
ar
X

iv
:1

50
9.

08
41

6v
1

 [
m

at
h.

O
C

]
 2

8
Se

p
20

15

A Simple Effective Heuristic for Embedded

Mixed-Integer Quadratic Programming

Reza Takapoui Nicholas Moehle Stephen Boyd
Alberto Bemporad

September 29, 2015

Abstract

In this paper we propose a fast optimization algorithm for approximately minimiz-
ing convex quadratic functions over the intersection of affine and separable constraints
(i.e., the Cartesian product of possibly nonconvex real sets). This problem class con-
tains many NP-hard problems such as mixed-integer quadratic programming. Our
heuristic is based on a variation of the alternating direction method of multipliers
(ADMM), an algorithm for solving convex optimization problems. We discuss the fa-
vorable computational aspects of our algorithm, which allow it to run quickly even
on very modest computational platforms such as embedded processors. We give sev-
eral examples for which an approximate solution should be found very quickly, such
as management of a hybrid-electric vehicle drivetrain and control of switched-mode
power converters. Our numerical experiments suggest that our method is very effec-
tive in finding a feasible point with small objective value; indeed, we find that in many
cases, it finds the global solution.

1 Introduction

1.1 The problem

We consider the problem

minimize (1/2)xTPx+ qTx+ r
subject to Ax = b

x ∈ X
(1)

with decision variable x ∈ Rn. The problem parameters are the symmetric positive semidef-
inite matrix P ∈ Rn×n, the matrix A ∈ Rm×n, the vectors b ∈ Rm and q ∈ Rn, and the real
number r ∈ R. The constraint set X is the Cartesian product of (possibly nonconvex) real,
closed, nonempty sets, i.e., X = X1 × · · · × Xn, where Xi ⊆ R are closed, nonempty subsets
of R for i = 1, . . . , n. If Xi is a convex set, we refer to variable xi as a convex variable, and
if Xi is a nonconvex set, we call variable xi a nonconvex variable.

1

http://arxiv.org/abs/1509.08416v1

Some applications. Many problems can be put into the form of problem (1). For exam-
ple, if some of the sets Xi are subsets of integers, our formulation addresses mixed-integer
quadratic and mixed-integer linear programs. This includes applications such as admis-
sion control [OCP07], economic dispatch [PF07], scheduling [CPM10], hybrid vehicle control
[MJSB12], thermal unit commitment problems [CA06], Boolean satisfiability problems (SAT)
[JW90], and hybrid model predictive control [BM99]. Another application is embedded sig-
nal decoding in communication systems, when the nonconvex sets are signal constellations
(e.g., QAM constellations; see [GG10, pg. 416]).

Complexity. If X is a convex set, problem (1) is a convex optimization problem and can
be readily solved using standard convex optimization techniques. Otherwise, the problem (1)
can be hard in general. It trivially generalizes mixed-integer quadratic programming, an NP-
complete problem, and can therefore be used to encode other NP-complete problems such as
the traveling salesman problem (TSP) [PS98], Boolean satisfiability (SAT) [LZD04, Kar72],
set cover [Hoc82], and set packing [Pad73]. Hence, any algorithm that guarantees finding
the global solution to (1) suffers from non-polynomial worst-case time (unless P = NP).

1.2 Solve techniques

Exact methods. There are a variety of methods for solving (1) exactly. When all of the
nonconvex sets Xi in (1) are finite, the simplest method is brute force; enumerating through
all possible combinations of discrete variables and solve a convex optimization problem for
each possible combination and finding the point with the smallest objective value. Other
methods such as branch-and-bound [LW66] and branch-and-cut [SM99] are guaranteed to
find the global solution. Cutting plane methods [G+58, CCH89] rely on solving the relax-
ation and adding a linear constraint to drive the solution towards being integer. Special
purpose methods have been introduced for some specific subclasses of (1). Unfortunately,
these methods have non-polynomial worst-case runtime, and are often burdensome to use
in practice, especially for embedded optimization, where runtime, memory limits, and code
simplicity are prioritized. Also, these methods suffer from a large variance in the algorithm
runtime.

Heuristics. On the other hand, many heuristics have been introduced that can deliver
a good, but suboptimal (and possibly infeasible) point in a very short amount of time.
For example, the relax-and-round heuristic consists of replacing each Xi by its convex hull,
solving the resulting relaxation (a convex quadratic program), and projecting the solution
onto the nonconvex constraint sets. Another heuristic is to fix the nonconvex variables for
several reasonable guesses and solve the convex optimization problem for convex variables.
(Each of these problems may not find a feasible point, even if one exists.) The feasibility
pump is a heuristic to find a feasible solution to a generic mixed integer program and is
discussed in [FGL05, BFL07, AB07]. Such heuristics are often quite effective, and can
be implemented on very modest computational hardware, making them very attractive for

2

embedded applications (even without any theoretical guarantees).

1.3 Embedded applications

We focus on embedded applications where finding a feasible point with relatively small objec-
tive will often result in performance that is practically indistinguishable from implementing
the global solution. In embedded applications, the computational resources are limited and
a solution must be found in a small time. Hence, methods to find the global solution are not
favorable, because their large variance in runtime cannot be tolerated.

In an embedded application, it is often required to solve several instances of (1), with
different values of the parameters. Here we distinguish two separate use cases, depending
on whether one or both of P or A change. This distinction will play an important role in
solution methods. In the first use case, we solve many instances of (1) in which any of the
parameters may change between instances. In the second use case, we solve instances of
(1) in which q, b, and X change between instances, but P and A are constant. Although
this is more restrictive than the first use case, many applications can be well modeled using
this approach, including linear, time-invariant model predictive control and moving horizon
estimation. Indeed, all of the three examples we present in §3 are of this type.

