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There is growing consensus that processes of market integration and risk diversification may
come at the price of more systemic risk. Indeed, financial institutions are interconnected in a
network of contracts where distress can either be amplified or dampened. However, a mathematical
understanding of instability in relation to the network topology is still lacking. In a model financial
network, we show that the origin of instability resides in the presence of specific types of cyclical
structures, regardless of many of the details of the distress propagation mechanism. In particular, we
show the existence of trajectories in the space of graphs along which a complex network turns from
stable to unstable, although at each point along the trajectory its nodes satisfy constraints that would
apparently make them individually stable. In the financial context, our findings have important
implications for policies aimed at increasing financial stability. We illustrate the propositions on a
sample dataset for the top 50 EU listed banks between 2008 and 2013. More in general, our results
shed light on previous findings on the instability of model ecosystems and are relevant for a broad
class of dynamical processes on complex networks.
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The systemic risk emerging from networks of financial
institutions (in the following banks for brevity) poses sig-
nificant scientific challenges and comes with prominent
policy and societal implications [5]. Banks are intercon-
nected among each other both through direct exposures
to bilateral contracts [6, 7] and through indirect expo-
sures to common assets [8, 9]. Here we focus on direct in-
terbank exposures, such as loans extended from one bank
to another one, which are usually modeled as directed
weighted networks [10–12], while the analysis could be
later extended to indirect common exposures [9, 13].

While many factors drive systemic risk, the litera-
ture has identified two main channels for the propaga-
tion of financial distress through direct exposures. The
first is known as illiquidity contagion: If banks antici-
pate that their counterparties may incur losses, they will
try to withdraw their liquid funds from them [14], in-
ducing them, in turn, to withdraw their funds from their
own counterparties. Therefore, distress propagates from
lenders to borrowers as their liquidity decreases. The
second channel is the deterioration of interbank assets:
lenders reassess the value of their claims towards bor-
rowers under distress, taking into account the possibil-
ity that borrowers will not be able to meet their obliga-
tions. Devaluation of assets effectively generates losses
for lenders, which can in turn be transmitted to their
creditors [6, 15–17]. The propagation of distress is typ-
ically mitigated by the intervention of central banks, so
that cascades of defaults are rare [18]. Yet, the process
of illiquidity contagion is essentially driven by the an-
ticipation of the potential interbank asset deterioration.
Therefore, we focus on the latter mechanism only, in line
with most of the previous literature [6, 11, 12].

A growing body of work [17, 19–24] carries out stress

tests on the financial system by computing the distribu-
tion of losses conditional upon a given pattern of shocks.
However, such an approach relies on specific assumptions
on the nature of the financial contracts and the distress
propagation mechanism. In contrast, here we derive, un-
der mild assumptions, a very general and powerful result
on the relation between network structure and stability
of the system, and we show how pathways towards insta-
bility may emerge in the process of risk diversification.
The findings yield specific policy insights that hold valid
regardless of the details of financial contracts. We em-
phasize that, even though here we focus on the interbank
network, our results are based on the study of the linear
stability around a fixed point and therefore apply to a
large class of dynamical processes on networks.

INTERBANK NETWORK

The equity E of a bank, i.e. the difference between its
total assets and liabilities, is an important variable in
determining the financial health of a bank. In the liter-
ature on financial contagion [6, 16, 17], a bank defaults
as soon as its equity becomes negative, as it is unlikely
that it will be able to repay its debts in full. The ra-
tio between total assets and equity is called leverage and
it is a coarse estimate of the riskiness of a bank, as it
is related to the maximum loss on the assets that can
be absorbed by the equity of the bank. While leverage
is usually understood as a single number for each bank,
the notion has been recently extended into the concept
of leverage matrix [23], whereby leverage is computed
with respect to each specific asset class or counterparty.
In particular, for a system of n banks here we consider
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the n × n interbank leverage matrix Λ, whose elements
Λij are equal to the ratio between the nominal expo-
sure of bank i towards bank j and the equity of bank
i. The total interbank leverage of bank i is simply equal
to `i =

∑
j Λij . In fact, we will consider an adjusted

interbank leverage matrix Λ̂ij = Λij (1 − ρj), where ρj
is the recovery rate of bank j, i.e. the fraction of its in-
terbank assets recovered by creditors in case of default.
Finally, let us denote the relative equity losses of bank i
as hi(t) = (Ei(0)− Ei(t))/Ei(0).

