
Stochastic Gradient Methods for Stochastic Model Predictive Control

Andreas Themelis, Silvia Villa, Panagiotis Patrinos, Alberto Bemporad

Abstract— We introduce a new stochastic gradient algorithm,
SAAGA, and investigate its employment for solving Stochastic
MPC problems and multi-stage stochastic optimization pro-
grams in general. The method is particularly attractive for
scenario-based formulations that involve a large number of sce-
narios, for which “batch” formulations may become inefficient
due to high computational costs. Benefits of the method include
cheap computations per iteration and fast convergence due to
the sparsity of the proposed problem decomposition.

I. INTRODUCTION

In the field of control theory, the state of the art method-
ology for dynamic decisions is Model Predictive Control
(MPC), which faces infinite-horizon constrained optimal con-
trol problems by computing solutions of an approximate
finite-horizon problem at each sampling time, and then im-
plementing the control law in accordance to a receding hori-
zon strategy. Initially restricted to the control of petroleum
refineries in the end of the ’70s, MPC is now employed in a
wide variety of areas ranging from engineering to financial
applications (see e.g. [1] and the references therein).

Stochastic Model Predictive Control (SMPC) includes the
dependency on random events. The uncertainty can either
come from data intrinsic to the problem such as random de-
mand, resources at disposal, noises, or possibly from mod-
eling errors.

Randomness is often assumed to have a convenient known
distribution, typically Gaussian [2], [3], [4], but the assump-
tion may be too restrictive. An alternative is to approximate
the stochastic process by a process having finitely many sam-
ple paths (called scenarios) and exhibiting a tree structure
that models its filtration [5], [6], [7]. Because of the expo-
nential growth of scenario trees with respect to time horizon
and probability distribution, solving SMPC problems soon
becomes very challenging in terms of computational require-
ments. One solution is developing algorithms amenable to
parallelization (see [8] and the references therein).

With the purpose of minimizing computational costs, in
the present paper we discuss stochastic first order approaches
for SMPC problems on scenario trees. More precisely, we de-
rive a new stochastic method for solving SMPC by combin-
ing two recent ideas used to improve convergence behavior
of stochastic first order methods: aggregation of stochastic
gradients [9] and variable metric approaches [10]. The idea
of using stochastic algorithms in this context was already
mentioned in [11] but to the best of our knowledge no sig-
nificant advances have been made so far. Proximal Stochastic
Gradient methods (SG) are often used to minimize functions

of the form

F (x) = f(x) +ϕ(x) :=
1

n

n∑
i=1

fi(x) +ϕ(x) (1)

where ϕ : RN → R∪{+∞} is convex and each of the
component functions fi : RN → R is convex and smooth
on domϕ. Differently from standard Gradient algorithms,
which require the computation of the full gradient of the
smooth part at each iteration, SG requires the gradient of
only one component fi. The complexity per iteration is then
independent of n, which enables the possibility to handle
large problems, without waiting to process all the compo-
nents before updating the solution.

The idea is then to decompose the expected cost of a
SMPC problem or, more generally, of a stochastic multistage
program, as

f(x) =

n∑
i=1

pifi(x) (2)

where fi is the cost associated to the i-th scenario and pi is
the probability it occurs, and to assign possible constraints to
the nonsmooth term ϕ. Sampling indices i= 1 . . .n accord-
ing to the intrinsic distribution of the problem p1 . . .pn yields
a random unbiased selection of the gradients: E[∇fi(x)] =
∇f(x). If we are able to simulate (or observe) i.i.d. scenario
realizations, then we do not need to know what the actual
values of pi are. This conforms to real world applications
where the stochastic framework is likely unknown. More-
over, since stochastic methods optimize the system using the
information of the sampled function, from an optimization
point of view this sampling criterion benefits from biasing
the optimization so to favour the most likely events. Most
importantly, we can provide explicit stopping criteria tailored
for closed loop formulations.

The paper is organized as follows: in §II we provide an
overview on SG methods and introduce some notation. In
§III we present our stochastic algorithm, SAAGA, and we
outline the main steps for its convergence proof. In §IV we
formally define scenario trees and the SMPC problem at
hand, and in §V we discuss how to solve it with SAAGA. In
§VI with some simulations we show how our method signif-
icantly improves the state-of-the-art algorithms it is derived
from. Finally, in §VII we draw some conclusions and moti-
vate future research plans.

