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Abstract

The engineered class of anti-tetrachiral cellular materials is phenomenologically characterized by a strong auxeticity of the elastic

macroscopic response. The auxetic behavior, accompanied by a marked anisotropy, is activated by rolling-up deformation mecha-

nisms developed by the periodic pattern of stiff rings and flexible ligaments realizing the material micro-structure. In the absence

of a soft matrix, a linear beam lattice model is formulated to describe the free dynamic response of the periodic cell. After a static

condensation of the passive degrees-of-freedom, a general procedure is applied to impose the quasi-periodicity conditions of free

wave propagation in the low-dimension space of the active degrees-of-freedom. The effects of different mechanical parameters on

the band structure are analyzed by comparing the exact dispersion curves with explicit, although approximate, dispersion functions,

obtained from asymptotic perturbation solutions of the eigenproblem rising up from the Floquet-Bloch theory. A general scheme

for the formulation and solution of the perturbation equations is outlined, for the desired approximation order and depending on

the dimension of the perturbation vector. A satisfying approximation accuracy is achieved for low-order asymptotic solutions in

wide regions of the parameter space. The explicit dependence of the dispersion functions on the main parameters, including the cell

aspect ratio, the ligament slenderness and the ring density, allows the in-depth discussion and – in a design perspective – the fine

assessment of the spectrum properties, including specific features like wave velocities and band gap amplitudes.
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1. Introduction

Auxetic materials possess the counter-intuitive and fascinat-

ing property to expand laterally when longitudinally stretched.

Conversely, they contract laterally if compressed. This smart

macroscopic behavior, mechanically described by negative

Poisson’s ratios, is seldom observable in nature, but artificially

achievable by engineered materials [1–7]. Boosted by the ris-

ing demand for advanced applications in aerospace, chemical,

naval, nuclear, biomedical, sport engineering, known artificial

realizations of auxetic materials include polymeric or metallic

foams and laminates [8, 9], as well as micro-structured compos-

ites, which typically possess periodic cellular geometries like

– for instance – reticular networks, chiral lattices, re-entrant

honeycombs and origami folds [10–16]. In respect to conven-

tional materials, auxetic solids can offer complementary func-

tional advantages, such as an increase of the shear modulus

and fracture toughness, together with an increment of acoustic

damping and indentation resistance [17–21]. Nowadays, one

of the most promising theoretical and technological research

challenges concern the employment of chiral auxetic media as

versatile elastic guides for planar optical and acoustic waves.

Indeed, in response to specific requirements, a proper tuning of

the geometric, elastic and inertial properties, let these materials
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serve as efficient mechanical signal propagators (e.g. for infor-

mation transfer), selective passive filters (e.g. for ambient noise

reduction and vibration mitigation), low-cost integrity indica-

tors (e.g. for damage assessment) [22–26].

In the class of chiral topologies, the anti-tetrachiral material

is attracting major attention for its strong auxeticity, accompa-

nied by a marked anisotropy of the elasto-dynamic response

[12, 26–30]. The wave propagation properties of this material,

including the effects of a soft cellular matrix embedding the

micro-structure, have been studied according to the Floquet-

Bloch theory [26]. The motivating key argument is that the ge-

ometric and mechanical periodic properties can be exploited as

design parameters to control the band structure (Floquet-Bloch

spectrum) in the frequency-wavevector (ω,k)-space, in which

the dispersion curves govern the harmonic content of the elas-

tic waves traveling across the material [31]. Besides the tra-

ditional techniques of numerical continuation, which allow the

direct treatment of the implicit spectrum function F(ω,k) = 0,

an alternative approach may consist in seeking for an explicit

– although approximate – parametric form ω = G(k) of each

dispersion curve. In this respect, high-frequency asymptotic

techniques have been applied in continuous models [32], pertur-

bation methods have been formulated for multi-coupled mono-

dimensional periodic systems [33, 34] and high-frequency ho-

mogenization have been proposed in micropolar generalized

continua for chiral materials [35]. Among the others, a fea-

sible objective of theoretical and applied interest relies in the
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Figure 1: Anti-tetrachiral cellular material: (a) pattern, (b) periodic cell, (c) beam lattice model.

rapid and efficient optimization of the material spectrum in

terms of maximum amplification of the low-frequency band-

gaps [36, 37].

Within this framework, the present work focuses on the para-

metric analysis of the wave propagation properties (dispersion

curves and polarization modes) of the beam lattice material

with periodic anti-tetrachiral micro-structure. To this aim, a

parametric linear model is formulated to describe the free un-

damped dynamic response of the periodic cell (Section 2). Then

the eigenproblem governing the free propagation of planar har-

monic waves is tackled (Section 3), by means of numerical

solvers (exact solution) and different asymptotic perturbation

methods (approximate solutions). The approximate solutions

give explicit parametric functions which well-fit the optical and

acoustic branches of the Floquet-Bloch spectrum, as well as

the phase and group velocities (Section 3.3). A systematization

effort is undertaken to present the perturbation equations and

the related solution strategy in a formal mathematical scheme,

suited for their generalization to different topologies of periodic

beam lattice materials and their extension to the desired approx-

imation order. Concluding remarks are finally pointed out.

2. Beam lattice model

A beam lattice model is formulated to describe the linear

elasto-dynamic behavior of the rectangular elementary cell

characterizing – at the microscopic scale of a two-dimensional

domain – the cellular material featured by a periodic anti-

tetrachiral geometry (Figure 1b). The internal structure, or mi-

crostructure, of the elementary cell is composed by four circu-

lar rings connected by twelve tangent ligaments. From an intu-

itive perspective, the auxetic behaviour can be physically justi-

fied by the opposite-sign, iso-amplitude rotations developed by

any pair of adjacent disks in-a-row (or column), when the cell

is stretched along one or the other ligament direction.

A rigid body model is adopted for the massive and highly-

stiff rings, which are centered at the four corners of an ideal

internal rectangle and possess identical mean diameter D. The

free parameter S , denoting the ring width, allows the indepen-

dent assignment of the rigid body mass M and moment of iner-

tia J. A linear, extensible, unshearable model of massless beam

is employed for the light and flexible ligaments, in the small-

deformation range. As long as the beam-ring connections re-

alize perfectly-rigid joints, the natural length of the inner hor-

izontal and vertical ligaments coincide with the width Lh and

height Lv of the ideal internal rectangle, respectively. By virtue

of the periodicity, the cell boundary crosses the midspan – and

halves the natural length – of all the outer ligaments. Assuming

the same linear elastic material (with Young’s modulus E) and

cross-section shape (with area A and second area moment I) for

each ligament, all the beams have identical extensional EA and

flexural rigidity EI. The effects of a homogeneous soft matrix,

which may likely embed the microstructure [26], are neglected

as first approximation.

