessions Using Monitors

Another property that a reversible calculus should enjajésso-calledsquare lemmawhich may be
informally described as follows. Assume a configuratiomfrehich two reductions are possible: if these
reductions areoncurrentthen the order in which the two reductions are applied doematter, and the
same configuration is reached. This lemma therefore retidsedefinition of concurrent transitions. In
our setting, thanks to the information carried by the masitnd to linearity of sessions, we may decree
that two reductions are concurrent if they operate on diffesessions/channels (service names). One
may instrument the reduction semantieswith a labelA containing the endpoints used by the rule and

the service name (if anyM AN, Then, reduction 21, N andM 22 N are concurrent i1 NA= 0.
Using the square lemma one may then show that the reversibdargics iscausally consistent
i.e., that an action can be reverted only after all the astmausally depending on it have already been

reverted. We leave for future work establishing these @urtlsults for our framework.

3 Concluding Remarks and Future Work

We have proposed a fresh approach to reversible semantisedsion processes: it builds upon a style
of process semantics in which monitors (which include sesfsipes) enable process reductions. Even if
this style of process semantics is not new—it was introduc§ti9] and later used in [17, 21, 113, 9]—to
our knowledge this is the first time that this formulation s&d to support reversibility.

We rely on monitors which contain types that describe pagtfature structured interactions; these
types offer a natural form of memories for supporting fordvand backward semantics. We motivated
our approach by introducing a simple process framework sasion establishment and communication;
extensions with other usual session constructs (labeleitetand recursion) are straightforward. To
highlight the simplicity of our approach, we have considebgnary session types. We believe that
our approach scales to account for multiparty structurednganications; in such a setting, monitors
would be generated after multiparty session establishraedtwould be equipped with local projections
of global types, as in_[Z,18]. A multiparty, asynchronous aatits may need to consider forms of
coordinatedreversibility among different partners; we plan to addtbésse challenges in future work.

Most models of reversible processes (cf./[11]) do not cams{iehavioral) types, and so their re-
versible semantics must account for arbitrary forms of commt behavior. In reversing the untyped
n-calculus, substitutions and scope extrusion are knowe ithiallenging issues [10]. Reversing session
processes is a seemingly simpler problem, as behavioragplined by types: once a session is estab-
lished, concurrency interactions proceed in a deterninisbnfluent manner. Also, in sessiarcalculi
scope extrusion is limited. To our knowledge, the warkl [25the first to address reversibility for a
synchronougrt-calculus with binary session types. A key difference betweur work and[25] is the
role that session types play in the reversible semanticshaie used session types to define forward and
backward semantics for session processes; in contrastevbesible semantics in [25] establishes key
results for reversibility (e.g., the square lemma and dazmasistency) using an untyped reduction se-
mantics. Hence, although the reversible sessi@alculus in[[25] is shown to be typable using standard
binary session types, the influence of types on the reversirhantics of [25] is indirect at best.

As further topics for future work, we plan to establish thegise savings involved from moving from
(i) an untyped reversible semantics to (ii) a monitored irglde semantics with types, as proposed here.
We plan to compare the (untyped) reversible higher-ordecgmses in_ [23] and the core higher-order
session calculus in [20], which may precisely encode thednmder sessiom-calculus. Another direction
concernscontrolled reversibility[22]. Some recent approaches have proposed types withodedtr
roll-back and explicit checkpoints among parties [1]. Wédwe that by adding explicit rollback into

C. A. Mezzina & J. A. Pérez 63

(run-time) type information, we could achieve intuitive chanisms for controlled reversibility.

Acknowledgments. We are grateful to Dimitris Kouzapas for useful exchangeg Wiuld also like
to thank the anonymous reviewers for their suggestionssiwiviere helpful to improve the presentation.
Pérez is also affiliated to the NOVA Laboratory for Compuerence and Informatics (NOVA LINCS -
PEst/UID/CEC/04516/2013), Universidade Nova de Lisbaatugal.

References

[1]

(2]

(3]
[4]
[5]
[6]
[7]
(8]

[9]
[10]
[11]

[12]

[13]

[14]

[15]

Franco Barbanera, Mariangiola Dezani-Ciancaglingn\Lanese & Ugo de’Liguoro (2016)Retractable
Contracts In Simon Gay & Jade Alglave, editor®2LACES 2015 Electronic Proceedings in Theoretical
Computer Scienc203, Open Publishing Association, pp. 61-72, 8®i4204/EPTCS.203.5.