Starting from basic principles of financial accounting
and under mild assumptions on the type of financial con-
tracts among banks, we show that the relative equity
loss of bank i must be a function of the relative eq-
uity loss of its counterparties, as well as function of the
leverage matrix Λij , according to the following dynamics:

hi(t+ 1) = hi(1) +
∑

j Λ̂ijp(hj(t)), where p is the default
probability of counterparty j as a function of its rela-
tive equity loss (see SI Appendix for the details). Even
though the function p is, in general, complicated and non-
linear, the response of the system to a small initial shock
can be characterized by linear stability analysis around
a fixed point. This implies that the system is unstable
if and only if λmax, the largest eigenvalue of the Jaco-
bian of the dynamics Λ̃ij = Λ̂ijp

′
j(hj(0)), is larger than

one. In the following, without loss of generality, we as-
sume p′j(hj(0)) = 1, ρj = 0 for all j, and we denote

Λ̃ = Λ, although all the results hold in the more general
case. Notice that the presence of a recovery rate pushes
the system towards stability, as the largest eigenvalue
of Λ is larger than or equal to the largest eigenvalue of
Λ̂. Notice also that under the further assumption that
p(h) = h, we would recover the extension of the Deb-
tRank dynamics [17, 23, 24] that includes a recovery rate
(see SI Appendix).

Despite the considerable body of work on financial con-
tagion, since there is no simple relationship between the
topology of a network and λmax, the study of stability
has been seldom carried out [25] in this context. Here,
we show two important effects pertaining financial in-
stability that had remained uncovered so far and could
have profound policy implications. First, even if the in-
dividual leverage of banks does not increase, a financial
system can turn from stable to unstable as the number of
banks increases (i.e. the number of nodes in the network
grows larger) like during a process of market integration.
Second, even if the individual leverage of banks does not
increase, a financial system can become unstable as the
number of contracts among banks increases (i.e. the num-
ber of edges in the network increases) like during a pro-
cess of risk diversification. Notably, in both cases insta-
bility appears despite the fact that the assessment that
each bank makes of its own risk profile does not change,
because individual leverage levels remain constant. This
means that market integration and risk diversification
can make the system as a whole unstable. These re-
sults do not imply that such processes are detrimental

per se, but that financial policies focusing only on in-
dividual banks, also known as micro-prudential policies,
can have the opposite effect of increasing financial insta-
bility if they do not consider the system as a whole. As it
will be clear further below, the origin of instability lies in
the fact that in both processes banks get increasingly in-
volved in multiple cycles (i.e. closed chains) of contracts.
Our results suggest to include the eigenvalue analysis of
the leverage matrix among the tools of financial stability.

EMERGENCE OF INSTABILITY

The relation between λmax and interbank leverage
across banks becomes simple if all banks have the same
interbank leverage or if the interbank network is a large
Erdős-Rényi graph [27]. In the first case, via the Perron-
Frobenius theorem, λmax is bounded by the smallest and
largest sum over the columns of the interbank lever-
age matrix, i.e. precisely by the smallest and largest in-
terbank leverages. Hence, if all banks have the same
interbank leverage `, it must be also equal to λmax.
The second case is similar to the May-Wigner theorem
about the instability of model ecosystems [28] in which
species interact through a large Erdős-Rényi graph. The
main difference is that in our case interactions between
banks are described by the leverage matrix Λ, which is
non-negative, while the interactions between species in
ecosystems are described by a matrix whose elements
can have unspecified sign. In the SI Appendix we prove
that, for n → ∞, in this case λmax → ` =

∑
i `i/n =∑

i,j Λij/n, the average interbank leverage across banks.
Therefore, in both cases the system is unstable whenever
` > 1.