Introducing a certain circular frequency Ωr of the cellular

solid as known dimensional reference, a suited minimal set p of

independent nondimensional parameters, sufficient to describe

the inertial, elastic and geometric properties of the model, is

η=
Lh

Lv

, δ=
D

Lh

, �2=
I

AL2
h

, ω2
c=

EA

MΩ2
r Lh

, χ2=
J

ML2
h

(1)

where the aspect ratio η regulates the cell shape, by distinguish-

ing the general rectangular shape (η different from unity) from

the particular square cell shape (η = 1). The δ-parameter ex-

presses the linear horizontal density of the circular rings, which

can be interpreted as a measure of the material compositeness.

The �-parameter is the radius of gyration of the beam cross-

section, divided by the beam length to assess the slenderness

of the ligaments. Finally, χ2 accounts for the rotational-to-

translational mass ratio of the disks, while ωc is a nondimen-

sional frequency suited to normalize the beam lattice spectrum.

2.1. Equations of motion

According to the mechanical assumptions and without addi-

tional mathematical approximations, the linear undamped free

dynamics of the periodic cell is governed by a multi-degrees-

of-freedom discrete model, referred to a set of twelve config-

uration nodes. The actual configuration of the i-th node (with

i = 1, ..., 12) is described by three time-dependent components

of non-rigid displacement, corresponding to the horizontal mo-

tion Ui(t), the vertical motion Vi(t) and the in-plane rotation
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φi(t), with respect to the position xi = (Xi,Yi) in the natural con-

figuration. The nondimensional variables can be introduced

ui =
Ui

Lh

, vi =
Vi

Lh

, τ=Ωrt (2)

and q =
(
u1, ..., u12 , v1, ..., v12 , φ1, ..., φ12

)
is the 36-by-one con-

figuration vector collecting (column-wise) all the nondimen-

sional displacements.

Depending on the position of the lumped masses in the dis-

crete model and with reference to the labels in Figure 1c, the

model nodes can conveniently be distinguished into

• four internal nodes located at the ring centroids (nodes

1©... 4©), whose active displacements can be collected in the

12-by-one subvector qa =
(
u1, ..., u4 , v1, ..., v4 , φ1, ..., φ4

)
• eight external nodes located at the midspan of the outer

ligaments (nodes 5©...12©), whose passive displacements are

collected in the complementary 24-by-one subvector qp =(
u5, ..., u12 , v5, ..., v12 , φ5, ..., φ12

)
The distinction remarks that the internal nodes develop both

nondimensional elastic σa and inertial forces fa, which actively

participate in the dynamic cell equilibrium. On the contrary, the

external nodes can develop only elastic forces σp, which par-

tially depend on the stiffness coupling with the internal nodes,

and are requested to quasi-statically balance the reactive forces

fp transferred by the adjacent cells. Consistently, the active dis-

placements qa play the role of Lagrangian coordinates and suf-

fice to describe the cell dynamics after a quasi-static condensa-

tion of the passive displacements qp.

According to displacement/force decomposition, the nondi-

mensional equilibrium equation governing the undamped free

oscillations of the discrete model has the matrix form⎛⎜⎜⎜⎜⎜⎜⎝ fa

0

⎞⎟⎟⎟⎟⎟⎟⎠+
⎛⎜⎜⎜⎜⎜⎜⎝σa

σp

⎞⎟⎟⎟⎟⎟⎟⎠=
⎛⎜⎜⎜⎜⎜⎜⎝ 0

fp

⎞⎟⎟⎟⎟⎟⎟⎠ (3)

or, making explicit the displacement and acceleration depen-

dence of the elastic and inertial force,⎡⎢⎢⎢⎢⎢⎢⎣M O

O O

⎤⎥⎥⎥⎥⎥⎥⎦
⎛⎜⎜⎜⎜⎜⎜⎝ q̈a

q̈p

⎞⎟⎟⎟⎟⎟⎟⎠+
⎡⎢⎢⎢⎢⎢⎢⎣ Kaa Kap

Kpa Kpp

⎤⎥⎥⎥⎥⎥⎥⎦
⎛⎜⎜⎜⎜⎜⎜⎝ qa

qp

⎞⎟⎟⎟⎟⎟⎟⎠=
⎛⎜⎜⎜⎜⎜⎜⎝ 0

fp

⎞⎟⎟⎟⎟⎟⎟⎠ (4)

where dot indicates differentiation with respect to the nondi-

mensional τ-time and O stands for different-size empty matri-

ces. According to a lumped mass description, non-null 12-by-

12 mass submatrix M can be assumed diagonal. The symmetric

12-by-12 submatrix Kaa and 24-by-24 submatrix Kpp account

for the stiffness of the internal and external nodes, respectively.

The rectangular 12-by-24 submatrix Kap = K�pa expresses the

elastic coupling among the internal and external nodes (namely

global coupling). If the active displacement vector is conve-

niently sorted and decomposed as qa = (ua, va,φa), with sub-

vectors ua = (u1, ..., u4), va = (v1, ..., v4 ) and φa = (φ1, ..., φ4), the

related submatrices M and Kaa read

M=
1

ω2
c

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
I O O

O I O

O O χ2I

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , Kaa =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Kuu O Kuφ

O Kvv Kvφ

Kφu Kφv Kφφ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (5)

where the subsubmatrices Kuφ and Kvφ describe the rotational-

translational coupling between the displacement components of

the internal nodes (namely local coupling). The absence of

any translational-translation coupling (Kuv-subsubmatrix) can

be noted. All the non-null entries of the stiffness matrices

Kaa,Kpp,Kap are reported in the AppendixA.

2.2. Free wave propagation

The passive displacement vector can be suitably decomposed

qp =
(
q−p ,q

+
p

)
, in order to separate the displacement components

q−p of the left/bottom cell boundary Γ− (composed by the exter-

nal nodes 5©, 7©, 9©,10©) from those of the right/top boundary Γ+

(composed by the external nodes 6©, 8©,11©,12©). A similar de-

composition can be introduced for the vectors of the internal

σp =
(
σ−p ,σ

+
p

)
and external forces fp =

(
f−p , f

+
p

)
. Introducing

a stiffness matrix partition consistent with this decomposition,

the dynamic (upper) part of the equation (4) reads

Mq̈a+Kaaqa+K+apq+p +K−apq−p = 0 (6)

whereas the quasi-static (lower) part can be written

⎡⎢⎢⎢⎢⎢⎢⎣K−pa

K+pa

⎤⎥⎥⎥⎥⎥⎥⎦ qa+

⎡⎢⎢⎢⎢⎢⎢⎣K=pp K∓pp

K±pp K#
pp

⎤⎥⎥⎥⎥⎥⎥⎦
⎛⎜⎜⎜⎜⎜⎜⎝q−p

q+p

⎞⎟⎟⎟⎟⎟⎟⎠=
⎛⎜⎜⎜⎜⎜⎜⎝ f−p

f+p

⎞⎟⎟⎟⎟⎟⎟⎠ (7)

and finally the ( j)-th cell requires the boundary conditions of

geometric compatibility and quasi-static equilibrium

q−p( j) =q+p( j−1), σ−p( j) =σ
+
p( j−1), ∀ j (8)

where the ( j−1)-subscript refers to the leftward/downward ad-

jacent cells, across the Γ− boundary.

