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Abstract: This paper proposes a new algorithm for solving Mixed-Integer Quadratic Program-
ming (MIQP) problems. The algorithm is particularly tailored to solving small-scale MIQPs
such as those that arise in embedded hybrid Model Predictive Control (MPC) applications. The
approach combines branch and bound (B&B) with nonnegative least squares (NNLS), that are
used to solve Quadratic Programming (QP) relaxations. The QP algorithm extends a method
recently proposed by the author for solving strictly convex QP’s, by (i) handling equality and
bilateral inequality constraints, (ii) warm starting, and (iii) exploiting easy-to-compute lower
bounds on the optimal cost to reduce the number of QP iterations required to solve the relaxed
problems. The proposed MIQP algorithm has a speed of execution that is comparable to state-
of-the-art commercial MIQP solvers and is relatively simple to code, as it requires only basic
arithmetic operations to solve least-square problems.

Keywords: Mixed-integer quadratic programming, Quadratic Programming, Active set
methods, Nonnegative least squares, Model predictive control, Hybrid systems.

1. INTRODUCTION

After the first paper (Bemporad and Morari, 1999), hybrid
Model Predictive Control (MPC) has received tremendous
attention, both by academic researchers and industrial
engineers. The main reason is the large variety of complex
control problems that the approach can handle, due to
the ability of capturing in the same model multiple linear
dynamics, logic variables and states, mixed linear and
logical constraints, meeting closed-loop performance and
constraint satisfaction requirements in a rather direct, ef-
fective, and systematic way (Bemporad and Morari, 1999).
As for linear and nonlinear MPC, this success would not
have been possible if good numerical solvers were not
available to solve Mixed-Integer Quadratic Programming
(MIQP) or mixed-integer linear programming problems,
and to automatize the translation of the hybrid control
problem into a computationally-tractable form (Torrisi
and Bemporad, 2004). In fact, evaluating the hybrid MPC
control decision on line requires solving an MIQP at each
time step. While to date very e�cient commercial solvers
exist to solve MIQPs (Gurobi Optimization, Inc., 2014;
IBM, Inc., 2014; Fair Isaac Corporation, 2015), these are
not tailored to embedded applications on low-cost/low-
power control boards. E↵orts in this direction were re-
cently proposed by Frick et al. (2015), extending an em-
bedded convex programming solver based on interior-point
methods to a Branch and Bound (B&B) setting (Floudas,
1995). Another approach for B&B-based MIQP tailored
to MPC problems was proposed by Axehill and Hansson
(2006), where a dual QP method is employed and warm-
started from parent-node solutions, and optimality condi-
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tions are solved using Riccati recursions. The method does
not exploit however dual lower bounds on the optimal cost,
that is instead particularly useful to reduce the number of
solved QP relaxations (Fletcher and Ley↵er, 1998).

In this paper, we propose a B&B method to solve MIQPs
that leverages on a novel solution algorithm for strictly
convex QPs recently developed by the author (Bemporad,
2015b). Such a QP solver is an active set method based on
a nonnegative least squares (NNLS) reformulation of the
quadratic optimization problem, is quite fast and simple
to code, and, contrary to iterative methods, converges
after a finite number of iterations to the solution, rather
insensitively with respect to preconditioning of problem
matrices. The advantage of the method is that it relies on
solving least-squares problems, probably one of the most
studied problems in numerical linear algebra, so that an
abundance of fast and robust numerical techniques are
available for its implementation. The benefits of using non-
negative least squares in MPC was recently investigated
by the author, both for embedded linear MPC based on
QP (Bemporad, 2015b) and for solving the multiparamet-
ric quadratic programming (mpQP) problems that arise in
explicit MPC (Bemporad, 2015a).

To be able to use the QP solver of (Bemporad, 2015b)
as the core engine for solving QP relaxations during
branching, this paper first extends the algorithm to the
case of equality and bilateral inequality constraints, to
warm starting from previous solutions, and to compute
dual lower bounds on the optimal cost.

We show in examples that the resulting MIQP solver is
quite competitive with respect to commercial packages,
at least to solve small-scale MIQPs that arise in typical
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embedded hybrid Model Predictive Control (MPC) appli-
cations.

1.1 Notation

Let Rn denote the set of real vectors of dimension n and
N the set of natural integers, respectively, and let I ⇢ N
be a finite set of integers. For a vector a 2 Rn, a

i

denotes
the i-th entry of a, aI the subvector obtained by collecting
the entries a

i

for all i 2 I, kak2 the Euclidean norm of a,
kak1 =

P
n

i=1 |ai| the 1-norm of a, the condition a > 0 is
equivalent to a

i

> 0, 8i = 1, . . . , n (and similarly for �,
, <), and diag(a) is the diagonal matrix whose (i, i)-th
element is a

i

. We denote by 0
n

the vector of Rn with all
zero components, with the subscript

n

dropped whenever
the dimension is clear from the context. For a matrix
A 2 Rn⇥m, A0 denotes its transpose, A

i

denotes the i-
th row of A, AI the submatrix of A obtained by collecting
the rows A

i

for all i 2 I, and AIJ the submatrix of A
obtained by collecting the rows and columns of A indexed
by i 2 I and j 2 J , respectively. Matrix A

# 2 Rm⇥n

denotes the pseudoinverse matrix of A, namely AA

#
A =

A, A#
AA

# = A

#, AA# = (AA

#)0, A#
A = (A#

A)0 (if A
is full column rank, A# , (A0

A)�1
A

0). For a square matrix
A 2 Rn⇥n, A

�1 denotes the inverse of A (if it exists)
and A

�T its transpose, A � 0 (A ⌫ 0) denotes positive
definiteness (semidefiniteness) of A. Matrix I

n

denotes the
identity matrix of order n, where sometimes the subscript
n is dropped if the dimension is clear from the context.