When relaxing either of the two assumptions (homo-
geneity of leverage, or large size together with random-
ness of the graph), finer details of the network structure
become important. For instance, because the theorem
only holds in the limit of large size graphs, there exist
small Erdős-Renyi graphs that are stable although they
have ` > 1. An example of a small size network that
is extremely important for policy is the the network of
the Global Systemically Important Banks [29], compris-
ing about 30 banks. Suppose to start from a small and
stable Erdős-Renyi graph with ` > 1 and to connect more
banks to the network (by keeping ` and the number of
contracts per bank constant). Eventually, the system will
grow large enough to become unstable because the theo-
rem will have to hold in the limit of large graphs (see SI
Appendix for an example). This is an example of a pre-
viously unreported phenomenon that we call pathways to
instability , i.e. the existence of trajectories in the space
of graphs along which financial networks turn from stable
to unstable, although at each point along the trajectory
banks individually satisfy constraints that would appar-
ently make them individually stable.

In general, the system is unstable if and only if there
exists an unstable strongly connected component (i.e. a
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FIG. 1. For illustrative purposes we perform the stability analysis of the two paradigmatic interbank network architectures
depicted above. The first is a “butterfly” graph, while the second example has a core-periphery topology: nodes 1, 2, 3, and
4 form a complete core, with the remaining nodes having either only incoming or outgoing edges to the core. For simplicity
we set all non-zero elements of the interbank leverage matrix equal to w, implying that the largest single exposure policy is
implemented whenever w < 1. We plot the average interbank leverage (green line) and λmax, the largest eigenvalue of the
interbank leverage matrix (red line), as functions of the parameter w. The green region corresponds to an average interbank
leverage smaller than one, the blue region to the largest single exposure smaller than the corresponding equity, while the
unstable region is highlighted in red. In both cases there exists a region (shadowed in the figure) in which the following
three properties hold: i) the average interbank leverage is larger than one, ii) the largest single exposure is smaller than the
corresponding equity, and yet iii) the network is unstable. Slight modifications of the above examples can also account for
tighter constraints on the largest single exposure. For example, even requiring that the largest single exposure is smaller than
15% of the equity (as requested in [26]) is not enough to avoid instability in a core-periphery topology with eight nodes in the
core.

directed subgraph in which each node is reachable in-
directly by any other). The Perron-Frobenius theorem
only guarantees that the largest eigenvalue of a strongly
connected component is between the minimum and the
maximum interbank leverage across banks. Hence, a suf-
ficient condition for instability (stability) is that the in-
terbank leverage of all banks is larger (smaller) than one.
However, for the years from 2008 to 2013, the small-
est interbank leverage of European banks is very close
to zero, while the 95th percentile of its distribution is
between 2.5 and 6, meaning that the Perron-Frobenius
bounds are not informative enough on the largest eigen-
value, and we need to look more closely at the topology of
the network. For instance, for graphs without cycles (i.e.
directed acyclic graphs, DAGs) λmax is always equal to

zero, implying that the presence of cycles is a necessary
condition for instability (although not sufficient). Intu-
itively, a cycle amplifies distress propagation if the prod-
uct of the weights of its edges is larger than one (we refer
to this as an individually unstable cycle). Interestingly,
a policy recommendation included in Basel III Accords
[26] encourages banks to have the largest single exposure
smaller than a fraction of their equity, so that Λij < 1
for all i, j. The policy is thus effective in avoiding this
source of instability.

However, the presence of individually unstable cycles,
although sufficient, is not necessary for instability. Con-
sider the two examples in Fig. 1. In particular, the second
is a simple case of core-periphery network architecture, a
frequently observed pattern in empirical interbank data
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FIG. 2. Stability of the network of the top 50 listed European banks using data from their 2013 balance sheets. Trajectories
have been built according to the following protocol: We start from a random DAG, i.e. a network with no cycles, which is
therefore stable. We then increase the density of edges in the network by randomly adding one edge at a time, until the network
is complete. Every time a new edge is added, we re-balance the interbank exposures so that the interbank leverages are always
consistent with the real balance sheets. We compute λmax, the largest eigenvalue of the interbank leverage matrix, to assess
the stability of the network: if λmax > 1 (< 1) the system is unstable (stable). We repeat the whole procedure 100 times. We
show the contour of all trajectories and highlight a few of them. The first crossing region (in semi-transparent blue), spans the
interval of densities of edges across which the networks become unstable for the first time, meaning that combined unstable
cycles appear. We can see that densities as low as 3% are sufficient to reach instability. We also plot the average interbank
leverage (dashed blue line) for reference.