The propagation of a one-dimensional free-vibration wave

along a infinite periodic cellular domain requires the displace-

ments in the generic L-long cell being equal to the correspond-

ing displacements in the adjacent cells times eıkL, where k is

the (dimensional) propagation constant, or wavenumber. Waves

propagating in a two-dimensional domain are characterized by

the wavevector k =
(
k1, k2

)
. The displacement propagation is

enabled by the cross-boundary exchange of non-null internal

forces, obeying to the same exponential law.

According to the Floquet-Bloch theory, the following repre-

sentations of the nodal displacements and forces are introduced

qa =Bapa, qp =Bppp, σp =Bpτp (9)

where pa, pp, τp are auxiliary vectors collecting the nodal dis-

placements/forces in the k-transformed space and the nondi-

mensional transformation matrices read

Ba =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
A4 O O

O A4 O

O O A4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , Bp =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
A8 O O

O A8 O

O O A8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (10)

where the submatrices

A4 = diag
(
eık·x1 , ..., eık·x4

)
, A8 = diag

(
eık·x5 , ..., eık·x12

)
(11)
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According to the boundary-based decomposition for the passive

vectors, the transformation (9) can be expressed as

q−p =B−pp−p , σ
−
p =B−pτ

−
p , q+p =B+p p+p , σ

+
p =B+pτ

+
p (12)

where the decomposed transformation matrices read

B−p =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
A−4 O O

O A−
4

O

O O A−
4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , B+p =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
A+4 O O

O A+
4

O

O O A+
4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (13)

and the submatrices

A−4 = diag
(
eık·x5 , eık·x7 , eık·x9 , eık·x10

)
, (14)

A+4 = diag
(
eık·x6 , eık·x8 , eık·x11 , eık·x12

)

Finally, the periodicity conditions governing the wave propaga-

tion, as they apply to the auxiliary vectors

p+p( j−1) =p+p( j), τ+p( j−1) = τ
+
p( j) (15)

lead to the quasi-periodicity conditions applied to the (non-

transformed) displacement/force vectors

q+p( j−1) =Lq+p( j), σ+p( j−1) =Lσ+p( j) (16)

where L is the nondimensional transfer matrix

L=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
D4 O O

O D4 O

O O D4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (17)

and the submatrices

D4 = diag
(
eık·d56 , eık·d78 , eık·d911 , eık·d1012

)
(18)

where di j = x j −xi is an auxiliary vector pointing from the i-th

to the j-th external nodes.

Recalling the boundary conditions (8) and replacing the in-

ternal with the external forces through the relations σ+
p( j)
=

f+
p( j)

and σ−
p( j)
= −f−

p( j)
, a suited single-cell form of the quasi-

periodicity condition (16) is achieved

q+p =Lq−p , f+p =−Lf−p (19)

where the ubiquitous j-subscript has been omitted.

To the specific purposes of the present work, it is necessary

to distinguish the left Γ−
l

(external nodes 5©, 7©) from the bottom

cell boundary Γ−
b

(nodes 9©,10©), as well as the right Γ+r (nodes

6©, 8©) from the top cell boundary Γ+t (nodes 11©,12©). Introducing

a further decomposition of the passive displacement vectors ac-

cording to this distinction, the equations (19) reads

(
q+r
q+t

)
=

[
eıβ1 I O

O eıβ2 I

] (
q−

l

q−
b

)
, (20)

(
f+r
f+t

)
=

[
−eıβ1 I O

O −eıβ2 I

] (
f−
l

f−
b

)
(21)

where the nondimensional propagation constants, or wavenum-

bers β1 = k ·d56 = k ·d78 (along the horizontal direction) and

β2 = k ·d911 = k ·d1012 (along the vertical direction) can be col-

lected in the nondimensional wavevector b =
(
β1, β2

)
. More-

over, it can be demonstrated that the wavevectors b1 =
(
β1, 0

)
and b2 =

(
0, β2

)
, as defined in the periodic cell, identify the two

orthogonal directions (spanned by the wavenumbers β1 and β2)

traveled by the waves propagating along the orthotropy axes of

the first-order equivalent continuum model of the material [26].

The free-wave propagation conditions (19) can be introduced

in the quasi-static equation (7) to reduce the number of passive

displacements to be condensed. Therefrom, solving the equa-

tion (7) in either the passive displacements q−p or the passive

forces f−p , both these variables are found to quasi-statically de-

pend on the active displacements qa through the relations

q−p =R
(
K+pa+LK−pa

)
qa, (22)

f−p =
(
K−pa+

(
K=pp+K∓ppL

)
R

(
K+pa+LK−pa

))
qa (23)

where it can be verified that the b-dependent auxiliary matrix

R=−
(
LK∓ppL+LK=pp+K#

ppL+K±pp

)−1
is diagonal.

Forcing the quasi-periodic condition (19) and the quasistatic

relation (23) into the equation (6), the cell dynamics is fully

described in the active displacement space, and is governed by

the equation of motion

Mq̈a+Kbqa = 0 (24)

where it can be demonstrated that the b-dependent stiffness ma-

trix Kb =Kaa+
(
K−ap+K+apL

)
R

(
K+pa+LK−pa

)
is Hermitian.

Denoting ω the unknown nondimensional frequency, impos-

ing the oscillatory solution qa = ψaeıωτ and eliminating the de-

pendence on time, a non-standard eigenproblem in the unknown

eigenvalues λ and eigenvectors ψa can be stated

(
Kb−λM

)
ψa = 0 where λ=

ω2

ω2
c

(25)

which, decomposing the mass matrix in the form M = Q�Q

(the decomposition is unique as the matrix M is diagonal), can

conveniently be reduced to the standard form

(
H−λI

)
ϕa = 0 (26)

where the auxiliary eigenvector ϕa = Qψa and the equivalent

stiffness matrix H=Q−�KbQ−1 inherits the Hermitian property.

