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ABSTRACT

Co-evolutionary adaptive mechanisms are not only ubiquitous in nature, but also beneficial for the functioning of a variety of
systems. We here consider an adaptive network of oscillators with a stochastic, fitness-based, rule of connectivity, and show
that it self-organizes from fragmented and incoherent states to connected and synchronized ones. The synchronization and
percolation are associated to abrupt transitions, and they are concurrently (and significantly) enhanced as compared to the
non-adaptive case. Finally we provide evidence that only partial adaptation is sufficient to determine these enhancements.
Our study, therefore, indicates that inclusion of simple adaptive mechanisms can efficiently describe some emergent features
of networked systems’ collective behaviors, and suggests also self-organized ways to control synchronization and percolation
in natural and social systems.

Introduction

Synchronization is possibly the paramount example of hollective behaviors arise in complex systems, as it involves
emergence of collective organizations from microscopterctions of unitary constituents (such as neurons, loedid,
power grids, or cricket§. The architecture of such interactions are formally wefiresented by complex network$,and
underlying network structure of a system has, indeed, atwoles in synchronization® For instance, synchronization on
small-world networks can be enhanced compared to regutardahanks to the short average distarftevhile it could be
more difficult on scale-free networks compared to randomdgeneous networks due to increased concentration of load to
highly connected nodésAlso synchronization can emerges more easily from weighttdiorks® and scale-free networks
and Erdos-Renyi networks follow different paths to symetization!

The simplest approach to synchronization in networks isiragsy a static network structure. However, this approach
does not reproduce the behavior observed in real-worleésystwhere the tendency observed is actually not statieerat
dynamic. To cope with this limitation, synchronization baveen considered on temporal or time-varying netw&#ks.

For example, systems of mobile oscillators have been intred to consider situations where interaction topologygka

due to motion of the oscillator$1° On the other hand, one can observe co-evolution of netwoutstre and network
dynamics in many natural and social systems. To take intowtcthese co-evolutionary adaptive mechanisms, various
adaptivenetwork models were introducé8where structure and the dynamics co-evolve in tfhé&, and states of the nodes
shape the structure of their interaction, cooperatively simultaneously. Synchronization on adaptive networlsstieen
shown interesting phenomef®“ Moreover adaptive mechanisms are not only realistic, bey tan also enhance and
stabilize collective processé3?8 change the order of synchronizatiher enable the emergence of meso-scale structures
and scale-free properti€33!

Current studies on synchronization are, so far, focusedoonptetely percolated networks, i.e., in a situation where
all interacting oscillators belong to a single giant cortadccomponent. However, real-world systems often shown eve
temporarily, sparser and non-connected structures, les ietween units might well be nodntinuoushactive3%33 In such
non-connected configurations (where not all nodes beloagtngle connected component), achieving global funciferts,
synchronization) may be hampered by the absence of stabladations between the units.

In this paper, we consider an adaptive network of oscillatathere every unit (i.e., oscillator) selects its neighiood
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on the basis of a homophily principfé. Specifically, each oscillator is meant establishing cotiaes with the others that
share a similar phase, in analogy to what observed in satihhatural system¥. It is worth noticing that such aimilarity
might be time-dependent, as distinct oscillators adjuest fthases but also (and simultaneously) update the nestariture
following homophily principles. We will show that our framverk qualitatively and quantitatively differs from non-agative
networks, in that synchronization and percolation trémss come out to be substantially enhanced.

The adaptive network model

We start by considering a network Nf(Kuramoto-type) phase oscillatot$2® whose time evolution is ruled by:
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wherea (6) is the natural frequency (the instantaneous phase) dfaiscii drawn from a uniform distribution in the range
[—1,1], A is the coupling strength, arfy; } are the elements of the network’s adjacency matrix.

The structure of connections is given by the so-cdikegssor hidden variablenetwork modef” 38 which is a generalized
Erdods-Reyni (ER) model. The distinctive character of sachodel is that the topology is fully shaped by the fitness ef th
nodes (herein associated to the oscillators’ phases) wheleopology is given by a constant probability in the ER mode
Accordingly the connection probability between two no@edj at timet is determined by a given functioi{ 8, 6;). While
the form of functionf can be, in general, arbitrary, we here consider it to followoanophily principle, through which
oscillators with more similar phases are more likely to barmrted. For the sake of exemplification, we then define the
function f as follows:

f(ehej):z(1+co§6.—6j)) @)

wherez is a positive parametef,(6,6;) = 2z/N if 6 = 6; andf(8,6;) =0 if |6 — ;| = m. If two oscillators feature
close enough phases (.68, — 6;| ~ 0), they are then more likely to establish a link, with proitigb2 z/N. The expectation
is therefore that highervalues would lead to more connected network structure gafigherA values would result into more
coherent dynamical state. We assume that at each time sggh#ises of oscillators are updated by Eqnd at the same
time step, with a coupling probability, the network topology is shaped by E&j.In this study, without specific indication,
we consider the case &= 1.0. For comparison we show the results with= 0.5 andP = 0.2, which are very similar with
the case oP = 1.0, in the Supplementary Information.