1.4 Contributions

Our proposed algorithm is a simple and computationally efficient heuristic to find approx-
imate solutions to problem (1) quickly. It is based on the alternating direction method
of multipliers (ADMM), an algorithm for solving convex optimization problems. Because
the problem class we address includes nonconvex optimization problems, our method is not
guaranteed to find the global solution, or even converge.

Numerical experiments suggest that this heuristic is an effective tool to find the global
solution in a variety of problem instances. Even if our method does not find the global solu-
tion, it usually finds a feasible point with reasonable objective value. This makes it effective
for many embedded optimization applications, where finding a feasible point with relatively
small objective value often results in performance that is practically indistinguishable from
implementing the global solution.

Comparison of the runtime with commercial solvers such as MOSEK [ApS15] and CPLEX
[CPL09] show that our method can be substantially faster than solving a global optimization
method, while having a competitive practical performance.

1.5 Related work

Fast embedded optimization. In recent years, much research has been devoted to solv-
ing moderately-sized convex optimization problems quickly (i.e., in milliseconds or microsec-
onds), possibly on embedded platforms. Examples include the SOCP solvers ECOS [DCB13],
and FiordOs [Ull11], and the QP solver CVXGEN [MB12]. Other algorithms have been de-
veloped exclusively for convex optimal control problems; see [WB10, OSB13, JGR+14]. In

3

addition, recent advances in automatic code generation for convex optimization [MWB11,
CPDB13] can significantly reduce the cost and complexity of using an embedded solver.
Some recent effort has been devoted to (globally) solving mixed-integer convex programs
very quickly; see [Bem15], [FDM15] and references therein.

Nonconvex ADMM. Even though ADMM was originally introduced as a tool for convex
optimization problems, it turns out to be a powerful heuristic method even for NP-hard
nonconvex problems [BPC+11, §5, 9]. Recently, this tool has been used as a heuristic to find
approximate solutions to nonconvex problems [CW13, Cha12]. In [DBEY13], the authors
study the Divide and Concur algorithm as a special case of a message-passing version of the
ADMM, and introduce a three weight version of this algorithm which greatly improves the
performance for some nonconvex problems such as circle packing and the Sudoku puzzle.

2 Our heuristic

2.1 Algorithm

Our proposed algorithm is an extension of the alternating direction method of multipliers
(ADMM) for constrained optimization to the nonconvex setting [BPC+11, §5,9]. ADMM
was originally introduced for solving convex problems, but practical evidence suggests that
it can be an effective method to approximately solve some nonconvex problems as well. In
order to use ADMM, we rewrite problem (1) as

minimize (1/2)xTPx+ qTx+ IX (z)

subject to

[

A
I

]

x−

[

0
I

]

z =

[

b
0

]

.
(2)

Here IX denotes the indicator function of X , so that IX (x) = 0 for x ∈ X and IX (x) = ∞
for x /∈ X . Each iteration in the algorithm consists of the following three steps:

xk+1/2 := argmin
x

(

(1/2)xTPx+ qTx+ (ρ/2)

∥

∥

∥

∥

[

A
I

]

x−

[

0
I

]

xk −

[

b
0

]

+ uk

∥

∥

∥

∥

2

2

)

xk+1 := Π
(

xk+1/2 +
[

0 I
]

uk
)

uk+1 := uk +

[

A
I

]

xk+1/2 −

[

0
I

]

xk −

[

b
0

]

.

Here, Π denotes the projection onto X . Note that if X is not convex, the projection onto
X may not be unique; for our purposes, we only need that Π(z) ∈ argminx∈X ‖x − z‖2
for all z ∈ Rn. Since X is the Cartesian product of subsets of the real line, i.e., X =
X1 × · · · × Xn, we can take Π(z) = Π1(z1)× · · · ×Πn(zn), where Πi is a projection function
onto Xi. Usually evaluating Πi(z) is inexpensive; for example, if Xi = [a, b] is an interval,
Πi(z) = min{max{z, a}, b}. If Xi is the set of integers, Πi rounds its argument to the nearest
integer. For any finite set Xi with k elements, Πi(z) is a closest point to z that belongs to
Xi, which can be found by ⌈log2 k⌉ comparisons.

4

2.2 Convergence

If the set X is convex and problem (1) is feasible, the algorithm is guaranteed to converge
to an optimal point [BPC+11, §3]. However, for X nonconvex, there is no such guarantee.
Indeed, because problem (1) can be NP-hard, any algorithm that finds the global solution
suffers from nonpolynomial worst-case runtime. Our approach is to give up the accuracy
and use methods that find an approximate solution in a small time.

Our numerical results verify that even for simple examples, the algorithm may fail to
converge, converge to a suboptimal point, or fail to find a feasible point, even if one exists.
Since the objective value need not decrease monotonically (or at all), it is critical to keep
track of the best point found runtime. That is, for a selected primal feasibility tolerance ǫtol,
we shall reject all points x such that ‖Ax− b‖ > ǫtol, and among those primal feasible points
x that ‖Ax− b‖ ≤ ǫtol, we choose the point with the smallest objective value. Here, ǫtol is a
tolerance for accepted feasibility. We should remind the reader again, that this point need
not be the global minimum.

2.3 Initialization

To initialize x0, one can randomly choose a point in CoX , where CoX denotes the convex
hull of X . More specifically, this means that we need to have access to a subroutine that
generates random points in CoX . Our numerical results show that running the algorithm
multiple times with different random initializations increases the chance of finding a feasible
point with smaller objective value. Hence, we suggest running the algorithm multiple times
initialized with random starting points and report the best point as the approximate solution.
We always initialize u0 = 0.

2.4 Computational cost

In this subsection, we make a few comments about the computational cost of each iteration.
The first step involves minimizing a strongly convex quadratic function and is actually a
linear operator. The point xk+1/2 can be found by solving the following system of equations:

[

P + ρI AT

A −(1/ρ)I

] [

xk+1/2

v

]

=

[

−q + ρ
(

xk + AT b−
[

AT I
]

uk
)

0

]

.