The eigenproblem solution gives twelve real-valued eigen-

values λi (or frequencies ωi). It is worth remarking that, ow-

ing to the Hermitian property, the H-matrix is certainly non-

defective, that is, possesses a complete eigenspace spanned by

twelve proper eigenvectors. Therefore, each eigenvalue λi has

coincident algebraic and geometric multiplicity mi and corre-

sponds to a complex-valued eigenvectors ψai, collecting the ac-

tive eigencomponents only. The passive eigencomponents de-

pend on the active eigencomponents through the quasi-static

β-dependent relations ψ−pi =R
(
K+pa+LK−pa

)
ψai and ψ+pi =Lψ−pi.
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3. FLOQUET-BLOCH SPECTRUM

Introducing the extended parameter vector μ = (p,b), each

parameter-dependent eigenvalue λ(μ) can be regarded as one of

the zeroes of the characteristic function F(λ,μ)= det(H(μ)−λI).

Fixing certain structural properties, corresponding to an admis-

sible point p of the physical space P, all the eigenvalues can be

determined under variation of the nondimensional wavevector

b in the square Brillouin domain D = [−π, π]× [−π, π]. Ac-

cording to the Floquet-Bloch theory [31, 38, 39], this inves-

tigation – which in general has to be carried out numerically

– can be limited to the range B = B1 ∪B2, joining the edges

B1 = {β1 ∈ [0, π], β2 = 0} and B2 = {β1 = 0, β2 ∈ [0, π]} which

bound the irreducible zones of the D-domain. The eigenvalue

(or frequency) loci λβ in the (βi, λ)-plane Π constitute the so-

called dispersion curves of the Floquet-Bloch spectrum for the

waves propagating along the horizontal (i= 1) or vertical direc-

tion (i= 2).

The roots of the dispersion curves can be conventionally lo-

cated in the origin of the B-range (in β1 = β2 = 0), where the

quasi-periodicity degenerates into standard periodicity. Here

the eigenpairs can be interpreted as the natural (possibly null)

frequencies and real-valued vibration modes of the single ele-

mentary cell in the free stationary oscillation regime of the pe-

riodic system. The natural modes can either be participated by

all the active displacements (global modes) or, less often, dom-

inated by a homogeneous subset of active displacements (local

modes). Local modes can be classified as translational modes,

if contributed by the horizontal or vertical degrees-of-freedom

(ua or va, respectively), or rotational modes, if contributed by

the rotation degrees-of-freedom (φa). This classification can

also be extended to the β-dependent eigenvectors, which can

be interpreted as polarization modes of the propagating wave,

characterized by a certain (not null) wavenumber.

Parametric analyses, here not reported for the sake of con-

ciseness, show that a generic parameter set μ typically corre-

sponds to well-distinct eigenvalues, whereas particular regions

of the (extended) parameter space M = P×B may correspond

to multiple eigenvalues or to a cluster of close eigenvalues [40].

Borrowing the well-established nomenclature from the classic

modal analysis, such internal resonance or nearly-resonance

regions may be either confined at the boundaries of theB-range

or centered around particular b-values. From the mechanical

viewpoint, resonant regions are worth particular attention, since

the interaction between identical or near eigenvalues can acti-

vate significant phenomena, such as crossing or veering of the

frequency loci, localization or hybridization of the correspond-

ing modal shapes, opening or closing of frequency band-gaps.

Local sensitivity analyses of the eigensolution can be conve-

niently performed by means of asymptotic perturbation meth-

ods, since such mathematical tools can furnish the sought eigen-

values and eigenvectors as explicit, through approximate, para-

metric functions. Paying the due algorithmic attention, the

asymptotic perturbation solutions maintain their effectiveness

and uniform validity also in the resonant regions [41, 42], where

traditional techniques of numerical continuation tend to fail in

individually tracking closely-spaced eigenvalue loci.

Sε

Sβ

M

M∗

M◦

λβ
λ

λ

λ∗

λ◦ λξ

λε

βi

βi

μ

μ∗

μ̇μ◦

εμ′

p

Π◦

∂M

Figure 2: Qualitative schemes of the SPPM and MPPM for the asymp-

totic approximation of the exact eigenvalues

3.1. Single-parameter perturbation eigensolution

The asymptotic techniques are commonly based on selecting

a certain point μ∗ of the parameter spaceM. This preliminary

choice fixes the wavenumbers and the structural properties of

the reference cell, described by the matrix H∗ = H(μ∗). Even

if not mandatory, a μ∗-selection which allows the explicit as-

sessment of the (exact) eigenvalue λ∗ satisfying the equation

F(λ,μ∗) = 0 is preferable. Taking the point μ∗ as reference, it

is possible – in principle – to seek for an asymptotic eigenvalue

approximation (the surface Sβ in Figure 2) in the neighborhood

M∗ of μ∗, spanned by the perturbation vector μ̇= μ−μ∗. More

often, the asymptotic approximation is sought within the pa-

rameter subspace of major interest, that is, along one of the

βi-directions (with i=1,2) in the mono-dimensional neighbor-

hood of the reference wavenumber β∗
i
, spanned by the local

abscissa ξ = βi − β
∗
i

[32]. Consequently, the only significant

ξ-dependence is retained for the governing matrix H(ξ) and the

characteristic function F(λ, ξ). According to this simplification,

in which ξ acts as single perturbation parameter while the re-

maining parameter set p is freely assigned, this approach can be

referred to as Single-Parameter Perturbation Method (SPPM).

Under the assumption of sufficient regularity, each exact

eigenvalue of the matrix H(ξ) can tentatively be approximated

by a series function λ(ξ) of integer ξ-powers (n ∈N)

λ(ξ)=λ∗+
∑

n

λ(n)ξ n =λ0+ λ̇ξ+ λ̈ξ
2+ ...+λ(n)ξ n+ ... (27)

where the p-dependent coefficient n!λ(n) can be regarded as the

unknown n-th ξ-derivative (for ξ = 0) of the exact but implicit

eigenvalue function F(λ, ξ) = 0. Consistently, the curve λξ de-

scribed by the approximate function λ(ξ) is tangent to the exact

dispersion curve λβ in βi = β
∗
i

(or ξ = 0), while the approxima-

tion accuracy is expected to decay for increasing ξ-values.
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Once the series λ(ξ) has been established, the characteristic

function becomes a composite single-variable function G(ξ) =

F(λ(ξ), ξ), which admits the Taylor expansion in ξ-powers

G(ξ)=G∗+
∑

n

G(n)

n!
ξ n =G∗+Ġξ+

G̈

2
ξ2+ ...+

G(n)

n!
ξ n+ ... (28)

where G∗ = F(λ∗ , 0) is certainly null, as far as λ∗ is the exact,

known eigenvalue for ξ = 0 by hypothesis. The generic higher-

order coefficient G(n) can be recognized as the n-th ξ-derivative

(for ξ = 0) of the function G(ξ). It must be calculated through

the recursive application of the chain rule for the differentiation

of single-variable composite functions.