[30]. In both cases, not only the largest single exposure
policy is implemented, but (depending on the value of
the parameter w) the average interbank leverage can be
smaller than one. These two conditions could intuitively
suggest that the system is stable. Yet, λmax is larger than
one and the system is unstable. The reason is that there
are banks involved in multiple cycles. More precisely, a
sufficient condition for having λmax > 1 is that there ex-
ist two integers i, k such that (Λk)ii > 1, i.e. that there
exists a bank i such that the sum, over all the cycles of
length k from i to itself, of the products of the elements
of the interbank leverage matrix along each of such cycles
is larger than one (we refer to this as a combined unsta-
ble cycle). For instance, in the first example of Fig. 1,
(Λ3)11 is larger than one for w > 2−1/3, and thus there
is a range of values where the system is unstable even if
the largest single exposure policy is implemented and the
average interbank leverage is smaller than 1.

The sufficient condition for instability stated above has
important consequences for regulations intended to pro-
mote financial stability. Take the case of a bank having a
given interbank leverage and at least one exposure larger
than its equity. If now the bank is required to implement
the largest single exposure policy and it wants to keep its
interbank leverage unchanged, it might have to increase
the number of its counterparties. On the one hand, this
is beneficial because it reduces the exposures towards in-
dividual counterparties. On the other hand, it might be
detrimental as it could contribute to the creation of new

cycles that, even though might be individually stable, are
part of a combined unstable cycle. Therefore, a recom-
mendation that targets stability in terms of individual
banks it can actually lead to instability because it ne-
glects the systemic effect of cycles.

More in general, increasing the number of contracts
in the system is the source of a second type of pathway
towards instability. As a empirical illustration of this
phenomenon, we consider the balance sheets of the top
50 listed banks in the European Union obtained from
the Bankscope dataset. We simulate a process in which
banks gradually increase the degree of risk diversifica-
tion by continuously creating exposures towards addi-
tional counterparties. In particular, by adding edges,
we build trajectories in the space of interbank networks
whose initial configuration is a random DAG (hence sta-
ble) and whose final configuration is a complete graph.
Every time a new edge is added, interbank exposures
are redistributed so that the network is always consistent
with the original balance sheets and interbank leverages
of all banks do not change. For simplicity, we set the
recovery rate ρ equal to zero. We find that the banking
system is unstable once its graph is complete, but actu-
ally instability kicks in much earlier, when the fraction
of existing contracts over all the possible ones is as low
as 3% (see Fig. 2 for 2013 balance sheets, and SI Ap-
pendix for other years). Moreover, from Fig. 2 we see
that trajectories of λmax can be not monotonic and that
the critical line can be crossed multiple times, meaning
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FIG. 3. Toy model of an interbank network that oscillates between stability and instability. Going from a to e we add one or
more edges every time, always redistributing the weights so that interbank leverages do not change. Added edges are green,
while modified edges are red. The initial network a is a DAG, hence λmax = 0, and for simplicity all edges have the same

weight w. Suppose that w is chosen such that λ
(d)
max < 1 < λ

(e)
max. We then have that network b is stable, even tough a cycle

has appeared. The further addition of one more cycle makes network c unstable. Network d becomes stable again after the
addition of two edges, and finally network e is again unstable.

that the system sways between stability and instability,
before finally settling into an unstable state.