2. PROBLEM FORMULATION

We want to solve the following class of Mixed-Integer
Quadratic Programming (MIQP) problems

min
z

V (z) , 1

2
z

0
Qz + c

0
z (1a)

s.t. `  Az  u (1b)
Gz = g (1c)

Ā

i

z 2 {¯̀
i

, ū

i

}, i = 1, . . . , q (1d)

where Q � 0 is the Hessian matrix, Q 2 Rn⇥n, c 2 Rn,
A 2 Rm⇥n, `, u 2 Rm, `  u, G 2 Rp⇥n, g 2 Rp,
Ā 2 Rq⇥n, ¯̀

, ū 2 Rq. Binary constraints z

i

2 {0, 1} are
a special case of (1d), obtained by setting Ā

i

as the i-th
row of the identity matrix, ¯̀

i

= 0, and ū

i

= 1.

MIQP problems of the form (1) arise when formulating
hybrid MPC controllers based on the following Mixed
Logical Dynamical (MLD)

x

k+1 = Ax

k

+ B1vk + B2�k + B3⇣k + B5 (2a)
y

k

= Cx
k

+D1vk +D2�k +D3⇣k +D5 (2b)
E2�k + E3⇣k  E1vk + E4xk

+ E5, (2c)

model representation, where x
k

is the state vector, y
k

is the
output vector, v

k

is the input vector, ⇣
k

and �

k

are auxil-
iary vectors. Vector ⇣

k

is real-valued, �
k

is binary, x
k

, u

k

, y

k

can contain both real and binary components. Matrices A,
B
i

, C, D
i

and E
i

are constant and determine the hybrid
dynamics. They can be obtained automatically by high-
level descriptions of the hybrid dynamics and constraints,
for example by using the translation tool HYSDEL (Torrisi
and Bemporad, 2004). The MLD model (2) is used to
formulate the following hybrid MPC problem

min
{vk,�k,⇣k}T�1

k=0

T�1X

k=0

kL
x

(x
k

� r

x

k

)k22 + kLv

(v
k

� r

v

k

)k22 + (3a)

kL
⇣

(⇣
k

� r

⇣

k

)k22 + kL�

(�
k

� r

�

k

)k22
s.t. MLD model (2) (3b)

x0 = x(t)

that can be mapped into a MIQP problem of the form (1),
with z = [ v0

0 ... v

0
N�1 �

0
0 ... �

0
N�1 ⇣

0
0 ... ⇣

0
N�1 ]

0 2 Rn, ¯̀ = 0,
ū = 1, and Ā containing the rows of the identity matrix
I

n

corresponding to the binary components of vector z.

We have assumed that matrix Q in (1a) is positive definite.
In many hybrid MPC formulations this is not the case, as
some of the weight matrices L

x

, L
v

, L
⇣

, L
�

may not be
full-rank and lead to a resulting Hessian matrix Q ⌫ 0. In
such cases, we assume the problem gets modified by adding
a regularization term ⇢I

n

to Q, 0 < ⇢⌧ 1. We will show in
Section 5.2 that this does not change the computed hybrid
MPC action significantly.

3. EXTENDED QP SOLVER BASED ON NNLS

The core ingredient of the MIQP algorithm proposed in
this paper is the QP solver developed in (Bemporad,
2015b) for minimizing strictly convex quadratic functions
subject to inequality constraints. Such a QP solver is based
on the idea of rephrasing a strictly convex QP problem
as a Least Distance Problem (LDP) that is solved via a
NNLS algorithm, and was shown very e�cient in (Bempo-
rad, 2015b) compared to existing state-of-the-art QP algo-
rithms. In this section we extend the algorithm to handle
bilateral inequalities (1b), equality constraints (1c), warm
starting, and early stopping, so that it can be e�ciently
exploited within a branch & bound (B&B) framework. The
resulting extended method to solve the QP problem (1a)–
(1c) is described in Algorithm 1.

We justify the various steps of Algorithm 1 in the following
sections.

3.1 Bilateral inequalities and equalities

The dual QP problem of (1a)–(1c) is the following convex
QP

max
�`,�u,µ

 (�
`

,�

u

, µ) , �1

2

h
�`
�u
µ

i0 h�A

A

G

i
Q

�1·

[�A

0
A

0
G

0 ]
h

�`
�u
µ

i
�


d`
du
f

�0 h
�`
�u
µ

i
� 1

2
c

0
Q

�1
c (8a)

s.t. �

`

,�

u

� 0, µ free, (8b)

where �

`

,�

u

2 Rm, µ 2 Rp, and d

`

, d

u

2 Rm, f 2 Rp are
defined as follows:

d

`

, �`�AQ

�1
c, d

u

, u+AQ

�1
c, f , g+GQ

�1
c. (8c)

The following theorem shows how the QP problem (1a)–
(1c) is equivalent to a least squares problem in which
some of the variables are constrained to be nonnegative,
extending (Bemporad, 2015b, Th. 1) to the case of equality
and bilateral inequality constraints.