To specify, each coefficient G(n) is a complete n-degree poly-

nomial of all the unknowns up to the n-th derivative λ(n). With

reference to the ξ-power, the lowest-order coefficients read

ξ 1 : Ġ = λ̇F(1,0) +F(0,1) (29)

ξ 2 : G̈ = 2λ̈F(1,0)+ (λ̇)2F(2,0)+2λ̇F(1,1)+F(0,2) (30)

where the synthetic notation F(h,k) =
[
∂h
λ∂

k
ξF(λ, ξ)

]
ξ=0

is adopted

for the partial derivatives of the characteristic function.

As complementary original contribution, the Scott version of

the Faà di Bruno’s formula [43] – generalizing the chain rule to

higher derivatives – has been manipulated to achieve a recursive

form of the generic n-th coefficient

ξ n : G(n)
=

∑
S(h,k)

n!

h+k
F(h,k) η

[n]

hk
(31)

where the index set S(h, k) =
(

h, k ∈
[
0, h+k = n

])
, and the re-

cursive term is a non-differential, polynomial function

η
[n]

hk
=

1

n λ∗

n∑
j=1

(
j(h+k)+ j−n

)
λ( j) η

[n− j]

hk
(32)

has to be initialized with η
[0]

hk
= (λ∗)h.

The approximate characteristic function must be satisfied by

zeroing each ξ n-order coefficient G(n). Thus, a chain of n or-

dered equations (perturbation equations) is obtained. Start-

ing with the zeroth-order solution, given by the twelve known

eigenvalues λ0 (generating solution), each perturbation equa-

tion of the chain involves a single unknown, that is, one of the

higher-order coefficients. Depending on the algebraic multi-

plicity m∗ of each λ∗-eigenvalue, two fundamental cases occur

• Simple eigenvalue: if λ∗ is a simple root (m∗ = 1) for

the equation F(λ∗ , 0) = 0, then the coefficient F(1,0)
� 0.

Hence, the ξ 1-order equation (29) is linear in the unknown

λ̇, the ξ 2-order equation (30) is linear in the unknown λ̈

and so on. Therefore, the cascade solution (null if the nu-

merator vanishes) for the lowest order equations is

ξ 1 : λ̇=−
F(0,1)

F(1,0)
(33)

ξ 2 : λ̈=−
(λ̇)2F(2,0)+2λ̇F(1,1)+F(0,2)

2F(1,0)
(34)

and, by extension, the ξ n-order equation allows the deter-

mination of the n-th coefficient λ(n).

• Double (semi-simple) eigenvalue: if λ∗ is a double root

(m∗ = 2) for the equation F(λ∗ , 0) = 0, then the coefficient

F(1,0) = 0, but F(2,0)
� 0. Since λ∗ must be non-defective

(semi-simple), it can be proved that F(1,0) = 0 [44]. Conse-

quently, the ξ 1-order equation (29) is trivially satisfied, but

leaves λ̇ undetermined. Such an indetermination is cleared

by the ξ 2-order equation (30), which is a quadratic in the

λ̇-unknown only, since the null multiplier F(1,0) affects the

other unknown λ̈. Thus, the lowest order equations give

ξ 1 : λ̇ is undetermined (35)

ξ 2 : λ̇± =−
F(1,1) ±

√(
F(1,1)

)2
−F(2,0)F(0,2)

F(2,0)
(36)

where the eigensensitivity pair λ̇± splits the double root

λ∗ in two distinct eigenvalues λ∗+ξλ̇± +O(ξ 2). The split-

ting is postponed to higher-orders only if a vanishing dis-

criminant occurs, in consequence of the particular sub-

case
(
F(1,1))2

=F(2,0)F(0,2). In the general case, instead, the

higher unknowns λ
(n)
± are determined by linear ξ n+1-order

equations, solved for one or the other of the λ̇±-values.

When the SPPM is applied to the eigenproblem (26) for β∗
i
=

0 (one of the left bounds of the B-range), the generating solu-

tion includes cases of single and double λ∗-eigenvalues. Tables

1 and 2 report the solution scheme required to achieve a fourth-

order approximation λi(ξ)= λ
∗
i
+ λ̇iξ+ λ̈iξ

2+
...
λiξ

3+
....
λi ξ

4+O(ξ5)

of all the twelve eigenvalues (i= 1, ..., 12, one for each row). It

is worth remarking that the scheme of rectangular cell (η � 1

in Table 1) differs from that of square cell (η = 1 in Table 2),

due to a dissimilar set of single and double λ∗-eigenvalues (first

and second columns), requiring the solution of the perturbation

equations up to the fourth and sixth-order, respectively.

Table 1: Solution scheme of the SPPM-based perturbation equations

for the rectangular cell (β∗i = 0, η� 1) up to the forth order.

m∗ λ∗ ξ1 ξ2 ξ3 ξ4 ξ5 ξ6

2 λ∗
1,2

- λ̇1,2 -
λ̈1

...
λ1

....
λ 1

λ̈2

...
λ2

....
λ 2

1 λ∗
3

λ̇3 λ̈3

...
λ3

....
λ 3 ... ...

1 λ∗
4

λ̇4 λ̈4

...
λ4

....
λ 4 ... ...

1 λ∗
5

λ̇5 λ̈5

...
λ5

....
λ 5 ... ...

1 λ∗
6

λ̇6 λ̈6

...
λ6

....
λ 6 ... ...

1 λ∗
7

λ̇7 λ̈7

...
λ7

....
λ 7 ... ...

1 λ∗
8

λ̇8 λ̈8

...
λ8

....
λ 8 ... ...

1 λ∗
9

λ̇9 λ̈9

...
λ9

....
λ 9 ... ...

1 λ∗
10

λ̇10 λ̈10

...
λ10

....
λ 10 ... ...

1 λ∗
11

λ̇11 λ̈11

...
λ11

....
λ 11 ... ...

1 λ∗
12

λ̇12 λ̈12

...
λ12

....
λ 12 ... ...