Results

In our simulations, performed with a 4th order Runge-Kutttimd and a time-stefit = 0.02 (See the Supplementary Infor-
mation for the case dft = 0.05 andAt = 0.1 for comparison), we consider a network site- 300 (See the Supplementary
Information for cases dfl = 150 andN = 600). We assign initial conditions for the oscillators’ gla from a uniformly dis-
tributed distribution in the rangle- 7, 1], while the initial network structure is taken to be that erted from Eq.Z) with the
given initial phases. At each time step of the integratiatjlators’ phases evolve by EdL)( and (simultaneously) network
structure is reshaped by E®)( To compare with, the non-adaptive evolution is also satad, where the structure of the
network is determined by Eq2) only initially.

The degree of synchronization can be monitored by the spnétation order parameter:

dbi (t)’ (3)
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whose modulusr(t) € [0,1]) measures actually the system’s phase coherened (for the fully synchronized regime,~ 0
for the incoherent statel¥(t) is instead the average phase of the system. For percoletooonsider the relative size of the
largest connected componex(t) as the order parameter. For each paranrétérands(t), we furthermore definR andSas
the respective steady state values, i.e. the values obthinaveraging over 500 steps, and after 3,000 transierg.step
Figurel reports the time evolution aft) ands(t), at different values of the control parameteendA. Whent < 0, the
time evolution of the order parameters is determined by keslfnetwork structure constructed by Bqvith the initial phases
(i.e., non-adaptive networks), whereas the network stredfstarting fromt = 0) is updated by EcR at every time step. In
Fig. 1(a) and (c)r(t) ands(t) are plotted ai = 0.5 and varyinge, respectively while Figl(b) and (d) reports(t) ands(t)
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(at fixedz= 1.2) by varyingA. A clear enhancement of synchronization and percolatismisiltaneously observed for most
values ofA andz (except wherz= 0.5 andA = 0.5, or whernz = 1.2 andA = 0.25). The evolution of the network’s average
degreek(t) [Figs. 1(e) and (f)] reveals that adaptation leads actually to aremse of the average degree, which may explain
the concurrent enhancement of percolation and synchriboizia the adaptive network.

Figure2 accounts folSandR in the parameter space (2). The percolation transition in the non-adaptive netwark/o
depends o1z [as shown in Fig2(a)]. We observe existence of typical percolation traosgiwithin the subcritical regime
(S~ 0.0) of z< 1.0, the critical regime 0of ~ 1.0, and the supercritical regime.(0< S< 1.0) of 1.0 < z< 3.0, and also the
connected regimeS(~ 1.0) is observed foz > 3.0. As shown in Fig2(b), synchronization in the non-adaptive case depends
on the specific percolation state the network is attaininglyfncoherent statedR < 0.05) are observed in sub-critical and
critical regime g < 1.0) regardless ok . Partial synchronization (0 < R < 0.9) is observed, instead, in supercritical regimes,
and highly synchronized states emerge only in the conneetgohe ¢ > 3.0).

On the other hand, significant enhancement of percolatidisanchronization is evident in Fig&(c) and (d). In particular,
the enhancement is substantial in the regiorz ef 3.0 corresponding to the non-connected regimes in the noptiada
network. In particular, the percolation indicatdidepends not only og, but also onA, and (whem increases) the giant
connected component emerges even for smaller values of

Furthermore, synchronization is actually boosted in thapéide network [Fig2(d))]. Similarly to percolation, the en-
hancement is here predominant in low connection abilityoreg) < 3.0). Interestingly enough, also some not-fully con-
nected regions3< 1.0) still can display highly coherent statd®-{ 1). The conclusions that can be drawn from our results is
that the adaptive mechanism actually creates a positidbedk loop between network’s structure and dynamics, #nesuap-
porting the ubiquity of synchronized and connected comptmia complex systems under limited resources for intevast

The adaptive mechanisms here considered not only enhanchrsyization and percolation, but also make both transi-
tions more abrupt. In other words both transitions in theptida networks are more sensitive to the coupling streAgémd
to the connectivity parameterthan the transitions in the non-adaptive networks. Notg thahis sense, here we do not
consider the observed transitions as so-called explogivehsonizatiod® or percolatiorf® In Figure3 we reportR [panels
(a) and (b)] anS[panels (c) and (d)] as a function #fat fixedz, as well as varying at fixedA . For non-adaptive networks,
the passage from incoherent to coherent states (and tmatffe;ymented to percolated structures) features typiaébtof
second-order transitions, while adaptive networks digpébrupt patterns. The case of percolation transition shaetually,
more interesting patterns. Wheris fixed, Sin the non-adaptive network does not depend\dias shown in Fig2(a) and
Fig. 3(c)]. However,Sin the adaptive case shows a clear percolation transititin growingA whenz < 4.0 [see the red
lines with filled symbols in Fig3(c)]. Interestingly, there is no difference in the behawbs (before the transition) between
the adaptive and non-adaptive case. Only above certaievalid , the percolation transition assumes a characteristid-"firs
order-type nature” [as seen in Fig(d)]. It is notable that, although the interplay betweennmek evolution and dynamics
happens here simultaneously, the transition to synchreess to occur at loweror A values, actually, than the percolation
transition.