Theorem 1. Consider the QP (1a)–(1c) and let Q � 0.
Let L

0
L be a Cholesky factorization of Q and define
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Algorithm 1 QP solver based on NNLS with equality
constraints, bilateral inequalities, warm start, and early
stop

Input: Inverse Cholesky factor L�1 of Q; matrices M =
AL

�1, N = GL

�1; vectors c, v = L

�T

c, d
`

= �(`+Mv),
d

u

= u+Mv, f = g+NL

�T

c; initial guess P
u

,P
`

, vectors
y

`

, y

u

, w

`

, w

u

, ⌫, a, scalar �, �, V satisfying (13), (14), (15);
max tolerable value V0 for the optimal cost; feasibility
tolerance ✏ � 0.

1. k  0;
2. if (min{w

`

, w

u

} � ��✏ or P
`

[ P
u

= {1, . . . ,m} or
a

0
a + �

2 = 0 or V > V0) and k > 0 then go to
Step 8;

3. k  k + 1; i
`

 argmin
i2{1,...,m}\P`

w

`i

,
i

u

 argmin
i2{1,...,m}\Pu

w

ui

;
4. if w

`i`  w

uiu then P
`

 P
`

[ {i
`

}; �  � + |d
`i` |;

otherwise P
u

 P
u

[ {i
u

}; �  � + |d
uiu |;

5. s

`

, s

u

 0
m

;
6. solve the least squares (LS) problem

h
s`P`
suPu
s⌫

i
 argmin

z

����


�M

0
P`

M

0
Pu

N

0

d

0
`P`

d

0
uPu

f

0

�
z +

⇥
0n
�

⇤����
2

2

;

(4)
7. if s

`P` , suPu � 0 then
h

y`
yu
⌫

i
 

h
s`
su
s⌫

i
; a M

0(y
u

� y

`

) +N

0
⌫; (5a)

�  � + d

0
`

y

`

+ d

0
u

y

u

+ f

0
⌫; (5b)

[ w`
wu ] Ma

⇥�I

I

⇤
+ �

⇥
d`
du

⇤
; (5c)

V  as in (14b); (5d)
go to Step 2;

otherwise

↵

`

 min
h2P`: s`h0

⇢
y

`h

y

`h

� s

`h

�
;

↵

u

 min
h2Pu: suh0

⇢
y

uh

y

uh

� s

uh

�
;

h
y`
yu
⌫

i
 

h
y`
yu
⌫

i
+
⇣h

s`
su
s⌫

i
�
h

y`
yu
⌫

i⌘
·min{↵

`

,↵

u

};
I
`

 {h 2 P
`

: y
`h

= 0},P
`

 P
`

\ I
`

;
�  � � kd

`I`k1;
I
u

 {h 2 P
u

: y
uh

= 0};P
u

 P
u

\ I
u

;
�  � � kd

uIuk1;
go to Step 5;

8. if the residual in Step 6 is nonzero then
if V  V0 then

z

⇤  �L�1

✓
1

�

a+ v

◆
;


�

⇤
`

�

⇤
u

µ

⇤

�
 1

�

h
y`
yu
⌫

i
; (7a)

V

⇤  V ; (7b)

otherwise V

⇤
> V0;

otherwise QP problem is infeasible;
9. end.

Output: Primal solution z

⇤ of the QP problem (1a)–
(1c); optimal Lagrange multipliers �

⇤
`

,�

⇤
u

� 0 of lower
and upper bound constraints (1b) and µ

⇤ of equality
constraints (1c); optimal cost V

⇤, or infeasibility status,
or proof that V ⇤

> V0; number k of iterations.

M , AL

�1, N , GL

�1. Let � be any positive scalar. Con-

sider the Partially Nonnegative Least Squares (PNNLS)
problem

min
y

1

2

����


M

0

�d0
`

�
y

`

�

M

0

d

0
u

�
y

u

�

N

0

f

0

�
⌫ �


0
�

�����
2

2

(9a)

s.t. y

`

, y

u

� 0, ⌫ free (9b)

with y

`

, y

u

2 Rm, ⌫ 2 Rp, and let

r

⇤ ,


M

0(y⇤
`

� y

⇤
u

)�N

0
⌫

⇤

�� � d

0
`

y

⇤
`

� d

0
u

y

⇤
u

� f

0
⌫

⇤

�
, (10)

be the residual obtained at the optimal solution (y⇤
`

, y

⇤
u

, ⌫

⇤)
of (9), where y

⇤
`

, y

⇤
u

2 Rm, ⌫⇤ 2 Rp, and r

⇤ 2 Rn+1. The
following statements hold:

i) If r⇤ = 0 then QP (1a)–(1c) is infeasible;
ii) If r⇤ 6= 0 then

z

⇤ , �Q�1

✓
c+

A

0(y⇤
u

� y

⇤
`

) +G

0
⌫

⇤

� + d

0
`

y

⇤
`

+ d

0
u

y

⇤
u

+ f

0
⌫

⇤

◆
(11)

solves QP (1a)–(1c).