Legend: “-” = undetermined, “...” = higher-order unknowns
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Table 2: Solution scheme of the SPPM-based perturbation equations

for the rectangular cell (β∗i = 0, η= 1) up to the forth order.

m∗ λ∗ ξ1 ξ2 ξ3 ξ4 ξ5 ξ6

2 λ∗
1,2

- λ̇1,2 -
λ̈1

...
λ1

....
λ 1

λ̈2

...
λ2

....
λ 2

2 λ∗
3,4

- λ̇3,4 -
λ̈3

...
λ3

....
λ 3

λ̈4

...
λ4

....
λ 4

2 λ∗
5,6

- λ̇5,6 -
λ̈5

...
λ5

....
λ 5

λ̈6

...
λ6

....
λ 6

2 λ∗
7,8

- λ̇7,8 -
λ̈7

...
λ7

....
λ 8

λ̈8

...
λ8

....
λ 8

2 λ∗
9,10

- λ̇9,10 -
λ̈9

...
λ9

....
λ 9

λ̈10

...
λ10

....
λ 10

1 λ∗
11

λ̇11 λ̈11

...
λ11

....
λ 11 ... ...

1 λ∗
12

λ̇12 λ̈12

...
λ12

....
λ 12 ... ...

Legend: “-” = undetermined, “...” = higher-order unknowns

3.2. Multi-parameter perturbation eigensolution

According to an alternative asymptotic technique, the eigen-

problem (26) can be tackled by assigning a suited ordering to

the full parameter set μ, in order to simultaneously assess the

relative smallness of all its low-valued entries. Introducing a

nondimensional auxiliary small parameter ε � 1, the eigenso-

lution around a particular β◦
i
-point of theB-range can be studied

adopting the parameter ordering

ωc =ω
◦
c, η= η◦, βi = β

◦
i +ε β

′
i (37)

δ= ε δ′, �= ε �′, χ= ε χ′

which is formally equivalent to order the parameter set μ(ε) =

μ◦ + ε μ′, where the dominant O(1)-part μ◦ is fully defined by

the (ω◦c, η
◦, β◦

i
)-components, while the perturbating O(ε)-part

μ′ is attributed to the (β′
i
, δ′, �′, χ′)-components. Consistently,

the matrix H◦ = limε→0 H(μ(ε)) corresponding to the μ◦-point

is expected to capture the key-features of the wave dynamics.

As major formal difference with respect to the SPPM, the

ε-parameter plays the role of single perturbation parameter,

but suffices to regulate the (small) amplitude of the multi-

parametric perturbation μ′. Consequently, this approach can

be conventionally referred to as Multi-Parameter Perturbation

Method (MPPM). As substantial point, once a certain parame-

ter ordering is chosen, the reference point μ◦ cannot be chosen

arbitrarily in theM-space, as μ◦ must be the asymptotic limit of

μ(ε) for vanishing ε. Consequently, the parameter combination

μ◦ must be fixed in a restrictionM◦ of theM-space, where only

the non null O(1)-parameters can be freely assigned (Figure 2).

From the technical viewpoint, since μ◦ plays a merely algo-

rithmic role as starting point of the perturbation analysis, it can

sit on – or even lie outside – the boundary ∂M of the physically

admissible (meaningful) region in theM-space. Accordingly,

u
3

u
1

u
4

u
2

v
3

v
1

v
4

v
2

3

1

4

2

(a) (b)

(c) (d)

H◦

H◦u

H◦v

H◦φ

H◦u

H◦v

H◦φ

Figure 3: Physical realization of the ideal cell governed by the H◦-

matrix: (a) three-block diagonal H◦-form, (b) H◦u-block subsystem, (c)

H◦v-block subsystem, (d) H◦φ-block subsystem.

the structural realization governed by the H◦-matrix must be

intended as a mathematical abstraction in the general case (in-

cluding physically meaningless μ◦points). Therefore it will be

referred to as ideal cell in the following. For the anti-tetrachiral

material, a coherent mechanical interpretation of the ideal cell

is possible, since the H◦-matrix exhibits a three-block diagonal

form (Figure 3a). As far as the diagonal blocks H◦u, H◦v, H◦φ
are uncoupled from each other, they ideally govern three inde-

pendent subsystems. Each subsystem can be demonstrated to

possess a homogeneous (horizontal, vertical or rotational) set

of four active degrees-of-freedom, with translational or rota-

tional masses connected to each other by a stiffness coupling.

This elastic coupling is described by the non-null entries of

each block, and can be considered equivalent to internal lin-

ear springs joining pairs of adjacent nodes (Figure 3b,c,d). The

ideal cell corresponds to the superposition, without interaction,

of all the independent subsystems. From a rigorous perspec-

tive, it may be worth remarking that the uncoupled ideal sub-

systems are not obtained by trivially disassembling the original

cell model into its different components, as could be done by

merely neglecting the small coupling terms. On the contrary,

they physically realize the asymptotic limit of the fully-coupled

cell model for vanishing ε-values, consistently with the pertur-

bation scheme (see also [42, 45]). As minor remark, the ideal

cell does not possess properties of anti-chirality, which rise up

with the first order matrix perturbation.

As far as the Hermitian property holds for the H◦-matrix,

the eigenspectrum of the ideal cell still admits real-valued non-

defective eigenvalues λ◦, satisfying the characteristic equation

F(λ◦ ,μ◦) = det(H◦ −λ◦I). The eigenvalues of the ideal cell are

discriminant for the suitability of the assigned parameter order-

ing [41]. Roughly, a suited ordering should simplify as much

as possible the H◦-spectrum by maximizing the algebraic mul-

tiplicity m◦ of each eigenvalue λ◦. Owing to the likely occur-

rence of multiple eigenvalues, the ideal cell can be regarded as
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a perfectly tuned, or simply perfect system, according to the

well-established nomenclature of periodic structures. As oper-

ational criterion, all the parameters whose typical low-values

are quantitatively comparable with the minimum difference be-

tween consecutive eigenvalues of the perfect system should

be considered imperfections, that is, should be mathematically

treated as ε-ordered perturbations. Thus, paying due attention,

an effective and uniformly valid asymptotically approximate

eigensolution (the surface Sε in Figure 2) is expected in a large

neighborhoodM◦ of μ◦, spanned by the ε-amplitude μ′-vector.

According to these criteria, the ε-order smallness attributed

to the parameters in (37) has been based on physical consid-

erations, as far as it accounts for the typical low-density dis-

tribution of the rings (small δ), which usually possess a limited

rotational-to-translational mass ratio (small χ) and are intercon-

nected by highly-slender ligaments (small �). On the contrary,

the O(1)-order attributed – for instance – to the aspect ratio η

means that extreme geometric cases (strongly rectangular cells)

require a different, specific treatment.