Since the matrix on the lefthand side remains constant for all iterations, we can precompute
the LDLT factorization of this matrix once and cache the factorization for use in subsequent
iterations. When P and A are dense, the factorization cost is O(n3) yet each subsequent
iteration costs only O(n2). (Both factorization and solve costs can significantly smaller if
P or A is sparse.) Amortizing the factorization step over all iterations means that the first
step is quite efficient. Also notice that the matrix on the lefthand side is quasi-definite and
hence favorable for LDLT factorization.

In many applications, P and A do not change across problem instances. In this case, for
different problem instances, we solve (1) for the same P and A and varying b and q. This lets
us use the same LDLT factorization, which results in a significant saving in computation.

5

The second step involves projection onto X = X1 × · · · × Xn and can typically be done
much more quickly than the first step. It can be done in parallel since the projection onto X
can be found by projections onto Xi for i = 1, . . . , n. The third step is simply a dual update
and is computationally inexpensive.

2.5 Preconditioning

Both theoretical analysis and practical evidence suggest that the precision and convergence
rate of first-order methods can be significantly improved by preconditioning the problem.
Here, we use diagonal scaling as preconditioning as discussed in [Bec14] and [WN99]. Diag-
onal scaling can be viewed as applying an appropriate linear transformation before running
the algorithm. When the set X is convex, the preconditioning can substantially affect the
speed of convergence, but does not affect the quality of the point returned, (which must be
a solution to the convex problem). In other words, for convex problems, preconditioning is
simply a tool to help the algorithm converge faster. Optimal choice of preconditioners, even
in the convex case, is still an active research area [GB14a, GB14c, Gis14, GB14b, GTSJ15,
SLY+14, HL12, Bol13, DY12]. In the nonconvex case, however, preconditioning can have a
critical role in the quality of approximate solution, as well as the speed at which this solution
is found.

Specifically, let F ∈ Rn×n, E ∈ Rm×m be diagonal matrices with positive diagonal entries.
The goal is to choose F and E such that running ADMM on the following problem has better
convergence properties

minimize (1/2)xTPx+ qTx+ IX (z)

subject to

[

EA
F

]

x−

[

0
F

]

z =

[

Eb
0

]

.
(3)

We use the choice of E and F recommended in [GB14a] to minimize the effective condition
number (the ratio of the largest singular value to the smallest non-zero singular value) of
the following matrix

[

E 0
0 F

] [

A
I

]

P †
[

AT I
]

[

E 0
0 F

]

,

where P † denotes the pseudo-inverse of P . Given matrix M ∈ Rn×n, minimizing the con-
dition number of DMD for diagonal D ∈ Rn×n can be cast as a semidefinite program.
However, a heuristic called matrix equilibration can be used to avoid the computational cost
of solving a semidefinite program. (See [Slu69, Bra10] and references therein.) Since for
embedded applications computational resources are limited, we avoid finding P † or equili-
brating completely. We instead find E to normalize the rows of A (usually in ℓ1 or ℓ2 norm)
and set F to be the identity.

6

After finding E and F , preconditioned ADMM has the following form:

xk+1/2 :=
[

I 0
]

[

P + ρF 2 ATE
EA −(1/ρ)I

]−1 [

−q + ρ
(

F 2xk + ATE2b−
[

ATE F
]

uk
)

0

]

xk+1 := Π
(

xk+1/2 +
[

0 F−1
]

uk
)

uk+1 := uk +

[

EA
F

]

xk+1/2 −

[

0
F

]

xk −

[

Eb
0

]

.

(4)

2.6 The overall algorithm

We use the update rules (4) for k = 1, . . . , N , where N denotes the (fixed) maximum
number of iterations. Also, as described above, the algorithm is repeated for M number of
random initializations. The computational cost of the algorithm consists of a factorization
and MN matrix products and projections. Here is a description of the overall algorithm
with f(x) = (1/2)xTPx+ qTx+ r.

Algorithm 1 Approximately solving nonconvex constraint QP (1)

if A or P changed then

find E and F by equilibrating

[

A
I

]

P †
[

AT I
]

find and store LDL factorization of

[

P + ρF 2 ATE
EA −(1/ρ)I

]

end if

xbest := ∅, f(xbest) := ∞
for random initialization 1, 2, . . . , N do

for iteration 1, 2, . . . ,M do

update x from (4)
if ‖Ax− b‖ ≤ ǫtol and f(x) < f(xbest) then

xbest = x
end if

end for

end for

return xbest.

We mention a solution refinement technique here that can be used to find a solution
with possibly better objective value after the algorithm stops. This technique, sometimes
known as polishing consists of fixing the nonconvex variable and solving the resulting convex
optimization problem. Using this technique, one may use larger ǫtol during the N iterations
and only reduce ǫtol at the refinement step. Depending on the application, it might be com-
putationally sensible to solve the resulting convex optimization problem. Another effective
technique is to introduce a notion of no-good cut during iterations for problems with binary

7

variables. A no-good cut prohibits the integer part to be equal to the previous one, by
imposing one additional inequality constraint

∑

i∈T x
k+1/2
bi

−
∑

i∈F x
k+1/2
bi

≤ B − 1, where
xb1 , xb2 , . . . are binary variables and T = {i|xk

bi
= 1}, F = {i|xk

bi
= 0}, and B is the number

of elements of T . We do not use either of these techniques in the following examples.

3 Numerical examples

In this section, we explore the performance of our proposed algorithm on some example
problems. For each example, ρ was chosen between 0.1 and 10 to yield good performance;
all other algorithm parameters were kept constant. As a benchmark, we compare our results
to the commercial solver MOSEK, which can globally solve MIQPs. All experiments were
carried out on a system with two 3.06 GHz cores with 4 GB of RAM.