II. STOCHASTIC GRADIENT METHODS

In this section we provide a brief overview on the main
ingredients of our analysis: aggregated SG methods and vari-

2016 European Control Conference
June 29 - July 1, 2016. Aalborg, Denmark

978-1-5090-2590-9 ©2016 EUCA 154

able metric approaches. The interested reader is referred to
[12] for the basic definitions and notation.

A. Aggregated Stochastic Gradient methods

The standard (proximal) Stochastic Gradient Descent
method (SGD) for minimizing (1) prescribes updates of the
form xk = proxγkϕ

(
xk−1− γk∇fjk(xk−1)

)
where index jk

is sampled in {1 . . .n} in either a cyclic, shuffled, or ran-
dom fashion, and the stepsize γk suitably decreases to zero.
Known drawbacks include the issue of suitably choosing the
stepsize, the slow convergence of the method, and instability
when close to a solution due to the non monotonic behaviour.

Many variants have been proposed in order to improve the
convergence, such as including momentum terms or averag-
ing iterates or gradients. In this paper, we focus on the idea
of aggregating the sampled gradient to some of the previ-
ously computed ones, hence involving direction of descent of
more component functions at once yet mantaining the cheap
computational effort of SGD [13], [14], [9], [15], [16]. We
will refer to this class of methods as Aggregated Stochas-
tic Gradient methods (AgSG). Even if there are differences
among the various AgSG algorithms, e.g. in the choice of the
components to be sampled, such variants exhibit faster con-
vergence rates with respect to SGD, and, more importantly,
boast the employment of a constant step size. Intuitively, the
aggregated gradient approximates the full gradient, so that
the algorithm behaves well even when close to the solution.
In particular, SAGA [9] allows for the presence of a nons-
mooth term ϕ. The direction of descent at step k is given
by

dkSAGA = ∇fjk(xk)− yjk +
1

n

n∑
i=1

yi (3)

where jk is the sampled index and yi is the gradient com-
puted the last time in the past index i was sampled.

B. Variable metric selection

With metric we refer to a symmetric and positive defi-
nite matrix H and to the induced scalar product 〈x, y〉H :=

〈x, Hy〉. With ‖ · ‖H we denote the induced norm, and with
prox

H
ϕ the proximity operator of ϕ with respect to ‖ · ‖H

prox
H
ϕ (x):= argmin

z

{
ϕ(z) + 1

2‖z−x‖
2
H

}
or equivalently, letting x̃= H1/2x and ϕ̃= ϕ ◦H−1/2,

= H−
1/2 proxϕ̃(x̃) (4)

When minimizing (1), operating in the metric induced by H
boils down to considering the scaled problem f̃(x̃) + ϕ̃(x̃). It
is well known that first order methods are particularly sensi-
tive to ill conditioning, which makes the selection of a good
scaling H a crucial issue for performance. For stochastic
methods, where only small portions of the function are avail-
able at each time, the optimal metric is updated at each iter-
ation giving rise to a variable metric {Hk} (the employment
of variable metrics are also considered for full (sub)gradient
methods: see e.g. [17]).

In [10] ADAGRAD adaptive scaling is introduced to en-
hance the convergence speed of SGD in the context of online
learning and regret minimization. The square of the scaling
matrix at time k is recursively defined as

A2
k =

{
δ2I for k = 0
A2
k−1 + diag

(
gk(gk)T

)
for k ≥ 1

(5)

where gk is the sampled (sub)gradient at time k and δ is any
positive scalar. The efficiency of the scaling is motivated
in the context of standard SGD iterations applied to regret
minimization.

In the next section we consider the idea of combining
variable metrics and AgSG algorithms and blend together
the respective state-of-the-art methods.

III. SAAGA ALGORITHM

We now present the SAAGA algorithm, the first ‘A’ being
short for ‘adaptive’, which combines AgSG method SAGA
with a variable metric inspired by ADAGRAD. Variable met-
rics in the context of AgSG methods have already been con-
sidered in [15], however under different assumptions on the
metric and the sampling strategy. In the following, we pro-
vide a sketch of the convergence proof, leaving the details
of the analysis to an extended version of this work.