In Fig. 3 we provide a stylized example that helps to
connect such changes in the stability of the system to
changes in the topology of the network. We start from a
DAG, initially setting all non-zero elements of the inter-
bank leverage matrix equal to w. We then add one edge
at a time, always distributing the interbank leverage of
each bank uniformly among the neighboring (borrowing)
banks. λmax increases every time a new cycle appears
in the system. In contrast, λmax decreases whenever a
new edge does not lead to the appearance of a new cy-
cle. Intuitively, this behavior can be explained in the
following way. On the one hand, whenever a new cycle
appears the possibility for the system to amplify shocks
increases. On the other hand, whenever the addition of a

new edge does not lead to the creation of a new cycle, the
weights of those edges that are part of existing cycles be-
come smaller because interbank leverages are constantly
re-balanced, decreasing the ability of those cycles to am-
plify shocks.

CONCLUSIONS

By providing a simple and rigorous mathematical ex-
planation of how network effects arise our results shed
new light on the tension between the two main ap-
proaches to financial stability: the so-called micropru-
dential one, focused on ensuring the stability of individ-
ual banks, and the macroprudential ones, targeted to the
stability of the whole financial system.
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We provide examples of sufficient conditions for the on-
set of instability: when banks establish contracts among
each other without taking into account what their coun-
terparties do, they will eventually become even uninten-
tionally part of multiple cycles of contracts, which alto-
gether amplify the effects of shocks. The recovery rate
plays an important role, as it impacts directly the critical
value of the largest eigenvalue. In turn, the recovery rate
can be at least in part controlled with certain financial
and monetary policies since it depends on both the qual-
ity of the collateral (in case of secured lending) and on
the liquidity of the asset markets. Overall, our findings
suggest that financial stability policies need to carefully
consider network effects. This can be achieved by com-
puting the largest eigenvalue of the interbank leverage
matrix and by comparing it with estimates of the recov-
ery rate.

More specifically, we show the existence of two pro-
cesses that define trajectories in the space of network
configurations, which drive financial networks from a sta-
ble to an unstable regime. The former consists of imple-
menting processes of market integration (i.e. increasing
the number of financial institutions) in a growing inter-
bank network with interbank leverage larger than one.
The latter consists of increasing the number of contracts
among financial institutions. In both cases the risk profile
of individual banks (measured by the interbank leverage)
does not change, and therefore the emergence of instabil-
ity is purely related to the structure of the network. This
suggests that policies targeted at ensuring financial sta-
bility by lowering the risk of individual banks without
taking into account the network effects can in fact lead
to a higher systemic risk.

The relation between the topology of a network and
the behaviour of dynamical processes taking place on the
network is a fundamental problem common to a broad

class of complex systems. Here we focus on financial
contagion in a interbank network, but our results apply
to any system in which the Jacobian of the dynamics
is proportional to the weighted adjacency matrix (with
non-negative entries) encoding the mutual interactions
between the constituents of the system. In fact, our
results expressed in terms of interbank leverages (sums
over columns of the interbank leverage matrix) can be
rephrased in terms of what in a more general setting are
known as strengths of nodes (sums over columns of a
weighted adjacency matrix). As a consequence, the ex-
istence of pathways to instability could in principle be
observed in diverse contexts ranging from ecosystems to
social networks.
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Supporting Information Appendix

LINEAR APPROXIMATION OF CONTAGION DYNAMICS

In this section we derive, under general mild assumptions, the linear approximation of distress propagation in
interbank networks and we show how the stability of the system is related to the interbank leverage matrix. The
first important ingredient is the balance-sheet consistency at all times t. The balance sheet of a bank is composed by
assets and liabilities. The former have positive economic value (e.g. loans towards customers or towards other banks,
stocks, derivatives, real estate), while the latter have negative economic value (e.g. deposits, debits towards other
banks). In both cases, we distinguish between interbank and external assets or liabilities. Interbank assets (liabilities)
are credits (debits) of banks towards other banks, while we call external all other assets and liabilities. We denote by
Aij(t) the value at time t of a loan from bank i to bank j, and by Lji(t) the corresponding liability. External assets
and liabilities of bank i at time t are denoted by AE

i (t) and LE
i (t), respectively. Finally, the equity Ei(t) of bank i at

time t is defined as the difference between its assets and liabilities:

Ei(t) = AE
i (t)− LE

i (t) +

n∑
j=1

Aij(t)− Lij(t) . (S1)

We follow the assumption, common in the literature, that a bank defaults if its equity becomes negative. The rationale
is that a bank with more debts that assets is not able to meet its obligations towards its creditors even by liquidating
its entire pool of assets.