Proof. See Appendix A.

3.2 Properties of the solution

The following Lemma 1 shows the properties of the primal
and dual solutions that one could reconstruct during the
iterations of Algorithm 1 as in (7a) below, as well as the
corresponding primal and dual objective functions.

Lemma 1. Let y
`

, y

u

, ⌫, a and � be defined as in (5a)–(5b)
for a given � > 0, with s

`

, s

u

� 0 and s

⌫

obtained by
solving the LS problem (4), and let � > 0. The primal cost
associated with z = �L�1

�
1
�

a+ v

�
, v = L

�T

c, and the
dual cost associated with vectors �

`

= 1
�

y

`

, �
u

= 1
�

y

u

, and
µ = 1

�

⌫ are such that

 (�
`

,�

u

, µ) =�1

2

a

0
a

�

2
� � � �

�

� 1

2
v

0
v (12a)

V (z) =
1

2

✓
a

0
a

�

2
� v

0
v

◆
(12b)

 (�
`

,�

u

, µ) = V (z)  V (z⇤). (12c)

Proof. Since � > 0 and y

`

= s

`

� 0, y
u

= s

u

� 0, we
have that the triplet (�

`

,�

u

, µ) is feasible for the dual QP
problem (8), and therefore the inequality  (�

`

,�

u

, µ) 
V (z⇤) in (12c) is satisfied. Equality (12a) follows by (5a)–
(5b) and substituting �

`

,�

u

, µ in the dual cost (8a). By
substituting the expression for z in (1a) we obtain the
second equality (12b). Equality (12c) follows from (5)
and from the conditions of optimality of (9) related to
complimentary slackness, that is y

0
`

w

`

+ y

0
u

w

u

= 0, and
of ⌫ as a function of y

`

, y

u

given by (Bemporad, 2015a,
Lemma 1), that is (NN

0 + ff

0)⌫ � NM

0
y

`

+ NMy

u

+
fd

0
`

y

`

+ fd

0
u

y

⇤
u

+ �f = 0 (cf. the proof of Theorem 1 in
Appendix A).

In case � > 0, by (12c) of Lemma 1 the quantity z

as in (7a) is always super-optimal during the iterations
of Algorithm 1 (and, if it is strictly super-optimal, is
also necessarily infeasible); it only becomes optimal (and
therefore feasible) when the algorithm terminates with a
nonzero residual.
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3.3 Warm starting

We consider as a valid warm start the initial active sets
P
u

,P
`

✓ {1, . . . ,m}, initial guess y
`

, y

u

, w

`

, w

u

2 Rm and
⌫ 2 Rp for the PNNLS problem (9) satisfying the following
conditions:

P
u

\ P
`

= ; (13a)
y

`

, y

u

� 0, (13b)

⌫ = �
h
N

0

f

0

i# h
M

0(yu�y`)
�

i
(13c)

w

`

= �MM

0(y
u

� y

`

) + �d

`

(13d)

w

u

= MM

0(y
u

� y

`

) + �d

u

(13e)

y

0
`

w

`

= y

0
u

w

u

= 0 (13f)
y

`i

� 0, w

`i

= 0, 8i 2 P
`

, (13g)
y

ui

� 0, w

ui

= 0, 8i 2 P
u

(13h)
y

`i

= 0, 8i 2 {1, . . . ,m} \ P
`

(13i)
y

ui

= 0, 8i 2 {1, . . . ,m} \ P
u

, (13j)

where

� = d

0
`

y

`

+ d

0
u

y

u

+ � (13k)

along with the following quantities

a=M

0(y
u

� y

`

) +N

0
⌫ (14a)

V =
1

2

✓
a

0
a

�

2
� v

0
v

◆
. (14b)

See the proof of Theorem 1 for a justification of condi-
tions (13) and of Lemma 1 for conditions (14).

3.4 Early stopping criteria

By exploiting the result of Lemma 1, Algorithm 1 has been
formulated for solving the QP problem (1a)–(1c) only if
the optimal solution V (z⇤)  V0, where V0 is a given value
(possibly V0 = +1). This is of particular importance, in
that it allows to halt immediately Algorithm 1 at Step 2
after computing (5) at Step 7, in case the quantity V

in (14b) is greater than V0. This feature will be particularly
useful in the B&B setting described in next Section 4.

The following Corollary 1 of Theorem 1 (that extends (Be-
mporad, 2015b, Corollary 2) to the equality constrained
case) justifies the stopping condition a

0
a + �

2 = 0 at
Step 2, providing a simple yet very e↵ective criterion to
early detecting the infeasibility of the QP problem (1a)–
(1c). In the numerical implementation of Algorithm 1, the
condition a

0
a + �

2 = 0 is replaced by a

0
a + �

2  ✏infeas,
where ✏infeas > 0 is a small tolerance.

Corollary 1. Let s
`

, s

u

a solution of problem (4), let s
`

, s

u

,
and let a, � be defined as in (5). If a0a + �

2 = 0 then the
QP problem (1a)–(1c) is infeasible.