Integrating a variable metric {Hk} in SAGA results in
updates of the form

xk = prox
Hk
γϕ

(
xk−1− γH−1k dk

)
(6)

with dk as in (3). Extending the computations of [10] and
relying on an online-to-batch conversion [18] we get that for
sparse problems a similar heuristic as (5) enhances conver-
gence. The divergent behaviour of the matrices in (5) yields
a vanishing stepsize which is necessary for the convergence
of the method. However, for SAGA this is highly penalizing
which is why we perform the following “normalization”

Hk := ‖Ak‖−1∞ Ak (7)

where Ak are as in (5) with gk being the aggregated gradient.

A. Convergence proof

In the following we assume fi to be L-smooth and µ-
strongly convex on domϕ, and with Ek we denote the ex-
pectation conditional to the knowledge at step k. We define
a scaled version of the Lyapunov function considered in [9]:

T k = T (xk,{φki }i):=
1

n

n∑
i=1

Dfi(φki)+c‖xk−x?‖2Hk
(8)

where c > 0 is to be defined, φki denotes the iterate x when
index i was last sampled before step k, x? is the (unique)
solution, and Dfi(x):= fi(x)− fi(x?)−〈∇fi(x?), x−x?〉.
Extending the proof in terms of the primal-dual metric pair
‖ · ‖Hk

/ ‖ · ‖H−1
k

and involving the metric residuals νk =

155

Algorithm I SAAGA: SAGA [9] with normalized Adaptive
scaling for minimizing (1).

INITIALIZE: x0 ∈ domϕ; y1 . . .yn ∈ RN ; 0< h ∈ Rn
γ > 0; a← 0.

For iterations k = 0,1 . . . loop as follows:
1: Sample a random index j
2: Compute g =∇fj(xk)
3: d ← g− yj + 1

n

∑n
i=1 yi and yj ← g

4: a ← a+ (d)2 and h ← (a/‖a‖∞)
1/2

% (pointwise)

5: Update xk+1 = prox
diag(h)
γϕ (xk − γd/h)% (p.wise ratio)

‖xk−x?‖Hk
−‖xk−x?‖Hk−1

we end up with the bound

Ek
[
T k+1

]
−
(
1− 1

κ

)
T k

≤

C1(
1
κ + 2cLγ2(1+β−1)

λ − 1
n

) 1

n

n∑
i=1

Dfi(φki)

+

C2(
1
n − 2cγ

(
µβγ
λ + L−µ

L

))
Df (xk)

+ cγ
(

1+β
λ γ− 1

L

)
C3

Ek
[
‖∇fjk+1

(xk)−∇fjk+1
(x?)‖2

]
+ c
(
1
κ − γµ

)
C4

‖xk −x?‖2 + cEk[νk+1] (9)

which holds for any β,γ,κ > 0 as long as λmin(Hk)≥ λ.

Theorem III.1. Let F be as in (1). Let L > 0 and µ > 0.
Assume that ϕ : RN → R is proper convex lower semicon-
tinuous and with bounded domain, and that every fi is L-
smooth and µ-strongly convex on domϕ. Then, the sequence
{xk} generated by Algorithm I with γ = 1/3L converges a.s.
to x? = argminF .

Proof. Letting r:= µ/L ∈ (0,1], it can be readily verified that
Ci ≤ 0 ∀i in (9) by choosing

γ= 1
3L , λ= 2+r

3 , κ= 2n 1+r
r , β= 1 + r, c= 3L 2+r

4n

If domϕ is bounded, by smoothness so is the sequence
{gk = ∇fjk(xk)} and it can be easily checked that λk :=
λmin(Hk)→ 1. In particular, (still by boundedness) νi→ 0
surely and λk ≥ λ for k large enough. Letting ρ = 1− 1/κ
with respect to the unconditional expectation we then have

E
[
T k
]
≤ ρT k−1 + cE[νk]≤ ·· · ≤ ρkT 0 + c

k∑
i=0

ρk−iE[νi]

and since ρ ∈ (0,1), then cλ‖xk −x?‖2 ≤ T k→ 0.