While the effect of the interplay between topological andayical evolution of nodes appears to be clear, it is of the
highest importance orienting the study to the inspectiahetimescales at which the two phenomena appear. In plartidu
updating network structure costs more than updating stétescillators, it is necessary to check whether adaptiveragisms
should be applied at every time step or, instead, just fediegijpns of them are actually sufficient to determine theeybed
enhancements. The issue is here addressed by introduciogpéing probabilityP between dynamics of oscillators and
structural evolution, namely by updating the network e [via Eq. @)] with probability P at each time step. The limit
P = 0 recovers a non-adaptive network model, witle- 1.0 corresponds to a totally adaptive case. In Bigve reportS
(top row) andrR (middle row) from the cases &= 1, 0.1, 0.01, 0001 and 0. Remarkably, one observes that both transitions
(to percolation and synchrony) are significantly enhandedggall the finite range oP, includingP = 0.001. This fact has
significant implications, in the sense that one can actira@rvene on the collective behaviors of a given systeny wiith a
few applications of our proposed adaptive mechanism.

It was recently reported that blinking networks (i.e. taggpés of interactions which change over timescale muclerfast
than that of the network units’ dynamics), can actually emeasynchronizatiof:“2 As our adaptive model also can have
such a ’blinking’ nature (wheR ~ 1.0), it is therefore mandatory to comparatively investigatehow much the observed
enhancement in synchronization has a route within the yeivkrblinking effects. To this purpose, we consider a bligkin
network of oscillators (which is exactly the same as the icmmed adaptive network) with a topology updated by a random
probabilityQ, and which gives the same number of links at the initial steprgby Eq.2. Note that whether updating topology
or not at each time step depends on the coupling probahiiityboth of the adaptive network and the blinking network whil
the connections between the oscillators are given by2Hg.the adaptive network but by the random probabifityn the
blinking network. The bottom panels of Fig.reports the values dR for such a latter, blinking, network as function of
A andz with varyingP. WhenP = 1.0, one notices that the blinking effect is, indeed, quitersgr However, the effect
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vanishes rapidly with decreasif®y This indicates that our adaptive mechanism may enhanahsynizationonly partially
due to blinking effects, whereas significant other contidns exist. It is also noticeable that no enhancement ingdation
exists at all in the blinking framework, due punctually te tack of feedback between dynamics of oscillators and tapcél
evolution.

Discussion

In conclusion, complex networks need to stay in connecteldsgnchronized states, in order to perform integrated and co
herent functions. However, when the units have only limaédity to connect to each other, it is of paramount impoctan
understanding how the networks self-organize from fragaeand incoherent states to connected and synchronized.sta
We have considered an adaptive model, where connectiongeéetnodes are ruled by a positive feedback loop connect-
ing structural evolution (driven by a fithess model) and nalyaamics (driven by the Kuramoto model). We actually gave
evidence that such an adaptive framework enhances sub#iesynchronization and percolation, while non-adaptieunter-
parts fail to reach synchronization and percolation in the-nonnected regime. This indicates that co-evolutioadaptive
networks are not only more realistic descriptions of comglestems, but also they are beneficial for the correct andstob
functioning of complex systems.

The observed enhancement of synchronization and pemmolsitied actually light on how one can control such two pro-
cesses in a spontaneous, or self-organized 3y particular, as shown in our Fig, the needed coupling has not to be very
strong, thus suggesting that the control of unwanted evamntrging through synchronization (such as epileptic seipu
market crashes) could be easily achieved by just (propeolypling or decoupling network’s structure evolution aydaimn-
ics. In this sense, our findings suggest efficient controhas to maintain an integrated functioning of natural arclado
systems.
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Figure 1. Time evolution ofr (t) (a-b),s(t) (c-d) and of the network’s average degkép (e-f). (a, c, and e} =0.5; (b, d,
and f)z= 1.2. Color codes in the legends of (a) and (b).
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Figure 2. Phase diagrams of the non adaptive (a,b) and adaptive(o@Blsr Panels refer to the percolation indic&¢a,c)
and the synchronization indicatBr(b,d). For eaclz andA, data refer to ensemble averages over 40 different remlirat
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8/9



4.009) S: ‘P:0.0(‘N

3.0

05 1.0 E . . . . . . . . . 05 1.0
A A
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