The second important ingredient is that the value of interbank assets change over time, as lenders constantly reassess
their value based on the probability of default of their counterparties. Nevertheless, the actual amount of outstanding
debt of borrowers does not change, i.e. liabilities always keep their face value. If bank j does not default its lender i
will get Aij(0), the face value of the loan, while if bank j defaults i recovers the (smaller) amount Rij . We assume
that the value of interbank loans is assessed “fairly”, i.e. it is equal to the expected repayment:

Aij(t) = Aij(0)(1− pj(t− 1)) +Rijpj(t− 1) , (S2)

where pj(t) is the probability of default of bank j at time t. The time delay from the r.h.s. and the l.h.s. of (S2)
accounts for the time needed for the information about the probability of default of borrowers to be incorporated into
the assessment of lenders. Let us explicitly note that (S2) is consistent with assuming that pj(0) = 0.

The scenario we have in mind is to initially stress the system via an exogenous shock to external assets, i.e.
AE

i (0) → AE
i (1) < AE

i (0). Balance sheet consistency (S1) implies that such shock will result in losses in equity. We
assume that no additional cash flow (neither positive nor negative) enters the system subsequently. By assuming
that the probability of default of a bank is an arbitrary function of its equity, equity losses will translate in changes
in probabilities of default, and, via (S2), into a re-evaluation of interbank assets. This, in turn, will lead (again via
(S1)) to a change in equity. In subsequent rounds external assets do not change and propagation of shocks continues
only by iterating such dynamic through the interbank channel. As a consequence, two terms contribute to the loss
in equity of bank i between time 0 to time t: the loss in external assets between time 0 and time 1 and the loss in
interbank assets up to time t:

Ei(0)− Ei(t) = AE
i (0)−AE

i (1) +

n∑
j=1

[Aij(0)−Rij ] pj(t− 1). (S3)

By defining hi(t), the relative loss of equity at time t for bank i, as

hi(t) =
Ei(0)− Ei(t)

Ei(0)
, (S4)

and:

Λ̂ij =
Aij(0)−Rij

Ei(0)
, (S5)

we can re-write (S3) as:

hi(t) = hi(1) +

n∑
j=1

Λ̂ijpj(hj(t− 1)) , (S6)



S2

where we also highlight the explicit dependence of the probability of default of bank j on its equity, and therefore
on hj . We stress that the assumptions made so far (balance sheets consistency, fair re-evaluation of interbank assets,
probability of default as a generic function of the equity) can be considered accounting first principles.

By further assuming that pj(hj(t)) is differentiable in hj(0):

pj(hj(t)) ' pj(hj(0)) + p′j(hj(0)) [hj(t)− hj(0)]

= p′j(hj(0))hj(t) ,
(S7)

where we have used that hj(0) = 0. By plugging (S7) into (S6) and by defining:

Λ̃ij =
Aij(0)−Rij

Ei(0)
p′j(hj(0)) , (S8)

we can finally write

hi(t) = hi(1) +

n∑
j=1

Λ̃ijhj(t− 1) . (S9)

From the point of view of the stability of the system it is useful to compute hi(t+ 1)− hi(t), which leads to:

hi(t+ 1) = min

1, hi(t) +

n∑
j=1

Λ̃ij [hj(t)− hj(t− 1)]

 , (S10)

where the min simply ensures that relative equity losses cannot become larger than one, i.e. that equities do not
become negative. However, equities stay positive in-between defaults and, by introducing ∆h(t) = h(t) − h(t − 1),
(S10) can be written in matrix form:

∆h(t+ 1) = Λ̃∆h(t) , (S11)

which is a linear map with fixed point ∆h = 0. The fixed point is stable if the modulus of the largest eigenvalue λmax

of Λ̃ is smaller than one. If λmax > 1, shocks will be amplified and at least one bank will default.
A further simplifying assumption is that Rij , the amount recovered by the lender bank i in case of default of the

borrower bank j, is a fraction ρj of the face value Aij(0):