B. Implementation issues

Vectors yi store the last sampled gradients and can there-
fore be warm started offline as ∇fi(x0), otherwise initializ-
ing at 0 is advisable. The constant L needs not be known
in advance as it can be updated with a linesearch involving
solely the sampled function fj : starting from, say, L= 1, we
double it until it holds that

fj
(
u− 1

L∇fj(u)
)
− fj

(
u
)
≤ − 1

2L‖∇fj(u)‖2 (10)

IV. PROBLEM FORMULATION

We now describe the investigated MPC problem. Let us
consider a state-input dynamical systemxt = Atxt−1 + Btut−1

x0 = x•
t = 1 . . .T

(11)

x• is the initial state and for t= 1 . . .T we assume At and Bt

to depend on the realization of a random variable ξt : Ωt→
Ξt, whose outcome is known only after the input ut−1 is fed
to the system. For simplicity we consider a linear system,
but an additional affine (stochastic) term ct in the dynamics
could also be taken into account. The choice of input ut−1
can be estimated only using the past information, that is, the
outcomes of ξ1 . . . ξt−1. Any input selection policy is hence
a function ut : Ξ1× ·· ·×Ξt→ Rm (u0 is constant), or, in
other words, the policy u0 . . .uT−1 is adapted to the filtration(
σ(ξ1, · · · , ξt−1)

)
t=1...T

. This is known as nonanticipativity
constraint.

The optimality of a policy u= (u0 . . .uT−1) is measured
in terms of a cost function

f(u) := E

[
T−1∑
t=0

`t
(
ut,xt

)
+ `T (xT)

]
(12)

where x0 . . .xT are given by the dynamics (11). Here, ut =
ut(ξ1, · · · , ξt) and the expectation in (12) is taken with re-
spect to ξ1× ·· ·× ξT .

Assumption 1 (Convexity and smoothness). The per-stage
costs `t are strongly convex and differentiable with L-
Lipschitz continuous gradient for some L≥ 0.

For the sake of simplicity we assume the states not to
be constrained, but the hypothesis can clearly be relaxed.
However, the assumption still embraces many problems such
as, for instance, those in which states are soft-constrained
(see e.g. [19]). In the investigated problems we then assume
the feasibility of u to be enforced by some convex constraints

ut ∈ Ut, t = 0 . . .T − 1 (13)

Assumption 2. The feasibility sets Ut t = 0 . . .T − 1 are
nonempty, closed, convex, bounded and easy to project onto.

Finding an optimal and feasible policy boils down to solv-
ing the multistage stochastic optimization problem

minimize
(ut(ξ1...ξt))

T -1
t=0

E

[
T−1∑
t=0

`t
(
ut,xt

)
+`T (xT)

]
s.t. ut ∈ Ut (14)

where xt satisfy the dynamics (11).

A. Scenario tree

We assume the following:

Assumption 3. The random variables ξt are finitely sup-
ported and with known joint distributions.

Finiteness is a common and quite reasonable requirement,
as scenario reduction techniques [20] are usually employed
in generating finite approximations of a distribution. On the

156

other hand we will later discuss how to operate in case the
random distributions are not known.

By Assumption 3 all the combinations of outcomes of ξt
can be arranged in a tree structure of height T that we refer
to as scenario tree. With N we denote the set of its nodes,
and with Nt ⊆N those at level t (∅ for t > T). For ν ∈Nt
we denote τ(ν) as its level t, we define C(ν)⊆Nt+1 as the
set of its children, and if ν is not the root we refer to its
ancestor as a(ν).

On such tree we define the partial order relation ≥ accord-
ing to which ν ≥ µ if µ belongs to the path from the root
to ν. For µ≥ ν we denote with [µ,ν] the path from µ up to
ν (inclusive of µ and ν); if µ is the root node then we may
omit it and write simply [ν]. If instead µ > ν, then [µ,ν] is
by convention empty.

Starting from a root node at level 0 we recursively define
all the other nodes as follows: for t = 1 . . .T and for any
ν ∈ Nt−1 we assign each of the children nodes ν′ ∈ C(ν)
a different outcome of ξt. Each node ν ∈ Nt, t = 0 . . .T ,
is assigned a probability weight pν that corresponds to the
event that ξ1 . . . ξt have evolved according to the path from
the root to the node itself, namely

pν = P
[
ξt = ν, ξt−1 = a(ν), ξt−2 = a2(ν) . . .