Laura Bocchi, Tzu-Chun Chen, Romain Demangeon, Koheid4o& Nobuko Yoshida (2013)¥onitoring
Networks through Multiparty Session Typks Proc. of FMOODS/FORTE 201 8ecture Notes in Computer
Sciencer892, Springer, pp. 50—-65, dbdt. 1007/978-3-642-38592-6_5.

Luis Caires, Carla Ferreira & Hugo Torres Vieira (2008)Process Calculus Analysis of Compensations
TGC 2008 LNCS5474, Springer, pp. 87-103, dbd.. 1007 /978-3-642-00945-7 _6.

Luis Caires & Hugo Torres Vieira (2010Lonversation typesTheor. Comput. ScA11(51-52), pp. 4399—
4440, doi10.1016/j.tcs.2010.09.010.

Sara Capecchi, llaria Castellani & Mariangiola Dez&i@ncaglini (2011)information Flow Safety in Mul-
tiparty Sessionsin: Proc. of EXPRESS 201 EPTCS64, pp. 16-30, doi:0.4204/EPTCS.64.2.

Sara Capecchi, Elena Giachino & Nobuko Yoshida (20@pbal escape in multiparty sessioridathemat-
ical Structures in Computer Scien2z@(2), pp. 156—205, ddi0.1017/30960129514000164.

Luca Cardelli & Cosimo Laneve (2011Reversible structuresin: Proc. of CMSB 2011pp. 131-140,
doi:10.1145/2037509.2037529.

llaria Castellani, Mariangiola Dezani-Ciancaglini &de A. Pérez (2014)Self-Adaptation and Secure In-
formation Flow in Multiparty Structured Communications:Ukified Perspectiveln: BEAT 2014 EPTCS
162, pp. 9-18, doi:0.4204/EPTCS.162.2.

Mario Coppo, Mariangiola Dezani-Ciancaglini & Betti Reeri (2015): Self-adaptive multiparty sessions
Service Oriented Computing and Applicatid®3(8-4), pp. 249-268, ddi0.1007/s11761-014-0171-9.

loana Cristescu, Jean Krivine & Daniele Varacca (2018)Compositional Semantics for the Reversible
p-Calculus In: Proc. of LICS2013IEEE Computer Society, pp. 388-397, d0i: 1109/LI1CS.2013.45.

Vincent Danos & Jean Krivine (2004Reversible Communicating Systents: Proc. of CONCUR 2004
LNCS, Springer, pp. 292—-307, db@.1007/978-3-540-28644-8_19.

Romain Demangeon, Kohei Honda, Raymond Hu, Rumyan&®ey& Nobuko Yoshida (2015)Practi-
cal interruptible conversations: distributed dynamic ¥ieation with multiparty session types and Python
Formal Methods in System Desig(3), pp. 197—225, ddi0.1007/s10703-014-0218-8.

Cinzia Di Giusto & Jorge A. Pérez (2014)An Event-Based Approach to Runtime Adaptation in
Communication-Centric System&esearch Report, Universite de Nice Sophia-Antipolis)N Univer-
sity of Groningen. Available atittps://hal.archives-ouvertes.fr/hal-01093090. To appear in
Post-proc. of WS-FM 2014 (Springer LNCS).

Cinzia Di Giusto & Jorge A. Pérez (2019)isciplined structured communications with disciplineshtime
adaptation Sci. Comput. Progran@7, pp. 235-265, dai0.1016/j.scico.2014.04.017.

Kohei Honda, Vasco Thudichum Vasconcelos & Makoto K(b@98):Language Primitives and Type Disci-
pline for Structured Communication-Based Programming ESOP’98 LNCS 1381, Springer, pp. 122-138,
doi:10.1007/BFb0053567.