The results suggest that this heuristic is effective in finding approximate solutions for
mixed integer quadratic programs.

3.1 Randomly generated QP

First we demonstrate the performance of our algorithm qualitatively for a random mixed-
Boolean quadratic program. The matrix P in (1) was chosen as P = QQT , where the
entries of Q ∈ Rn×n, as well as those of q and A, were drawn from a standard normal
distribution. The constant r was chosen such that the optimal value of the unconstrained
quadratic minimization is 0. The vector b was chosen as b = Ax0, where x0 ∈ X was chosen
uniformly randomly, thus ensuring that the problem is feasible. We used n = 200 andm = 50
with Xi = {0, 1} for i = 1, . . . , 100, Xi = R+ for i = 101, . . . , 150, and Xi = R for the other
indices i.

We used MOSEK to find the optimal value for the problem. After 60832 seconds (more
than 16 hours), MOSEK certifies that the optimal value is equal to 2040. We ran algorithm
1 for 10 different initializations and 200 iterations for each initialization, with step size
ρ = 0.5. For a naive implementation in MATLAB, it took 120 milliseconds to complete
all precomputations (preconditioning and factorization), and 800 milliseconds to do all 2000
iterations. The best objective value found for the problem was 2067 (1.3% suboptimal).

One interesting observation is that the parameter ρ tends to trade off feasibility and
optimality: with small values of ρ, the algorithm often fails to find a feasible point, but
feasible points found tend to have low objective value. On the other hand, with large values
of ρ, feasible points are found more quickly, but tend to have higher objective value.

3.2 Hybrid vehicle control

We consider a simple hybrid electric vehicle drivetrain (similar to that of [BV04, Exercise
4.65]), which consists of a battery, an electric motor/generator, and a heat engine, in a
parallel configuration. We assume that the demanded power P des

t at the times t = 0, . . . , T−1

8

is known in advance. Our task is to plan out the battery and engine power outputs P batt
t

and P eng
t , for t = 0, . . . , T − 1, so that

P batt
t + P eng

t ≥ P des
t .

(Strict inequality above corresponds to braking.)

Battery. The battery has stored energy Et at time t, which evolves according to

Et+1 = Et − τP batt
t , t = 0, . . . , T − 1,

where τ is the length of each discretized time interval. The battery capacity is limited, so
that 0 ≤ Et ≤ Emax for all t, and the initial energy E0 is known. We penalize the terminal
energy state of the battery according to g(ET), where

g(E) = η(Emax − E)2,

for η ≥ 0.

Engine. At time t, the engine may be on or off, which is modeled with binary variable zt.
If the engine is on (zt = 1), then we have 0 ≤ P eng

t ≤ Pmax, and α(P eng
t)2 + βP eng

t + γ units
of fuel are consumed, for nonnegative constants α, β, and γ. If the engine is off (zt = 0), it
consumes no fuel, and P eng

t = 0. Because zt ∈ {0, 1}, the power constraint can be written as
0 ≤ P eng ≤ Pmaxzt, and the fuel cost as f(P eng

t , zt), where

f(P, z) = αP 2 + βP + γz.

Additionally, we assume that turning the engine on after it has been off incurs a cost δ ≥ 0,
i.e., at each time t, we pay δ(zt − zt−1)+, where (·)+ denotes the positive part.

Optimal power split problem. The hybrid vehicle control problem can be formulated
as

minimize η(ET − Emax)2 +
∑T−1

t=0 f(P eng
t , zt) + δ(zt − zt−1)+

subject to Et+1 = Et − τP batt
t

P batt
t + P eng

t ≥ P des
t

zt ∈ {0, 1},

(5)

where all constraints must hold for t = 0, . . . , T − 1. The variables are P batt
t , P eng

t , and zt
for t = 0, . . . , T − 1, and Et, for t = 1, . . . , T . In addition to the parameters given above, we
take z−1 to be a parameter denoting the initial engine state.

We used the parameter values α = 1, β = 10, γ = 1.5, δ = 10, η = 0.1, τ = 5,
Pmax = 1, Emax = 200, E0 = 200, and z−1 = 0. The demanded power trajectory P des

t is not
shown, but can be obtained by summing the engine power and battery power in Figure 1.
We ran the algorithm with ρ = 0.4 for 1000 iterations from 5 different initializations, with
primal optimality threshold ǫtol = 10−4. The global solution found by MOSEK generates
an objective value of 339.2 and the best objective value with our algorithm was 375.7. In
Figure 1, we see that qualitatively, the optimal trajectory and the trajectory generated by
ADMM are very similar.

9

0 10 20 30 40 50 60 70
0

100

200

0 10 20 30 40 50 60 70
-20

0

20

0 10 20 30 40 50 60 70
0

10

20

30

0 10 20 30 40 50 60 70
0

0.5

1

t

P
E
n
g

t
P

b
a
t
t

t
E

t
z
t

0 10 20 30 40 50 60 70
0

100

200

0 10 20 30 40 50 60 70
-20

0

20

0 10 20 30 40 50 60 70
0

10

20

30

0 10 20 30 40 50 60 70
0

0.5

1

t

P
E
n
g

t
P

b
a
t
t

t
E

t
z
t

Figure 1: Engine power, battery power, battery energy, and engine on/off signals
versus time. Left: the global solution. Right: the solution found using ADMM.

L1

L2

R

+
−utVdc

C1

C2

Figure 2: Converter circuit model.

3.3 Power converter control

We consider control of the switched-mode power converter shown in Figure 2. The circuit
dynamics are

ξt+1 = Gξt +Hut, t = 0, 1, . . . , T − 1,

where ξt = (i1,t, v1,t, i2,t, v2,t) is the system state at epoch t, consisting of all inductor currents
and capacitor voltages, and ut ∈ {−1, 0, 1} is the control input. The dynamics matrices
G ∈ R4×4 and H ∈ R4×1 are obtained by discretizing the dynamics of the circuit in Figure 2.