]
The root, which is not assigned any outcome, is denoted
with a small bullet ‘•’, and is assigned probability p• = 1.
If ν ∈ Nt is such that pν = 0 then the node itself and the
subtree rooted at ν can be discarded. This happens when the
conditional probability P[ξt = ν |ξt−1 = a(ν)] is null.

With a slight abuse of notation we may emphasize the
correspondence between the nodes and the random outcomes
by identifying node ν ∈ Nt with the t-uple (ξ1, · · · , ξt) (the
root then corresponds to the empty tuple).

B. Nodal decomposition

Motivated by the dependencies of the random variables
on states and inputs, it is handy to visualize all the pos-
sible inputs and states on the scenario tree. To the node
ν = (ξ1, · · · , ξt) we associate the variables ut(ξ1, · · · , ξt) and
xt(ξ1, · · · , ξt) that we shall refer to simply as uν and xν , re-
spectively. Clearly, no input is associated to the leaf nodes
ν ∈NT as well as no state variable is defined at the root, in
that x• is rather the constant x•.

To streamline the notation we define N x := N \N0 and
N u := N \NT respectively as the sets of nodes on which
input and node variables are indexed. The system data is
indexed consistently as Aν and Bν for ν ∈N x.

With this notation, we may reformulate (11) as

minimize
(uν∈Rm)ν∈Nu

T−1∑
t=0

∑
ν∈Nt

pν`t(uν ,xν)+
∑
ν∈NT

pν`T (xν) (15a)

subject to uν ∈ Uτ(ν) and with xν recursively defined as{
x• = x•
xν = Aνxa(ν) + Bνua(ν) ν ∈N x (15b)

V. STOCHASTIC METHODS FOR MPC

We now switch to the core of the present paper and study
how to implement efficient stochastic algorithms tailored for
the MPC problem at hand. We start with a general analysis
that applies to SG methods in general; in particular, as an-
ticipated we propose a scenario-based decomposition of the
cost function and we discuss the advantages of such choice.
Then we focus on SAAGA algorithm providing further evi-
dence in support of its employment.

A. Scenario decomposition

For each scenario [ν] = (ν0 . . .νT) or, equivalently, for
each leaf node ν ∈NT , we define

f[ν](u) :=

T∑
t=1

`t(uνt ,xνt) + `T (xνT) (16)

as the cost function corresponding to the random realiza-
tion {ξ1 = ν1, · · · , ξT = νT }. (Here, as usual, xνt = xνt(u)
is recursively defined as in (15b)). Then, the total cost (ex-
pectation) can be decomposed as the weighed sum

f =
∑
ν∈NT

pνf[ν] (17a)

The feasibility constraints can be handled in a separable in-
dicator function

ϕ(u) = δŚ

µ∈NuUτ(µ)(u) =
∑
µ∈Nu

δUτ(µ)(uµ) (17b)

In the end the problem can be formulated in the shape of (1)
as follows:

minimize
u=(uµ)µ∈Nu

F (u) :=

f∑
ν∈NT

f[ν](u) +

ϕ∑
µ∈Nu

δUτ(µ)(uµ) (18)

1) Biased sampling for unbiased gradients: We shall un-
derline that pν are simply probability weights and are not
part of the component functions f[ν]. SAGA and most SG
algorithms rely on the unbiasedness of the sampled gradients
{gk}, that is, the fact that

Ek
[
gk+1

]
= ∇f(xk) (19)

Instead of selecting the component function with equal prob-
ability we then bias the sampling according to the distribution
P[jk = ν] = pν so to ensure (19). As a byproduct, the more
probable a scenario the more frequently its cost function is
sampled so that the optimization favours likely outcomes and
overlooks improbable realizations. Besides, it is not neces-
sary to know the probability weights as the scenarios can be
sampled on the fly directly from the real environment.1

1SAAGA actually requires such knowledge in order to correctly compute
the update directions (cf. line 7 of Alg. III), but it is still possible to use
estimates and refine them at each sampling à la Monte Carlo: f[ν] does not
depend on pν and any refinement would not affect the rest of the algorithm.