In the absence of H◦-defectivity and assuming a regular (non-

singular) perturbation εμ′, the exact eigensolution of the matrix

H(μ) can be approximated by a series function λ(ε) of integer

ε-powers [44]. For the generic eigenvalue it reads

λ(ε)=λ◦+
∑

n

λ(n)εn =λ◦+λ′ε+λ′′ε2+ ...+λ(n)εn+ ... (38)

where n!λ(n) can be regarded as the n-th ε-derivative (for ε = 0)

of the exact but implicit eigenvalue function F(λ, ε) = 0. Ge-

ometrically, it represents a directional derivative in the μ′-

direction of the parameter space (evaluated in μ = μ◦), and

is commonly defined as the n-th eigenvalue sensitivity, or

eigensensitivity. Since the ideal (βi, λ)-planeΠ◦ containing the

reference μ◦-point differs from the Π-plane, the curve λε de-

scribed by the approximate functionλ(ε) is not required to cross

(nor to be tangent to) the exact dispersion curve, in the general

case (see Figure 2). The approximation accuracy is expected to

decay with the ε-measured distance from μ◦.

Once both the eigenvalue and parameter laws λ(ε) and μ(ε)

have been assigned, the characteristic function can be expressed

as a composite function G(ε) = F(λ(ε),μ(ε)), which admits the

Maclaurin expansion in ε-power series

G(ε)=G◦+
∑

n

G(n)

n!
εn =G◦+G′ε+

G′′

2
ε2+ ...+

G(n)

n!
εn+ ... (39)

where, since λ◦ belongs to the H◦-eigenspectrum, the constant

G◦ is certainly null. The generic higher-order expansion coef-

ficient G(n) is the n-th ε-derivative (for ε = 0) of the function

G(ε), which can be calculated applying the chain rule of differ-

entiation for multi-variable composite functions.

To specify, each coefficient G(n) is a complete n-degree poly-

nomial of all the unknowns up to the n-th eigensensitivity. With

reference to the ε-power, the lowest-order coefficients read

ε1 : G′ =λ′F(1,0)+C′μ (40)

ε2 : G′′ = 2λ′′F(1,0)+ (λ′)2F(2,0)+2λ′(μ′)�F(1,1)+C′′μ (41)

where the parameter-dependent known terms are

C′μ = (μ′)�F(0,1), C′′μ = 2(μ′′)�F(0,1)+ (μ′)�F(0,2)μ′ (42)

while the synthetic notation F(h,0) = ∂h
λ
F(λ,μ) for h = 1, 2 and

F(h,k) = ∂h
λ∂

k
μF(λ,μ) for h, k = 0, 1, 2 is adopted for the partial

derivatives of the characteristic function.

As additional original contribution, the Scott-Faà di Bruno’s

formula [43] has been further manipulated to deal with the

specific multi-parameter case, which requires the treatment of

composite derivatives with multi-variable inner functions. Re-

curring to the multi-index notation, the n-th coefficient can be

expressed by the recursive but explicit formula

εn : G(n) =
∑
S(h,k)

∑
|p|=k

n!

h+k
F(h,|p|) η

[n]

hp
(43)

where, introducing the multi-index p (with |p| = k), the partial

derivatives for generic h, k ∈Z
+ can be expressed

F(h,|p|) = ∂h
λ∂
|p|
μ F(λ,μ)=

∂h

∂λh

∂|p|F(λ, μp1
, ..., μpk

)

∂μp1
...∂μpk

(44)

while the (h, k)-index set is again S(h, k)=
(

h, k ∈
[
0, h+k = n

])
.

Defining � the dimension of the μ-vector, the multi-parametric

recursion is a non-differential, polynomial function

η
[n]

hp
=

�∑
i=1

1

n μ◦
i
λ◦

n∑
j=1

(
j(h+k)+ j−n

)
λ( j)μ

( j)

i
η

[n− j]

hp
(45)

and has to be initialized with η
[0]

hp
= (λ◦)h(μ◦)p. The brief notes

in the AppendixB clarify how the specific nature of the power

series λ(ε) and μ(ε) has been leveraged to obtain the result. A

simpler closed form of the equation (43), expressed in terms

of the vector variable ν(ε) = (λ(ε),μ(ε)), is also presented. Of

course, the single-parameter formula (31) can be extracted as

particular case from the multi-parameter formula (43).

Similarly to the SPPM, the MPPM requires the approximate

characteristic function to be satisfied by zeroing each ε(n)-order

coefficient G(n). Thus, an ordered chain of n perturbation equa-

tions is obtained, and the solution algorithm depends on the in-

dividual m◦-multiplicity of the generating solution represented

by the twelve eigenvalues λ◦ satisfying the zeroth-order equa-

tion F(λ◦ ,μ◦)= 0. Again, two fundamental cases occur

• Simple eigenvalue: if λ◦ is a simple root (m◦ = 1) for

the equation F(λ◦ ,μ◦) = 0, then the coefficient F(1,0)
� 0.

Hence, the ε1-order equation (40) is linear in the unknown

λ′, the ε2-order equation (41) is linear in the unknown λ′′

and so on. Therefore, the cascade solution (null if the nu-

merator vanishes) for the lowest order eigensensitivities is

ε1 : λ′ =−
C′μ

F(1,0)
(46)

ε2 : λ′′ =−
2λ′(μ′)�F(1,1)+ (λ′)2F(2,0) +C′′μ

2F(1,0)
(47)

and, by extension, the ε(n)-order equation allows the deter-

mination of the n-th eigensensitivity.
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• Double (semi-simple) eigenvalue: if λ◦ is a double root

(m◦ = 2) for the equation F(λ◦ ,μ◦) = 0, then the coef-

ficient F(1,0) = 0, but F(2,0)
� 0. Since λ◦ must be non-

defective (semi-simple), it can be proved that C′μ = 0 [44].

Consequently, the ε1-order equation (40) is trivially sat-

isfied, but leaves λ′ undetermined. Such an indetermina-

tion is cleared by the ε2-order equation (41), which is a

quadratic in the λ′-unknown only (as the λ′′-coefficient is

null). Thus, the solution of the lowest order equations is

ε1 : λ′ undetermined (48)

ε2 : λ′± =−
(μ′)�F(1,1)±

√(
(μ′)�F(1,1)

)2
−C′′μ F(2,0)

F(2,0)
(49)

where the eigensensitivity pair λ′± splits the double eigen-

value λ◦ in two simple eigenvalues λ◦+ελ′± +O(ε2). The

occurrence of a vanishing discriminant is a particular case,

in which the eigenvalue splitting is postponed to higher-

orders. In the general case, instead, the higher eigensensi-

tivitiesλ
(n)
± are determined by linear ε(n+1)-order equations,

solved for one or the other of the λ′±-values.