We would like to control the switch configurations so that v2 tracks a desired sinusoidal
waveform. This can be done by solving

minimize
∑T

t=0(v2,t − vdes)
2 + λ|ut − ut−1|

subject to ξt+1 = Gξt +Hut

ξ0 = ξT
u0 = uT

ut ∈ {−1, 0, 1},

(6)

10

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

t

u
t

v
2
,
t

0 10 20 30 40 50 60 70 80 90 100
-1

-0.5

0

0.5

1

0 10 20 30 40 50 60 70 80 90 100
-1

-0.5

0

0.5

1

u
t

v
2
,
t

Figure 3: The switch configuration and the output voltage. Left: the global
solution. Right: the solution using ADMM.

where λ ≥ 0 is a tradeoff parameter between output voltage regulation and switching fre-
quency. The variables are ξt for t = 0, . . . , T and ut for t = 0, . . . , T − 1.

Note that if we take λ = 0, and take the input voltage ut to be unconstrained (i.e., allow
ut to take any values in R), (6) can be solved as a convex quadratic minimization problem,
with solution ξlst . Returning to our original problem, we can penalize deviation from this
ideal waveform by including a regularization term µ‖ξ−ξlst ‖

2 to (6), where µ > 0 is a positive
weighting parameter. We solved this regularized version of (6), with L1 = 10 µH, C1 = 1 µF,
L2 = 10 µH, C2 = 10 µF, R = 1Ω, Vdc = 10V, T = 100 (with a discretization interval of
0.5 µs), λ = 1.5V2, and µ = 0.1. We run algorithm 1 with ρ = 2.7 and 500 iterations for
three different initializations. An approximate solution is found via our heuristic in less than
2 seconds, whereas it takes MOSEK more than 4 hours to find the global solution. Figure 3
compares the approximate solution derived by the heuristic with the global solution.

3.4 Signal decoding

We consider maximum-likelihood decoding of a message passed through a linear multiple-
input and multiple-output (MIMO) channel. In particular, we have

y = Hx+ v,

where y ∈ Rp is the message received, H ∈ Rp×n is the channel matrix, x ∈ Rn is the
message sent, and the elements of the noise vector v ∈ Rp are independent, identically
distributed Gaussian random variables. We further assume that the elements of x belong to
the signal constellation {−3,−1, 1, 3}. The maximum likelihood estimate of x is given by
the solution to the problem

minimize ‖Hx̂− y‖2

subject to x̂i ∈ { − 3,−1, 1, 3}, i = 1, . . . , n,
(7)

11

−0.5 0 0.5 1 1.5 2 2.5

x 10
4

0

50

100

150

200

250

300

‖Hxrlx − y‖22 − ‖Hxadmm − y‖22

fr
e
q
u
e
n
c
y

−0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05 0.06
0

50

100

150

200

250

300

BER(xrlx) − BER(xadmm)

fr
e
q
u
e
n
c
y

Figure 4: Comparison of ADMM heuristic and relax-and-round. Left: The differ-
ence in objective values. Right: The difference in bit error rates (BER).

where x̂ ∈ Rn is the variable.
We generate 1000 random problem instances with H ∈ R2000×400 chosen from a standard

normal distribution. The uncorrupted signal x is chosen uniformly randomly and the addi-
tive noise is Gaussian such that the signal to noise ratio (SNR) is 8 dB. For such a problem in
embedded application, branch-and-bound methods are not desirable due to their worst-case
time complexity. We run the heuristic with only one initialization, with 10 iterations to
find xadmm. The average runtime for each problem (including preprocessing) is 80 millisec-
onds, which is substantially faster than branch-and-bound based methods. We compare the
performance of the points xadmm with the points found by relax-and-round technique xrlx.
In Figure 4 we have plotted the histogram of the difference between the objective values
evaluated at xadmm and xrlx. Depicted in Figure 4, we see that in 95% of the cases, the bit
error rate (BER) using our heuristic was at least as good as the bit error rate using relax
and round.

4 Conclusions

In this paper, we introduced an effective heuristic for finding approximate solutions to convex
quadratic minimization problems over the intersection of affine and nonconvex sets. Our
heuristic is significantly faster than branch-and-bound algorithms and has shown effective in
a variety of embedded problems including hybrid vehicle control, power converter control,
and signal decoding.

12

References

[AB07] T. Achterberg and T. Berthold. Improving the Feasibility Pump. Discrete
Optimization, 4(1):77–86, 2007.

[Ach09] T. Achterberg. SCIP: Solving Constraint Integer Programs. Mathematical Pro-
gramming Computation, 1(1):1–41, 2009.

[AH04] D. Axehill and A. Hansson. A preprocessing algorithm for MIQP solvers with
applications to MPC. In Proceedings of the 43rd IEEE Conference on Decision
and Control, volume 3, pages 2497–2502, 2004.

[AL74] R. N. Adams and M. A. Laughton. Optimal planning of power networks using
mixed-integer programming. part 1: static and time-phased network synthesis.
Proceedings of the Institution of Electrical Engineers, 121(2):139–147, 1974.

[ApS15] MOSEK ApS. TheMOSEKoptimization toolbox for MATLAB manual. Version
7.1 (Revision 28), 2015.

[Bea98] J. E. Beasley. Heuristic algorithms for the unconstrained binary quadratic pro-
gramming problem. Management School, Imperial College, London, UK, 1998.

[Bec14] A. Beck. Introduction to Nonlinear Optimization: Theory, Algorithms, and Ap-
plications with MATLAB, volume 19. SIAM, 2014.

[Bem15] A. Bemporad. Solving mixed-integer quadratic programs via nonnegative least
squares. 5th IFAC Conference on Nonlinear Model Predictive Control, page
73?79, 2015.