157

Algorithm II Computation of the gradient of the scenario
cost function f[ν].
The expressions under the horizontal brackets refer to the
quadratic cost case `t(x,u) = 1

2‖x‖
2
Q + 1

2‖u‖
2
R ∀t.

1: for t= 1 . . .T % states updatedo
2: xνt←Aνtxνt−1

+ Bνtuνt−1

3: end for
4: gT−1←∇`T (xνT)

QxνT
5: for t= T − 2 . . .0 do
6: gt ←∇x`t+1(xνt+1 ,uνt+1)

Qxνt+1

+ Aᵀ
νt+2

gt+1

7: end for
8: for t= 0 . . .T − 1 do
9: gt ←∇u`t(xνt ,uνt)

Ruνt

+ Bᵀ
νt+1

gt

10: end for
11: return gt =∇uνtf[ν] t= 0 . . .T − 1

2) Stopping criterion for MPC: Stopping criteria for SG
methods are not an easy task since from local information
we cannot infer the status of the whole system. However,
according to the receding horizon principle the only variable
of interest is the first input. Since all the scenarios share the
root node, the first input is updated always. It is then easy to
monitor the variations of uk• so to quit the algorithm when,
say, the mean residual on a window of w iterations

Rkw :=
1

w

w−1∑
i=0

‖uk−i• −uk−i−1• ‖2 (20)

falls below a given threshold. Intuitively, this criterion should
work particularly well with aggregated gradients for they
gradually approximate the full gradient. Indeed, notice that

uk −uk−1 = prox
Hk
γϕ

(
uk−1− γH−1k dk

)
−uk−1

≈ prox
Hk
γϕ

(
uk−1− γH−1k ∇f(uk−1)

)
−uk−1

and the rightmost handside being zero is equivalent to the
optimality of uk−1. Being interested in the optimality of the
first input only, in (20) we restrict our attention to the cor-
responding components and discard all the others.

B. SAAGA Algorithm for SMPC

We briefly discuss some issues for implementing the inves-
tigated SMPC problem (15) in SAAGA, and then summarize
the procedure in Algorithm III. To avoid overcomplicating
the exposition we do not include the stopping criterion dis-
cussed in §V-A.2.

1) Sparse gradients storage: To keep track of the last
computed gradients we need to pre-allocate a space yν for
each leaf node ν. Each f[ν] depends only on T many inputs
out of the |N u| total ones, specifically on those on the sce-
nario path uν0 . . .uνT−1

. In particular, ∇f[ν] is sparse (with
density O(logx/x) where x = |N u|). This has two conse-
quences: first, from a convergence speed point of view the
contribution of ADAGRAD is particularly effective [10], and
second, from a memory allocation standpoint we need to

Algorithm III SAAGA Algorithm for SMPC problem (15)
INITIALIZE: uµ,aµ, rµ← 0m (µ ∈Nu)

ytν ← 0m (ν ∈NT , t= 0 . . .T − 1)
L ← 1% Lipschitz stepsize first estimate
V ←{(root)}% set of visited nodes

For iterations k = 0,1 . . . loop as follows:
1: Sample a random scenario [ν] = (ν0 . . .νT)
2: V ← V ∪{ν1, · · · ,νT−1}
3: Compute gt =

∂f[ν]
∂uνt

(uk), (t= 0 . . .T − 1) with Alg. II

4: Update L with line search (10) on f[ν]
5: for t= 0 . . .T − 1 (in parallel)do
6: dνt ← gt− ytν + rtν% update direction
7: rνt ← rνt + pν(gt− ytν)% update past gradients average
8: ytν ← gt
9: end for

10: for µ ∈ V (in parallel)do
11: aνt ← aνt + (gt)

2 and h← (aνt)
1/4% metric sq. root

12: uk+1
µ ← h−1�Πh�Uτ(µ)

[
h�ukµ−h−1� dµ

]
13: end for

store in memory only a logarithmic portion of the entire gra-
dient for each component function f[ν]. Such nonzero com-
ponents y0ν . . .y

T−1
ν can be computed with the steps given in

Algorithm II; ytν will keep track of the gradient ∂f[ν]
∂uνt

.
2) Active nodes: Up to when a node µ is not “visited”,

that is, up to the first time a leaf ν > µ is sampled, the
corresponding variable uµ remains unchanged. To speed up
early iterations we may keep track of visited nodes in a set
V and update variables uµ only for µ ∈ V .