http://dx.doi.org/10.4204/EPTCS.203.5
http://dx.doi.org/10.1007/978-3-642-38592-6_5
http://dx.doi.org/10.1007/978-3-642-00945-7_6
http://dx.doi.org/10.1016/j.tcs.2010.09.010
http://dx.doi.org/10.4204/EPTCS.64.2
http://dx.doi.org/10.1017/S0960129514000164
http://dx.doi.org/10.1145/2037509.2037529
http://dx.doi.org/10.4204/EPTCS.162.2
http://dx.doi.org/10.1007/s11761-014-0171-9
http://dx.doi.org/10.1109/LICS.2013.45
http://dx.doi.org/10.1007/978-3-540-28644-8_19
http://dx.doi.org/10.1007/s10703-014-0218-8
https://hal.archives-ouvertes.fr/hal-01093090
http://dx.doi.org/10.1016/j.scico.2014.04.017
http://dx.doi.org/10.1007/BFb0053567

64 Reversible Sessions Using Monitors

[16] Kohei Honda, Nobuko Yoshida & Marco Carbone (200&ultiparty asynchronous session typés. POPL
2008 ACM, pp. 273—-284,doi:0.1145/1328438.1328472.

[17] Raymond Hu, Dimitrios Kouzapas, Olivier Pernet, Nobukoshida & Kohei Honda (2010)Type-Safe
Eventful Sessions in Javdn: Proc. of ECOOP 201A.NCS 6183, Springer, pp. 329-353, dui:. 1007/
978-3-642-14107-2_16.

[18] Limin Jia, Hannah Gommerstadt & Frank Pfenning (20Mnitors and blame assignment for higher-order
session typedn: POPL 2016ACM, pp. 582-594, d0i:0.1145/2837614.2837662.

[19] Dimitrios Kouzapas (2009): A Session Type Discipline for Event Driven Programming Mede
Master's thesis, Imperial College London. Available &ttp://www.doc.ic.ac.uk/teaching/
distinguished-projects/2009/d.kouzapas.pdf.

[20] Dimitrios Kouzapas, Jorge A. Pérez & Nobuko Yoshid@¥@): On the Relative Expressiveness of Higher-
Order Session Processdsi: ESOP 2016LNCS, Springer. To appear.

[21] Dimitrios Kouzapas, Nobuko Yoshida & Kohei Honda (20:110n Asynchronous Session Semantics
In: Proc. of FMOODS 2011 and FORTE 2Q1LNCS 6722, Springer, pp. 228-243, du0:.1007/
978-3-642-21461-5_15.

[22] Ivan Lanese, Claudio Antares Mezzina, Alan Schmitt &ard8ernard Stefani (2011)Controlling Re-
versibility in Higher-Order Pi In: Proc. of CONCUR 2011LNCS, Springer, pp. 297-311, dod.. 1007/
978-3-642-23217-6_20.

[23] Ivan Lanese, Claudio Antares Mezzina & Jean-BernagefB®i (2010):Reversing Higher-Order Pin: Proc.
of CONCUR 2010LNCS, Springer, pp. 478—493, dod. 1007/978-3-642-15375-4_33.

[24] Michael Lienhardt, lvan Lanese, Claudio Antares Maaz& Jean-Bernard Stefani (2012x Reversible
Abstract Machine and Its Space Overhe&t Proc. of FMOODS/FORTE 2012NCS, Springer, pp. 1-17,
doi;10.1007/978-3-642-30793-5_1.

[25] Francesco Tiezzi & Nobuko Yoshida (20133eversible session-based pi-calculuk Log. Algebr. Meth.
Program84(5), pp. 684—707, ddi0.1016/j.jlamp.2015.03.004.

http://dx.doi.org/10.1145/1328438.1328472
http://dx.doi.org/10.1007/978-3-642-14107-2_16
http://dx.doi.org/10.1007/978-3-642-14107-2_16
http://dx.doi.org/10.1145/2837614.2837662
http://www.doc.ic.ac.uk/teaching/distinguished-projects/2009/d.kouzapas.pdf
http://www.doc.ic.ac.uk/teaching/distinguished-projects/2009/d.kouzapas.pdf
http://dx.doi.org/10.1007/978-3-642-21461-5_15
http://dx.doi.org/10.1007/978-3-642-21461-5_15
http://dx.doi.org/10.1007/978-3-642-23217-6_20
http://dx.doi.org/10.1007/978-3-642-23217-6_20
http://dx.doi.org/10.1007/978-3-642-15375-4_33
http://dx.doi.org/10.1007/978-3-642-30793-5_1
http://dx.doi.org/10.1016/j.jlamp.2015.03.004

	Introduction
	Syntax and Semantics
	Concluding Remarks and Future Work