[BFG+00] E. R. Bixby, M. Fenelon, Z. Gu, E. Rothberg, and R. Wunderling. MIP: theory
and practice, closing the gap. In System modeling and optimization, pages 19–49.
Springer, 2000.

[BFG+04] R. E. Bixby, M. Fenelon, Z. Gu, E. Rothberg, and R. Wunderling. Mixed-integer
programming: a progress report. The Sharpest Cut: The Impact of Manfred
Padberg and his work, MPS-SIAM Series on Optimization, 4:309–326, 2004.

[BFL07] L. Bertacco, M. Fischetti, and A. Lodi. A feasibility pump heuristic for general
mixed-integer problems. Discrete Optimization, 4(1):63–76, 2007.

[Bie96] D. Bienstock. Computational study of a family of mixed-integer quadratic pro-
gramming problems. Mathematical Programming, 74(2):121–140, 1996.

[BM99] A. Bemporad and M. Morari. Control of systems integrating logic, dynamics,
and constraints. Automatica, 35(3):407–427, 1999.

13

[Bol13] D. Boley. Local linear convergence of the alternating direction method of
multipliers on quadratic or linear programs. SIAM Journal on Optimization,
23(4):2183–2207, 2013.

[BP12] A. Bemporad and P. Patrinos. Simple and certifiable quadratic programming
algorithms for embedded linear model predictive control. In Nonlinear Model
Predictive Control, volume 4, pages 14–20, 2012.

[BPC+11] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers.
Foundations and Trends in Machine Learning, 3(1):1–122, 2011.

[BR07] R. Bixby and E. Rothberg. Progress in computational mixed-integer program-
ming, a look back from the other side of the tipping point. Annals of Operations
Research, 149(1):37–41, 2007.

[Bra10] A. M. Bradley. Algorithms for the Equilibration of Matrices and their Application
to Limited-Memory Quasi-Newton Methods. PhD thesis, Stanford University,
2010.

[BRL01] A. Bemporad, J. Roll, and L. Ljung. Identification of hybrid systems via mixed-
integer programming. In IEEE Conference on Decision and Control, volume 1,
pages 786–792, 2001.

[BTT91] M. Bierlaire, P. L. Toint, and D. Tuyttens. On iterative algorithms for linear least
squares problems with bound constraints. Linear Algebra and its Applications,
143:111–143, 1991.

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University
Press, 2004.

[BW05] D. Bertsimas and R. Weismantel. Optimization Over Integers, volume 13. Dy-
namic Ideas, Belmont, Massachusetts, 2005.

[CA06] M. Carrión and J. M. Arroyo. A computationally efficient mixed-integer linear
formulation for the thermal unit commitment problem. IEEE Transactions on
Power Systems, 21(3):1371–1378, 2006.

[Cam94] J. F. Campbell. Integer programming formulations of discrete hub location prob-
lems. European Journal of Operational Research, 72(2):387–405, 1994.

[CCH89] V. Chvátal, W. Cook, and M. Hartmann. On cutting-plane proofs in combina-
torial optimization. Linear Algebra and its Applications, 114:455–499, 1989.

[CCZ14] M. Conforti, G. Cornuejols, and G. Zambelli. Integer Programming. Graduate
Texts in Mathematics. Springer International Publishing, 2014.

14

[Cha12] R. Chartrand. Nonconvex splitting for regularized low-rank + sparse decompo-
sition. IEEE Transactions on Signal Processing, 60(11):5810–5819, 2012.

[CPDB13] E. Chu, N. Parikh, A. Domahidi, and S. Boyd. Code generation for embedded
second-order cone programming. In Proceedings of the 2013 European Control
Conference, pages 1547–1552, 2013.

[CPL09] IBM ILOG CPLEX. User’s manual for CPLEX. International Business Ma-
chines Corporation, 46(53):157, 2009.

[CPM10] J. P. S. Catalão, H. M. I. Pousinho, and V. M. F. Mendes. Scheduling of head-
dependent cascaded hydro systems: Mixed-integer quadratic programming ap-
proach. Energy Conversion and Management, 51(3):524–530, 2010.

[CW13] R. Chartrand and B. Wohlberg. A nonconvex ADMM algorithm for group spar-
sity with sparse groups. In Proceedings of IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 6009–6013. IEEE,
2013.

[DBEY13] N. Derbinsky, J. Bento, V. Elser, and J. S. Yedidia. An improved three-weight
message-passing algorithm. arXiv preprint arXiv:1305.1961, 2013.

[DCB13] A. Domahidi, E. Chu, and S. Boyd. ECOS: An SOCP solver for embedded
systems. In Proceedings of the 12th European Control Conference, pages 3071–
3076. IEEE, 2013.

[DY12] W. Deng and W. Yin. On the global and linear convergence of the generalized
alternating direction method of multipliers. Journal of Scientific Computing,
pages 1–28, 2012.

[FDM15] D. Frick, A. Domahidi, and M. Morari. Embedded optimization for mixed logical
dynamical systems. Computers and Chemical Engineering, 72:21–33, 2015.

[FGL05] M. Fischetti, F. Glover, and A. Lodi. The feasibility pump. Mathematical
Programming, 104(1):91–104, 2005.

[Flo95] C. A. Floudas. Nonlinear and Mixed-Integer Optimization: Fundamentals and
Applications. Oxford University Press, 1995.

[G+58] R. E. Gomory et al. Outline of an algorithm for integer solutions to linear
programs. Bulletin of the American Mathematical society, 64(5):275–278, 1958.

[GARK02] F. Glover, B. Alidaee, C. Rego, and G. Kochenberger. One-pass heuristics for
large-scale unconstrained binary quadratic problems. European Journal of Op-
erational Research, 137(2):272–287, 2002.