3) Mean and drift directions: Consistently with what dis-
cussed in §V-A.1, the (unscaled) update direction (3) now is
rather given by

dk+1 =

drift

∇f[ν](xk)− yν +

mean∑
ν∈NT

pνyν (21)

where ν is the sampled scenario. Instead of computing the
weighed average from scratch we may store the average in a
vector r and update it as r← r+ pν(∇f[ν](xk)− yν) at the
end of the iteration.

4) Proximal step: By the definition of ϕ in (17b) we have
that its proximal mapping separates as

proxγϕ
(
(uµ)µ∈Nu

)
=

ą

µ∈Nu
ΠUτ(µ)(uµ)

which is fully parallelizable on all variables and easy to com-
pute by Assumption 2. Using (4) we obtain prox

H
δX

(x) =

h−1/2�Π
h1/2�X (h1/2�x) for H = diag(h) where � de-

notes the Hadamard (elementwise) product.

VI. SIMULATIONS

In this section we provide a preliminary simulation to test
the performance of SAAGA for the problem at hand. We
consider a small SMPC problem as toy example with the
purpose of providing evidence about how the investigated
method significantly outperforms both its parent algorithms.

158

Fig. 1. Comparison of SAAGA algorithm with SAGA and ADAGRAD for
SMPC problem (15) (SAAGAu refers to SAAGA algorithm with uniform
sampling). The stopping criterion is as in §V-A.2 with a window size w
equal to two times the number of scenarios and with a threshold of 10−8.
The bottom left plot shows the mean residual Rkw , while the plots on top
compare the iterates with the exact solution which was precomputed offline.

Specifically, we consider a 4 input/8 states randomly gener-
ated SMPC problem on 32 scenarios with quadratic cost and
box constraints. All the data is randomly generated.

In Fig. 1 we can observe how the first input residual Rw
is well correlated to the actual optimality of uk• , that is, to
‖uk• −u?• ‖2, both for SAGA, SAAGA, and the uniformly
sampled version of the latter, labeled SAAGAu. On the con-
trary, for ADAGRAD such correlation does not hold, which
is due to the fact that the direction of descent ∇f[ν](uk) does
not provide an approximation to the full gradient. Besides,
the plots show how the “hybrid” method SAAGA signifi-
cantly outperforms the parents SAGA and ADAGRAD.

VII. CONCLUSIVE REMARKS

In this paper we investigated the employment of Stochas-
tic Gradient methods for solving SMPC problems. With the
goal of minimizing an expected cost f , we proposed a sce-
nario tree based approach where f is separated among the
contributions of the scenarios. The chosen decomposition bi-
ases the optimization in favour of the first decision variable,
consistently with the receding horizon principle of MPC.

To the best of our knowledge, the analysis in the paper is
the first theoretical study of the performance of (Aggregated)
Stochastic Gradient methods for solving SMPC problems.
The main contribution of the paper is SAAGA, an adap-
tive scaling of the state-of-the-art SAGA algorithm, which
in practice significantly outperforms the parent scheme yet
mantaining the same computational complexity per iteration,
i.e., the same as SGD iterations.

Aggregated Stochastic Gradient methods have conver-
gence rates comparable to those of full methods, yet with
significantly cheaper iterations. The price is paid in terms
of memory requirements, if compared to the non-aggregated
counterparts. Similarly to what currently being done in [16]

this motivates investigating the possibility to consider limited
memory variants tailored for SMPC problems or, possibly,
for separable convex optimization programs in general.

We believe that the present paper can be a starting point
promoting theoretically grounded research towards the use
of stochastic algorithms for efficiently solving SMPC.

REFERENCES

[1] D. Q. Mayne, “Model Predictive Control: Recent developments and
future promise,” Automatica, vol. 50, no. 12, pp. 2967–2986, 2014.