Proof. The quantity a

0
a + �

2 is equal to the residual of
problem (4). As proved in part i) of Theorem 1, if such
a residual is zero then the polyhedron C , {u 2 Rn :
MPuu  u,MP`u � `, Nu = f} is empty. Hence, also the
polyhedron {u 2 Rn : Mu  u,Mu � `, Nu = f} = C \
{u 2 Rn : M{1,...,m}\Pu

u  u,M{1,...,m}\P`
u � `, Nu =

f} is empty, and therefore problem (1a)–(1c) is infeasible.

3.5 Improving numerical robustness

The basic NNLS algorithm of Lawson and Hanson (1974)
is formulated for � = 1. As suggested in (Bemporad,
2015b), we choose here to adapt � during iterations to
the following value

� = 1 + kfk1 + kd`P`k1 + kduPuk1 (15)

which provides better numerical conditioning.

Although less critical than with iterative methods like
accelerated gradient projection (Patrinos and Bemporad,
2014) and ADMM (Boyd et al., 2011), preconditioning the
MIQP problem (1) sometimes ensures a better numerical
robustness of Algorithm 1. However, contrary to iterative
methods, in active set methods the e↵ect of scaling the
variables of the problem is much less critical, as the total
number of iterations may decrease, remain constant, or
even increase sometimes. In case preconditioning is needed,
we suggest here to use Jacobi diagonal scaling of the
inequality constraints (1b) defined as follows (Bertsekas,
2009):

✓

i

, 1

kM
i

k2
(16a)

M  diag(✓1, . . . , ✓m)M (16b)
`

i

 ✓

i

`

i

(16c)
u

i

 ✓

i

u

i

, i = 1, . . . ,m. (16d)

4. MIQP SOLVER BASED ON NNLS

The B&B Algorithm 2 solves the convex MIQP prob-
lem (1) by exploiting the features o↵ered by Algorithm 1.

The sets Q
`

,Q
u

initialized at Step 2 represent the sets of
indices corresponding to the equality constraints induced
by setting, respectively, Ā

i

z = ¯̀
i

or Ā

i

z = ū

i

during
branching. The tuple A collects the input arguments to
Algorithm 1, while S is an ordered list of tuples, corre-
sponding to the equality-constrained QP’s that remain
to be solved. At Step 3.1 the last element A of S is
extracted to solve the corresponding MIQP relaxation,
corresponding to a depth-first search.

After executing Algorithm 1 at Step 3.2, the final values
of P

`

,P
u

,M, y

`

, y

u

, w

`

, w

u

, ⌫, d

`

, d

u

, �, �, a, V

⇤ are kept and
used (if needed) to warm start the subsequent QP relax-
ations. Note that in this case V

⇤ becomes a lower bound
for all children QP problems, as these include additional
equality constraints. Step 3.3.1 is only executed if the
QP relaxation was feasible and did not halt because the
condition V > V0 was satisfied (that is, the relaxation was
proven to a worse cost than the cost of the best integer-
feasible solution found so far). In this case, Step 3.3.1
checks whether all integrality constraints are satisfied,
where the quantity t

i

, � 1
�

M̄

i

(a � L

�T

c) = Ā

i

z

⇤, and
eventually updates the best known integer-feasible solu-
tion ⇣

⇤ and its corresponding cost V0. Otherwise, branch-
ing is executed at Steps 3.3.3.1–3.3.3.8 by picking up the
index i

b

corresponding to the constraint Ā
i

z that is most
distant from ¯̀

i

, ū

i

(Step 3.3.3.1). Such a constraint is
moved from the set of inequality constraints to the set
of equality constraints at Step 3.3.3.2, and two new MIQP
relaxations A0, A1 are formed at Step 3.3.3.7.
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To prove that the warm-starting vectors in A0, A1 sat-
isfy (13)–(15), note that y

`

, y

u

, ⌫ are generated at Step 7
of Algorithm 1 after solving the LS problem (4). Hence,
(y

`

, y

u

, ⌫0) and (y
`

, y

u

, ⌫1) satisfy (13c). In addition, y
`

, y
u

,
w

`

, w
u

are an output of Algorithm 1, so they satisfy the
conditions of QP optimality, and in particular (13b), that
remains satisfied after executing Step 3.3.3.4, and (13d)–
(13i). Clearly, the warm-start combination of vectors may
not be optimal, due to forcing the equality constraint
Ā

ibz = ¯̀
i

(or Ā

ibz = ū

i

) in the active set of the new
relaxed QP problem.

Step 3.3.3.8 chooses to solve first the MIQP relaxation
corresponding to the quantity t

ib that is closest to the
lower value `

ib or upper value uib . When no relaxations are
left to solve, Step 4 checks whether the initial upper-bound
V0 has remained +1, in which case no integer feasible
solution was found.

4.1 Double-inequality formulation

In Steps 3.3.3.2–3.3.3.3, Algorithm 2 fixes binary con-
straints (1d) as either the equality constraint Ā

i

z = ¯̀
i

or Ā

i

z = ū

i

. An alternative approach to equivalently fix
Ā

i

z = ¯̀
i

is to transform the relaxed inequality Ā

i

z  ū

i

into the inequality Ā

i

z  ¯̀
i

(and, similarly Ā

i

z � ¯̀
i

into Ā

i

z � ū

i

to fix Ā

i

z = ū

i

). To change the lower
bound from ¯̀

i

to ū

i

one simply subtracts the quantity
¯̀
i

� ū

i

from d

`i

(and, similarly ū

i

� ¯̀
i

from d

ui

) before
creating the children relaxed QP problems at Step 3.3.3.7.
In this way, matrices N

b

⌘ N0, Mb

⌘ M , f0 = f1 ⌘ f

remain constant during the execution of the algorithm, as
it is enough to update only vectors d

`i

, d

ui

. While the
approach is appealing for its simplicity, it may lead to a
possible increased number of iterations when solving the
QP relaxation via Algorithm 1. Moreover, the unavoidable
introduction of a tolerance " when imposing the upper
bound Ā

i

z  ¯̀
i

+ " (and, similarly, Ā
i

z � ū

i

� ") must be
taken care of accurately to avoid numerical issues.