15

[GB14a] P. Giselsson and S. Boyd. Diagonal scaling in Douglas-Rachford splitting and
ADMM. In 53rd Annual IEEE Conference on Decision and Control (CDC),
pages 5033–5039, 2014.

[GB14b] P. Giselsson and S. Boyd. Monotonicity and restart in fast gradient methods.
In 53rd Annual IEEE Conference on Decision and Control (CDC), pages 5058–
5063, 2014.

[GB14c] P. Giselsson and S. Boyd. Preconditioning in fast dual gradient methods. In
53rd Annual IEEE Conference on Decision and Control (CDC), pages 5040–
5045, 2014.

[GG10] I. Glover and P. M. Grant. Digital Communications. Pearson Education, 2010.

[Gis14] P. Giselsson. Improved fast dual gradient methods for embedded model predic-
tive control. In International Federation of Automatic Control (IFAC), pages
2303–2309, 2014.

[GJ02] M. R. Garey and D. S. Johnson. Computers and Intractability, volume 29.
Freeman, 2002.

[GM72] A. M. Geoffrion and R. E. Marsten. Integer programming algorithms: a frame-
work and state-of-the-art survey. Management Science, 18(9):465–491, 1972.

[GSS05] M. Guignard-Spielberg and K. Spielberg. Integer Programming: State of the Art
and Recent Advances, volume 140. Springer, 2005.

[GTSJ15] E. Ghadimi, A. Teixeira, I. Shames, and M. Johansson. Optimal parameter
selection for the alternating direction method of multipliers (ADMM): Quadratic
problems. IEEE Transactions on Automatic Control, 60(3):644–658, 2015.

[HL12] M. Hong and Z. Luo. On the linear convergence of the alternating direction
method of multipliers. arXiv preprint arXiv:1208.3922, 2012.

[Hoc82] D. S. Hochbaum. Approximation algorithms for the set covering and vertex cover
problems. SIAM Journal on Computing, 11(3):555–556, 1982.

[Iba76] T. Ibaraki. Integer programming formulation of combinatorial optimization
problems. Discrete Mathematics, 16(1):39–52, 1976.

[Jer80] R. G. Jeroslow. Representations of unbounded optimization problems as integer
programs. Journal of Optimization Theory and Applications, 30(3):339–351,
1980.

[Jer87] R. G. Jeroslow. Representability in mixed-integer programming: Characteriza-
tion results. Discrete Applied Mathematics, 17(3):223–243, 1987.

16

[Jer89] R. G. Jeroslow. Representability of functions. Discrete Applied Mathematics,
23(2):125–137, 1989.

[JGR+14] J. L. Jerez, P. J. Goulart, S. Richter, G. Constantinides, E. C. Kerrigan,
M. Morari, et al. Embedded online optimization for model predictive control at
megahertz rates. IEEE Transactions on Automatic Control, 59(12):3238–3251,
2014.

[JL85] R. G. Jeroslow and J. K. Lowe. Experimental results on the new techniques for
integer programming formulations. Journal of the Operational Research Society,
pages 393–403, 1985.

[JLN+09] M. Jünger, T. M. Lieblingand, D. Naddef, G. L. Nemhauser, W. R. Pulleyblank,
G. Reinelt, G. Rinaldi, and L. A. Wolsey. 50 Years of Integer Programming
1958-2008: From the Early Years to the State of the Art. Springer Science and
Business Media, 2009.

[JNS00] E. L. Johnson, G. L. Nemhauser, and M. W. P. Savelsbergh. Progress in linear
programming-based algorithms for integer programming: an exposition. IN-
FORMS Journal on Computing, 12(1):2–23, 2000.

[JW90] R. G. Jeroslow and J. Wang. Solving propositional satisfiability problems. Annals
of Mathematics and Artificial Intelligence, 1(1-4):167–187, 1990.

[Kar72] R. M. Karp. Reducibility Among Combinatorial Problems. Springer, 1972.

[KN01] K. Katayama and H. Narihisa. Performance of simulated annealing-based heuris-
tic for the unconstrained binary quadratic programming problem. European
Journal of Operational Research, 134(1):103–119, 2001.

[lAW98] l. A. Wolsey. Integer Programming, volume 42. Wiley New York, 1998.

[Laz82] R. Lazimy. Mixed-integer quadratic programming. Mathematical Programming,
22(1):332–349, 1982.

[LD10] A. H. Land and A. G. Doig. An automatic method for solving discrete program-
ming problems. In 50 Years of Integer Programming 1958-2008, pages 105–132.
Springer, 2010.

[Ley94] R. Fletcherand S. Leyffer. Solving mixed-integer nonlinear programs by outer
approximation. Mathematical Programming, 66(1-3):327–349, 1994.

[Ley01] S. Leyffer. Integrating SQP and branch-and-bound for mixed-integer nonlinear
programming. Computational Optimization and Applications, 18(3):295–309,
2001.

17

[LS06] D. Li and X. Sun. Nonlinear Integer Programming, volume 84. Springer Science
and Business Media, 2006.

[LW66] E. L. Lawler and D. E. Wood. Branch-and-bound methods: a survey. Operations
Research, 14(4):699–719, 1966.

[LZD04] R. Li, D. Zhou, and D. Du. Satisfiability and integer programming as com-
plementary tools. In Proceedings of the 2004 Asia and South Pacific Design
Automation Conference, pages 879–882, 2004.

[LZW+07] Z. Li, S. Zhang, Y. Wang, X. Zhang, and L. Chen. Alignment of molecular
networks by integer quadratic programming. Bioinformatics, 23(13):1631–1639,
2007.

[MB10] J. Mattingley and S. Boyd. Automatic code generation for real-time convex
optimization. Convex Optimization in Signal Processing and Communications,
pages 1–41, 2010.

[MB12] J. Mattingley and S. Boyd. CVXGEN: a code generator for embedded convex
optimization. Optimization and Engineering, 13(1):1–27, 2012.