Rij = ρjAij(0) . (S12)

From (S10) and (S12) we can see that ρj effectively dampens the losses suffered by lenders of bank j at all time steps,
hence we call it recovery rate. Eqs. (S5) and (S8) become:

Λ̂ij = Λij(1− ρj) (S13a)

Λ̃ij = Λij(1− ρj)p′j(hj(0)) , (S13b)

where

Λij =
Aij(0)

Ei(0)
, (S14)

is the interbank leverage matrix. From (S13b) we can make two observations. First, the structure of the network

underlying Λ̃, i.e. the couple of banks between which there is an edge, is equal to the structure of the network underlying
Λ. Second, a difference from bank to bank in the functions pj is completely indistinguishable from heterogeneous
recovery rates, by defining effective recovery rates one can absorb the factors p′j(hj(0)).

Choosing the equity loss as probability of default:

pj(hj((t)) = hj(t) , (S15)

implies that p′j(hj(0)) = 1, so that:

Λ̃ = Λ̂ = Λ(1− ρ) , (S16)

where ρ is a matrix whose j-th element on the diagonal is equal to ρj and with off-diagonal elements equal to zero. In
this case (S7) is not an approximation, meaning that the dynamics (S10) and (S11) are exact and closely resemble the

DebtRank [S1] linear dynamic ∆h(t + 1) = Λ∆h(t). By performing the replacement Λ̃ → Λ we obtain a generalized
DebtRank that includes recovery.
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ADDING NODES

The crucial thereom that we will exploit is due to Silverstein [S4] (Theorem 1.2). In a nutshell, let Λ be a n × n
matrix whose entries are random i.i.d. variables with mean µ > 0 and finite forth moment. For sufficiently large n,
the largest eigenvalue λmax of Λ is:

λmax =
1

n

∑
i,j

Λij +O(n−1/2) . (S17)

We will now specify the results of the theorem in the case in which the matrix Λ is the weighted adjacency matrix of a
random graph. We consider Erdős-Renyi graphs in which Λij = CijWij , with Cij ∈ {0, 1} andWij ∈ R+. The variables
Cij determine if an edge is present or not and have the bimodal distribution ρ(Cij) = pδ(Cij − 1) + (1 − p)δ(Cij).
The variables Wij are the weights associated to the edges and we leave their distribution unspecified (as long as the
forth moment is finite).

We start with the case in which the network is not sparse, i.e. the case in which the average degree k̄ ≡∑ij Cij/n

is k̄ ' O(n), or equivalently p ' O(1) (in the sense that it does not scale with n). Let us define the variables Xi,
i = 1, . . . n, as the sums only over columns of Λ, i.e. Xi =

∑
j CijWij . As Cij and Wij are independent, we have:

〈Xi〉 = n〈Cij〉〈Wij〉 = np〈Wij〉 (S18a)

varXi = n var(CijWij) = n
[
p〈W 2

ij〉 − p2〈Wij〉2
]
. (S18b)

The next step is to compute
∑

iXi/n. As Xi are i.i.d. with finite variance, using (S17) we have that λmax will be
normally distributed with

〈λmax〉 =
1

n
n〈Xi〉 = np〈Wij〉 (S19a)

varλmax =
1

n2
n varXi =

[
p〈W 2

ij〉 − p2〈Wij〉2
]
, (S19b)

meaning that the relative fluctuation is
√

varλmax/〈λmax〉 ' 1/n.
In the case in which the graph is sparse, i.e. k̄ ' O(1) and p ' 1/n we know that the degree of each node has a

Poisson distribution with mean k̄. As a consequence, Xi will have a compound Poisson distribution with

〈Xi〉 = k̄〈Wij〉 (S20a)

varXi = k̄〈W 2
ij〉 . (S20b)

If we now compute the first two moments of
∑

iXi/n we find that:

〈λmax〉 =
1

n
n〈Xi〉 = k̄〈Wij〉 (S21a)

varλmax =
1

n2
n varXi =

k̄〈W 2
ij〉

n
, (S21b)

meaning that the relative fluctuation is
√

varλmax/〈λmax〉 ' 1/
√
n. Moreover, we can see that the fluctuation on

〈λmax〉 is of the same order of the correction in (S17), therefore we are not able to compute the distribution of λmax

in this case.
In the previous derivation we assumed that all entries of the interbank leverage matrix are i.i.d., which is not

entirely true. In fact, in our networks a bank cannot extend a loan to itself, meaning that there are no loops (cycles of
length one), i.e. the diagonal of the weighted adjacency matrix is filled with zeros. To compute the relative correction
on 〈λmax〉 it will suffice to note that if λ is an eigenvalue of a matrix M , λ− a is an eigenvalue of the matrix M − aI.
As a consequence, in the case of sparse graphs, we have that 〈λmax〉 = np〈Wij〉 − p〈Wij〉 = (n− 1)p〈Wij〉. Since for
graphs without loops k̄ = (n − 1)p, we have that 〈λmax〉 = k̄〈Wij〉. In the case of sparse graphs the correction is
already accounted for in (S21a), provided that the correct value of k̄ is used.
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FIG. S1. Example of growth process in which a stable network with average interbank leverage larger than one becomes
unstable as new banks are added to the system. We stress that the crossing to the unstable regime is genuinely driven by the
fact that fluctuations in the asymptotic distribution of λmax shrink as n becomes larger: in fact the density of edges in the
network stays roughly constant. Here the initial network has n = 20 and the weight distribution is exponential.

In both cases we have that λmax = k̄〈Wij〉, as n → ∞, but with different relative fluctuations. It is worth noting
that, when Λ is the matrix of interbank leverage, k̄〈Wij〉 is precisely the average interbank leverage `. Therefore, for
n → ∞, if ` > 1 the system will be unstable, while if ` < 1 it will be stable. However, if n is not large, fluctuations
are relevant, and a system can be stable even if ` > 1, and vice versa. We now provide an example of how adding
nodes to such a network can make the system unstable. We start by randomly generating an Erdős-Renyi graph with
given p and using an exponential distribution of weights with mean 〈Wij〉, so that ` > 1, stopping as soon as we
find a stable graph. We then proceed to add a new node at a time, by preserving the property that all entries of
the weighted adjacency matrix are i.i.d. and by keeping the density of edges (i.e. k̄) constant. In fact, if we devised
a growth process in which k̄ increases, the system would trivially become unstable. We use the following algorithm.
Let n be the number of nodes before the addition of a new node i. (i) We randomly form edges from node i and
each of the other n nodes with probability p; (ii) we draw a weight from the weight distribution for each of the new
outcoming edges from i: (iii) we rescale such weights multiplying them by (n − 1)/n; (iv) we randomly form edges
from each of the other n nodes to node i with probability p; (v) we draw a weight from the weight distribution for
each of the new incoming edges for i; (vi) we rescale the weights of all edges starting from the new neighbors of i
(including the ones towards node i) so that the sum of all weights of the edges coming out from those nodes do not
change after the addition of node i. In Fig. S1 we see a realization of such process in which both the density of edges
and the average interbank leverage are roughly constant, while λmax becomes larger than one, driving the system
towards the instability. Let us note that such algorithm is designed to keep all interbank leverages constant. However,
the probability distribution of single entries of the interbank leverage matrix may vary from a step of the algorithm
to the next one. We have checked that the simpler variant in which one keeps the probability distribution of single
entries constant and the interbank leverage constant only on average yields the same results.

ADDING EDGES

For completeness, we show in Fig. S2 here the analogous of Fig. 3 of the main text for the years between 2008 and
2012. We also include the year 2013 (already in Fig. 3 of the main text) for reference.
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FIG. S2. Analogous of Fig. 3 of the main text for years from 2008 to 2013. 2008: upper left, 2009: upper right, 2010: mid left,
2011: mid right, 2012: bottom left, 2013: bottom right. For λmax < 1 the interbank network is stable (green region), while for
λmax > 1 it is unstable (red region). For comparison we also plot (dashed blue line) the average interbank leverage.
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