5. NUMERICAL RESULTS

In this section we report numerical experiments obtained
on a Macbook Pro 3GHz Intel Core i7 with 16GB RAM
running MATLAB R2014b.

5.1 Random mixed-integer quadratic programs

We compare the performance of the MIQP solver de-
veloped in the previous sections (labeled as NNLS)
against the commercial state-of-the-art MIQP solver of
GUROBI v6.0 (Gurobi Optimization, Inc., 2014) and of
CPLEX (IBM, Inc., 2014) with default options. Presolvers
were disabled for fairness of comparison, although they
do not contribute significantly to change computation
time (sometimes even worsen it). Algorithm 1 has been
implemented in Embedded MATLAB code and compiled,
Algorithm 2 is run in interpreted MATLAB code.

Table 1 shows the CPU time obtained for solving feasible
MIQP problems with n variables, m bilateral linear in-
equality constraints, p binary constraints of the form z

i

2
{0, 1}, and condition number  = 104 of the primal Hessian

Algorithm 2 MIQP solver based on NNLS

Input: MIQP problem matrices Q = Q

0 � 0, A, G, Ā
and vectors `, u, g, ¯̀, ū; feasibility tolerance ✏ � 0.

1. Compute inverse Cholesky factorization Q

�1 =
L

�1
L

�T ; v  L

�T

c;
2. set M0  

⇥
Ā

A

⇤
L

�1, d
`

= �
⇥ ¯̀
`

⇤
� M0L

�T

c, d
u

=
[ ū
u

] +M0L
�T

c;
N0  GL

�1, f  g +N0L
�T

c;
P
`

,P
u

 ;, y
`

, y

u

, w

`

, w

u

 0
q+m

;
�, �  1 + kfk1, ⌫  �(N0N

0
0 + ff

0)�1
f�;

a M

0(y
u

� y

`

) +N

0
⌫;

V  1
2

⇣
a

0
a

�

2 � v

0
v

⌘
; V0  +1;

⇣

⇤  ;; Q
`

,Q
u

 ;;
A {P

`

,P
u

,M0, N0, f, y`, yu, w`

, w

u

, ⌫, d

`

, d

u

, �, �,

a, V,Q
`

,Q
u

};
S  {A};

3. while S 6= ; do:
3.1. get last element A 2 S; set S  S \ {A};
3.2. execute Algorithm 1 with input from A and get

z

⇤
, V

⇤
,P

`

,P
u

, y

`

, y

u

, w

`

, w

u

, ⌫, d

`

, d

u

, �, �, a;
3.3. if QP problem feasible and V

⇤  V0 then
3.3.1. if (Q

`

[Q
u

= {1, . . . , q} or t

i

, � 1
�

M̄

i

(a�
L

�T

c) 2 {`
i

, u

i

}, 8i = 1, . . . , q)
then V0  V

⇤, ⇣⇤  z

⇤; otherwise
3.3.3.1. i

b

 arg min
i2{1,...,q}\(Q`[Qu)

��
t

i

� `i+ui
2

��;

3.3.3.2. J  Q
`

[Q
u

[{i
b

}; I  {1, . . . , q}\J ;

3.3.3.3. N

b

 
h

N

M̄J

i
; M

b

 
⇥
M̄I
M

⇤
;

3.3.3.4. y

`

 vector of components of y
`

after
eliminating the component y

`b

corre-
sponding to i

b

(same for y
u

, w

`

, w

u

);

3.3.3.5. f0  

2

4
f

�¯̀Q`
ūQu

�¯̀
ib

3

5+N

b

L

�T

c;

f1  
"

f

�¯̀Q`
ūQu
ūib

#
+N

b

L

�T

c;

3.3.3.6. ⌫0  [ ⌫

y`b ]; ⌫1  [ ⌫

yub ];
3.3.3.7. A0  {P

`

,P
u

,M

b

, N

b

, f0, y`, yu, w`

, w

u

,
⌫0, d`, du, �, �, a, V

⇤
,Q

`

[ {i
b

},Q
u

};
A1  {P

`

,P
u

,M

b

, N

b

, f1, y`, yu, w`

, w

u

,
⌫1, d`, du, �, �, a, V

⇤
,Q

`

,Q
u

[ {i
b

}};
3.3.3.8. if t

ib  `i+ui
2 then S  S [ {A1,A0};

otherwise S  S [ {A0,A1};
4. if V0 = +1 then (1) is infeasible otherwise V⇤  

V0;
5. end.

Output: Solution ⇣

⇤ of the MIQP problem (1), optimal
cost V⇤, or infeasibility status.