[Mey75] R. R. Meyer. Integer and mixed-integer programming models: general properties.
Journal of Optimization Theory and Applications, 16(3-4):191–206, 1975.

[Mey76] R. R. Meyer. Mixed-integer minimization models for piecewise-linear functions
of a single variable. Discrete Mathematics, 16(2):163–171, 1976.

[Mey81] R. R. Meyer. A theoretical and computational comparison of equivalent mixed-
integer formulations. Naval Research Logistics Quarterly, 28(1):115–131, 1981.

[MF02] P. Merz and B. Freisleben. Greedy and local search heuristics for unconstrained
binary quadratic programming. Journal of Heuristics, 8(2):197–213, 2002.

[MF13] R. Misener and C. A. Floudas. GloMIQO: global mixed-integer quadratic opti-
mizer. Journal of Global Optimization, 57(1):3–50, 2013.

[MJSB12] N. Murgovski, L. Johannesson, J. Sjöberg, and B.Egardt. Component sizing
of a plug-in hybrid electric powertrain via convex optimization. Mechatronics,
22(1):106–120, 2012.

[MK87] K. G. Murty and S. N. Kabadi. Some NP-complete problems in quadratic and
nonlinear programming. Mathematical Programming, 39(2):117–129, 1987.

[MTH80] R. R. Meyer, M. V. Thakkar, and W. P. Hallman. Rational mixed-integer and
polyhedral union minimization models. Mathematics of Operations Research,
5(1):135–146, 1980.

18

[MWB11] J. Mattingley, Y. Wang, and S. Boyd. Receding horizon control: Automatic
generation of high-speed solvers. IEEE Control Systems Magazine, 31(3):52–65,
2011.

[O+12] Gurobi Optimization et al. Gurobi optimizer reference manual. URL:
http://www.gurobi.com, 2012.

[OCP07] D. Oulai, S. Chamberland, and S. Pierre. A new routing-based admission control
for MPLS networks. IEEE Communications Letters, 11(2):216–218, 2007.

[O’k87] M. E. O’kelly. A quadratic integer program for the location of interacting hub
facilities. European Journal of Operational Research, 32(3):393–404, 1987.

[OSB13] B. O’Donoghue, G. Stathopoulos, and S. Boyd. A splitting method for optimal
control. IEEE Transactions on Control Systems Technology, 21(6):2432–2442,
2013.

[Pad73] M. W. Padberg. On the facial structure of set packing polyhedra. Mathematical
Programming, 5(1):199–215, 1973.

[PB13] N. Parikh and S. Boyd. Proximal algorithms. Foundations and Trends in Opti-
mization, 1(3):123–231, 2013.

[PB14] N. Parikh and S. Boyd. Block splitting for distributed optimization. Mathemat-
ical Programming Computation, 6(1):77–102, 2014.

[PF07] L. G. Papageorgiou and E. S. Fraga. A mixed-integer quadratic programming
formulation for the economic dispatch of generators with prohibited operating
zones. Electric Power Systems Research, 77(10):1292–1296, 2007.

[PS98] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms
and Complexity. Courier Corporation, 1998.

[PU04] M. Propato and J. G. Uber. Booster system design using mixed-integer
quadratic programming. Journal of Water Resources Planning and Manage-
ment, 130(4):348–352, 2004.

[Slu69] A. V. D. Sluis. Condition numbers and equilibration of matrices. Numerische
Mathematik, 14(1):14–23, 1969.

[SLY+14] W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin. On the linear convergence of the
admm in decentralized consensus optimization. IEEE Transactions on Signal
Processing, 62(7):1750–1761, 2014.

[SM99] R. A. Stubbs and S. Mehrotra. A branch-and-cut method for 0-1 mixed convex
programming. Mathematical Programming, 86(3):515–532, 1999.

19

[SMFH01] T. Schouwenaars, B. De Moor, E. Feron, and J. How. Mixed-integer program-
ming for multi-vehicle path planning. In European Control Conference, volume 1,
pages 2603–2608. Citeseer, 2001.

[TS04] M. Tawarmalani and N. V. Sahinidis. Global optimization of mixed-integer
nonlinear programs: a theoretical and computational study. Mathematical Pro-
gramming, 99(3):563–591, 2004.

[Ull11] F. Ullmann. FiOrdOs: A Matlab toolbox for C-code generation for first order
methods. Master’s thesis, ETH Zurich, 2011.

[VAN08] J. P. Vielma, S. Ahmed, and G. L. Nemhauser. A lifted linear programming
branch-and-bound algorithm for mixed-integer conic quadratic programs. IN-
FORMS Journal on Computing, 20(3):438–450, 2008.

[WB10] Y. Wang and S. Boyd. Fast model predictive control using online optimization.
IEEE Transactions on Control Systems Technology, 18(2):267–278, 2010.

[WFGX08] Z. Wang, S. Fang, D. Y. Gao, and W. Xing. Global extremal conditions for
multi-integer quadratic programming. Journal of Industrial and Management
Optimization, 4(2):213–225, 2008.

[WN99] S. J. Wright and J. Nocedal. Numerical Optimization, volume 2. Springer New
York, 1999.

[WN14] L. A. Wolsey and G. L. Nemhauser. Integer and Combinatorial Optimization.
John Wiley & Sons, 2014.

20

	1 Introduction
	1.1 The problem
	1.2 Solve techniques
	1.3 Embedded applications
	1.4 Contributions
	1.5 Related work

	2 Our heuristic
	2.1 Algorithm
	2.2 Convergence
	2.3 Initialization
	2.4 Computational cost
	2.5 Preconditioning
	2.6 The overall algorithm

	3 Numerical examples
	3.1 Randomly generated QP
	3.2 Hybrid vehicle control
	3.3 Power converter control
	3.4 Signal decoding

	4 Conclusions