[2] D. Van Hessem, C. Scherer, and O. Bosgra, “LMI-based closed-loop
economic optimization of stochastic process operation under state and
input constraints,” in Decision and Control, 2001. Proceedings of the
40th IEEE Conference on, vol. 5. IEEE, 2001, pp. 4228–4233.

[3] I. Batina, A. A. Stoorvogel, and S. Weiland, “Optimal control of linear,
stochastic systems with state and input constraints,” in Decision and
Control, 2002, Proceedings of the 41st IEEE Conference on, vol. 2.
IEEE, 2002, pp. 1564–1569.

[4] M. Ono and B. C. Williams, “Iterative risk allocation: A new approach
to robust model predictive control with a joint chance constraint,” in
Decision and Control, 2008. CDC 2008. 47th IEEE Conference on.
IEEE, 2008, pp. 3427–3432.

[5] P. Patrinos, S. Trimboli, and A. Bemporad, “Stochastic MPC for real-
time market-based optimal power dispatch.” in CDC-ECE. IEEE,
2011, pp. 7111–7116.

[6] H. Heitsch and W. Römisch, “Scenario tree reduction for multistage
stochastic programs,” Computational Management Science, vol. 6,
no. 2, pp. 117–133, 2009.

[7] G. C. Calafiore and L. Fagiano, “Stochastic model predictive control
of lpv systems via scenario optimization,” Automatica, vol. 49, no. 6,
pp. 1861–1866, 2013.

[8] A. Sampathirao, P. Sopasakis, A. Bemporad, and P. Patrinos, “Dis-
tributed solution of stochastic optimal control problems on gpus,” in
54 IEEE Conf. Decision and Control, Osaka, Japan, Dec 2015.

[9] A. Defazio, F. R. Bach, and S. Lacoste-Julien, “SAGA: a fast incre-
mental gradient method with support for non-strongly convex com-
posite objectives,” CoRR, vol. abs/1407.0202, 2014.

[10] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for
online learning and stochastic optimization,” The Journal of Machine
Learning Research, vol. 12, pp. 2121–2159, 2011.

[11] I. Necoara, D. N. Clipici, P. Patrinos, and A. Bemporad, “MPC for
power systems dispatch based on stochastic optimization,” in Pro-
ceedings of the 19th IFAC World Congress. IFAC, August 2014, pp.
11 147–11 152.

[12] D. P. Bertsekas, Nonlinear Programming. Athena Scientific, 1995.
[13] D. Blatt, A. O. Hero, and H. Gauchman, “A convergent incremental

gradient method with a constant step size,” SIAM J. on Optimization,
vol. 18, no. 1, pp. 29–51, 2 2007.

[14] M. W. Schmidt, N. Le Roux, and F. Bach, “Minimizing finite sums
with the Stochastic Average Gradient,” CoRR, vol. abs/1309.2388,
2013.

[15] P. Tseng and S. Yun, “Incrementally updated gradient methods for con-
strained and regularized optimization,” Journal of Optimization Theory
and Applications, vol. 160, no. 3, pp. 832–853, 2014.

[16] M. Schmidt, R. Babanezhad, M. Osama Ahmed, A. Defazio, A. Clif-
ton, and A. Sarkar, “Non-uniform Stochastic Average Gradient method
for training conditional random fields,” ArXiv e-prints, April 2015.

[17] A. Nedić, Subgradient Methods for Convex Minimization. Mas-
sachusetts Institute of Technology, Department of Electrical Engineer-
ing and Computer Science, 2002.

[18] N. Cesa-Bianchi, A. Conconi, and C. Gentile, “On the generaliza-
tion ability of on-line learning algorithms,” Information Theory, IEEE
Transactions on, vol. 50, no. 9, pp. 2050–2057, 2004.

[19] J. A. Primbs, “A soft constraint approach to stochastic receding horizon
control,” in Decision and Control, 2007 46th IEEE Conference on, Dec
2007, pp. 4797–4802.

[20] N. Gröwe-kuska, H. Heitsch, and W. Römisch, “Scenario reduction
and scenario tree construction for power management problems,” in
Power Management Problems, IEEE Bologna Power Tech Proceed-
ings, 2003.

159