Q

1 . The reported time is the worst-case obtained over 20
instances for each triplet n, m, p. Problem (4) in Algo-
rithm 1 is solved by updating the LDLT decomposition

1 The entries of matrix A are generated from the normal distribution
N (0, 0.0025), `, u from the uniform distribution U(0, 1), c from
N (0, 100); matrix Q = U⌃V 0, where U, V are orthogonal matrices
generated by QR decomposition of random n ⇥ n matrices, and ⌃
is diagonal with nonzero entries having logarithms equally spaced
between ± log()/4 (Bierlaire et al., 1991).
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(NNLS
LDL

in the table) of

�MP`
d`P`

MPu duPu
N f

� 
�M

0
P`

M

0
Pu

N

0

d

0
`P`

d

0
uPu

f

0

�

recursively as described in (Bemporad, 2015b) when the

dimension of vector
h

y`
yu
⌫

i
is smaller or equal than n, and,

for improved numerical robustness, QR factorization in
case more than n elements must be optimized in Prob-
lem (4). As an alternative, we purely updated the QR
factorization of the same matrix (NNLS

QR

in the table)
recursively as described in (Lawson and Hanson, 1974,
Chap. 24, Method 1).

n m q NNLSLDL NNLSQR GUROBI CPLEX
10 5 2 2.3 1.2 1.4 8.0
10 100 2 5.7 3.3 6.1 31.4
50 25 5 4.2 6.1 14.1 30.1
50 200 10 68.8 104.4 114.6 294.1

100 50 2 4.6 10.2 37.2 69.2
100 200 15 137.5 365.7 259.8 547.8
150 100 5 15.6 49.2 157.2 260.1
150 300 20 1174.4 3970.4 1296.1 2123.9

Table 1. Worst-case CPU time (ms) on random
MIQP problems over 20 instances for each

combination of n, m, q.

It is apparent that on such a set of random MIQP
problems, Algorithm 2 performs comparably well with
respect to the commercial solvers GUROBI and CPLEX,
especially when the number q of binary constraints is small
compared to n and m, probably due to the pure B&B
nature of Algorithm 2.

The results shown in Table 2 are obtained, under the same
conditions, on purely binary quadratic programs (n = q,
m = 5n). When turning the presolver on, in GUROBI and
CPLEX the results remain rather similar.

n m q NNLSLDL NNLSQR GUROBI CPLEX
2 10 2 5.1 4.0 0.7 8.4
4 20 4 8.9 4.3 4.5 16.7
8 40 8 19.2 18.0 37.1 14.7

12 60 12 59.7 57.8 82.3 47.9
20 100 20 483.5 457.7 566.8 99.6
25 250 25 110.4 93.3 1054.4 169.4
30 150 30 1645.4 1415.8 2156.2 184.5

Table 2. Worst-case CPU time (ms) for random
binary QP problems with n variables and 5m
constraints, over 20 instances for each value of

n and the corresponding m, q.

5.2 Hybrid MPC problem

In order to test Algorithm 2 in a hybrid MPC problem (2)–
(3), we consider the hybrid control problem described
in (Bemporad and Morari, 1999, Example 5.1) with all
zero weights except a unit weight on the output of the
system (these are the settings of the demo bm99sim.m in
the Hybrid Toolbox for MATLAB (Bemporad, 2003)) and
a prediction horizon T between 2 and 10.

The regularization term 10�4
I was added on the resulting

Hessian matrix Q to make the resulting MIQP’s positive
definite. This induces a small di↵erence in the input and

N NNLSLDL NNLSQR GUROBI CPLEX
2 2.2 2.3 1.2 3.0
3 3.4 3.9 2.0 6.5
4 5.0 6.5 2.6 8.1
5 7.6 9.8 3.7 9.0
6 12.3 17.7 4.3 11.0
7 20.5 30.5 5.8 13.1
8 28.9 47.1 7.3 17.3
9 38.8 62.5 9.5 18.9

10 55.4 98.2 10.9 22.4

Table 3. Hybrid MPC problem: CPU time
(ms) per sampling step for di↵erent prediction

horizons N

output trajectories, however the norm of the di↵erence
between the entire trajectories smaller than 0.001. We
compare Algorithm 2 with preconditioning (16) against
GUROBI and CPLEX with presolvers enabled. The results
are reported in Table 3. For T = 10, the MIQP problem
has n = 40, q = 10 (i.e., 30 continuous variables and
10 binary variables) and m = 160 linear inequalities.
We observed that disabling presolvers in GUROBI and
CPLEX sometimes speeds up sometimes slows down the
solver.

6. CONCLUSIONS

In this paper we have proposed a new MIQP solver based
on B&B that is tailored to embedded hybrid MPC appli-
cations. The approach extends an active set method re-
cently developed by the author to solve QP relaxations as
nonnegative least-squares problems. While the presented
approach was shown e↵ective in simulations compared to
reference commercial solvers, current research is devoted
to combine hybrid models and MIQP solution methods for
reaching even higher degrees of e↵ectiveness.
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APPENDIX A: PROOF OF THEOREM 1

The proof extends the proof reported in (Bemporad,
2015b) to the case of equality bilateral inequality con-
straints. First, by defining u , Lz + L

�T

c, we complete
the squares in (1a) by substituting z = L

�1
u�Q

�1
c and

recast (1) into the equivalent constrained Least Distance
Problem (LDP)

min
u

1

2
kuk2 (17a)

s.t. Mu  d (17b)
Nu = f (17c)

where M ,
⇥�M

M

⇤
, d ,

⇥
d`
du

⇤
.

i) Assume the optimal residual r

⇤ = 0 in (10). Let
⌫

⇤
+ , max{⌫⇤, 0}, ⌫⇤� , max{�⌫⇤, 0} be the positive and
negative parts of ⌫

⇤, ⌫⇤ = ⌫

⇤
+ � ⌫

⇤
�, ⌫

⇤
+, ⌫

⇤
� � 0. Then,

by (10) we get

M0
y

⇤ +N

0
⌫

⇤
+ �N

0
⌫

⇤
� = 0

d

0
y

⇤ + f

0
⌫

⇤
+ � f

0
⌫

⇤
� = ��

y

⇤
, ⌫

⇤
+, ⌫

⇤
� � 0

(18)

where y

⇤ ,
h
y

⇤
`

y

⇤
u

i
. By Farkas’s Lemma(Rockafellar, 1970,

p. 201), for any � > 0 (18) is equivalent to infeasibility of

Mu  d

Nu  f

�Nu  �f
(19)

which is obviously equivalent to (17b)–(17c). Therefore
the LDP problem (17) does not admit a solution, and
consequently (1).

ii) Consider the KKT conditions for problem (9)

�
⇥M d

N f

⇤ h �M0
y

⇤�N

0
⌫

⇤

�d

0
y

⇤�f

0
⌫

⇤��

i
� [ I0 ]w

⇤ = 0 (20a)

(y⇤)0w⇤ = 0 (20b)

⌫

⇤ free, w

⇤ � 0, y⇤ � 0 (20c)

where w

⇤ ,
h
w

⇤
`

w

⇤
u

i
is the optimal dual variable for prob-

lem (9). From (20a) we get

� [M d] r⇤ � w

⇤ = 0 (21a)

� [N f] r⇤ = 0 (21b)

and hence the condition r

⇤ 6= 0, (20a)–(20b) and (21)
imply that

0 < (r⇤)0r⇤ = (r⇤)0
h
�M0

�d

0

i
y

⇤ + (r⇤)0
h
N

0

f

0

i
⌫

⇤ � �r

⇤
n+1

= (w⇤)0y⇤ � �r

⇤
n+1 = ��r⇤

n+1,

i.e., r⇤
n+1 = �d0y⇤ � f

0
⌫

⇤ � � < 0. By letting

u

⇤ , � 1

r

⇤
n+1

r

⇤
{1,...,n} = � M0

y

⇤ +N

0
⌫

⇤

� + d

0
y

⇤ + f

0
⌫

⇤ , (22)

from (20c) and (21a) we obtain

0  w

⇤ = � [M d] r⇤ = �r⇤
n+1 [M d]

2

4
r

⇤
{1,...,n}

r

⇤
n+1
1

3

5

and hence�Mu

⇤+d � 0, or equivalently u

⇤ satisfies (17b).
Moreover,

Nu

⇤ � f = �N M0
y

⇤ +N

0
⌫

⇤

� + d

0
y

⇤ + f

0
⌫

⇤ � f = 0

i↵ 0 = NM0
y

⇤ +NN

0
⌫

⇤ + �f + fd

0
y

⇤ + ff

0
⌫

⇤ = (NN

0 +
ff

0)⌫⇤ + (NM0 + fd

0)y⇤ + �f , or equivalently i↵

⌫

⇤ = �

N

0

f

0

�# ✓
M0

d

0

�
y

⇤ +


0
�

�◆
. (23)

Since by (Bemporad, 2015a, Lemma 1) condition (23)
is always satisfied at optimality of (9), we have proved
that u

⇤ also satisfies (17c) and therefore is a feasible
candidate to solve (17). It remains to prove that u

⇤ is
also optimal for (17). To this end, consider the remaining
KKT conditions of optimality for problem (17)

u

⇤ +M0
�

⇤ +N

0
µ

⇤ = 0 (24a)

(�⇤)0(Mu

⇤ � d) = 0 (24b)

�

⇤ � 0, ⌫

⇤ free. (24c)

Let

�

⇤ , � 1

r

⇤
n+1

y

⇤
, µ

⇤ , � 1

r

⇤
n+1

⌫

⇤
. (25)

By negativity of r

⇤
n+1 and nonnegativity of y

⇤ we get
�

⇤ � 0. Moreover, by recalling (22), we get

u

⇤ =
1

r

⇤
n+1

(M0
y

⇤ +N

0
⌫

⇤) = �M0
�

⇤ �N

0
⌫

⇤

so that also (24a) is satisfied. To prove (24b) we observe
that (�⇤)0(Mu

⇤ � d) = � 1
r

⇤
n+1

(�⇤)0(Mr

⇤
{1,...,n} + dr

⇤
n+1)

= 1
(r⇤n+1)

2 (y⇤)0 [M d] r⇤ = � 1
(r⇤n+1)

2 (y⇤)0w⇤ = 0 because

of (21a) and (20b). In conclusion, u

⇤ is the optimal
solution of problem (17), and hence the vector z⇤ defined
in (11) solves (1a)–(1c).
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