Of course, more involved cases concerning higher eigenvalue

multiplicity (say m◦ > 2) can be encountered and must be ap-

proached with similar solution schemes. As general rule, apart

nested degeneration cases, the first sensitivity λ′ of a m◦-tuple

eigenvalue λ◦ is expected to remain undetermined up to the m◦-

th order equation, which is pure in the λ′-unknown and sup-

plies m◦ different roots, which split the multiple eigenvalue into

a cluster of close eigenvalues separated by ε-order differences.

When the MPPM is applied to the eigenproblem (26) for β◦
i
=

0 (left bound of the Bi-range), the generating solution includes

cases of single, double and quadruple λ◦-eigenvalues. Table 4

reports the solution scheme required to achieve a fourth-order

approximation λi(ε)=λ
◦
i
+λ′

i
ε+λ′′

i
ε2+λ′′′

i
ε3+λ′′′′

i
ε4+O(ε5) of

all the twelve eigenvalues (i = 1, ..., 12, one for each row). As

interesting remark, a quadruple null eigenvalue exists (λ◦
1..4
= 0),

which remains unsplitted at the ε4-order (due to the vanishing

discriminant governing the splitting process). Hence, its fourth-

order approximation requires the solution of the perturbation

equations up to the ε10-order. The same solution scheme has

been found to properly work for both the rectangular and the

square cell. As complementary remark, the real-valued eigen-

vectors ϕ◦a corresponding to the λ◦ eigenvalues possess purely

local shapes, meaning that the ideal cell possesses purely trans-

lational or rotational modes (Figure 4). To complete the anal-

ysis, all the λ◦-eigenvalues for β◦
i
= π (right bound of the Bi-

range) have been verified to possess a double multiplicity.

A summarizing discussion about the differences and analo-

gies between the SPPM and MPPM can briefly be outlined, as

far as they are general tools for the Floquet-Bloch analysis of

– potentially – a large variety of cellular materials. First, the

two methods differ in the selection criterion of the unperturbed

system, governed by the matrices H∗ and H◦, respectively, and

employed as reference point to start the perturbation analysis.

This difference generally translates into dissimilar generating

Table 3: MPPM asymptotic approximation: zeroth-order eigenvalue

multiplicity and eigensensitivity solution scheme for β◦i = 0.

m◦ ε0 ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8 ε9 ε10

4 λ◦
1...4

- - - λ′
1...4

- - -

λ′′
1
λ′′′

1
λ′′′′

1

λ′′
2
λ′′′

2
λ′′′′

2

λ′′
3
λ′′′

3
λ′′′′

3

λ′′
4
λ′′′

4
λ′′′′

4

2 λ◦
5,6

- λ′
5,6

-
λ′′

5
λ′′′

5
λ′′′′

5
... ... ... ...

λ′′
6

λ′′′
6

λ′′′′
6
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12

λ′
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λ′′
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λ′′′
12

λ′′′′
12
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Legend: “-” stands for undetermined, “...” means higher sensitivities

solutions, requiring distinct solution schemes for the perturba-

tion equations. This remark prevents considering the SPPM as

a particular case of the MPPM, apart from some aspects of the

mathematical formalism. In the practice, may also be impossi-

ble to systematically predict which method requires the shorter

F(λ,μ)-expansion to achieve the same approximation order.

Moreover, the distance separating the starting points μ∗ and μ◦

in the parameter space implies a mismatch in the local approx-

imation accuracy even for the same parameter set μ, depending

on the different perturbation amplitudes, measured by the ξ and

ε-parameters, respectively. Therefore, a global comparison be-

tween the methods tends to be essentially worthless in quantita-

tive terms. Nonetheless, qualitative recurrences in the solution

schemes can be recognized, depending on the eigenvalue multi-

plicity of the unperturbed matrices. Such schemes are featured

by some formal similarities, as evident from the comparison of

ϕ◦
1

ϕ◦
2

ϕ◦
3 ϕ◦

4
ϕ◦

5
ϕ◦

6

ϕ◦
7

ϕ◦
8

ϕ◦
9

ϕ◦
10

ϕ◦
11 ϕ◦

12

Figure 4: MPPM asymptotic approximation: purely translational (red)

or rotational (blue) local modes (subscript a omitted) of the ideal cell.
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the lowest-order perturbation equations (33)-(34) and (46)-(47),

which differ only by the coefficients of the unknowns. As mi-

nor remark, the approximate solution given by the MPPM tends

to be less cumbersome, since all the coefficients (including the

known terms C
(n)
μ ) are polynomial functions of the multiparam-

eter perturbation. As minor technical difference, the convenient

form λ(βi) of the approximate solution can be assessed (i) in

the SPPM by simply employing the relation ξ = βi −β
∗
i

to re-

place the local abscissa; (ii) in the MPPM by inverting all the

parameter ordering relations (backward rescaling)

β′i =
βi−β

◦
i

ε
, δ′ =

δ

ε
, �′=

�

ε
, χ′ =

χ

ε
(50)

to replace the multiparameter parameter perturbation (the ε-

independent inverse relations η◦ = η and ω◦c =ωc are also under-

stood). Finally, the substitution of the inverse relations (50) into

the approximation function (38) allows the complete simplifica-

tion (reabsorption) of the auxiliary ε-parameter. Of course, the

reabsorption procedure does not alter the approximation order.

3.3. Results and discussion

Employing standard techniques of solution continuation for

the characteristic equation governing the eigenproblem (26),

the Floquet-Bloch spectrum has been analysed. Focus has been

made on the horizontal direction of wave propagation, by car-

rying out the twelve ω-frequency loci under variation of the

β1-wavenumber in the irreducible range (β1 ∈ B1). A partic-

ular set of nondimensional mechanical parameters has been

selected, coherently with the technical and constructional re-

quirements of massive rings coupled with slender ligaments

(χ2 = 1/81, δ = 1/10, �2 = 1/100). The exact dispersion curves

for the rectangular (η = 3/2) and square cell (η = 1) are re-

ported in Figure 5 (red lines) and Figure 6 (blue lines), respec-

tively. Of course, for symmetry reasons, the results concerning

the square cell can be indifferently referred to the horizontal

(β1) or vertical (β2) wave directions, whereas supplementary re-

sults concerning the rectangular cell with different aspect ratios

(η= 2, η= 1/2) have been presented in [40].

As major qualitative remark, the variation ranges of the low-

frequencies (namely ω1-ω8) and high-frequencies (namely ω9-

ω12) tend to be well-separated and mainly dominated by trans-

lational and rotational modes, respectively. Parametric analy-

ses, here not reported for the sake of synthesis, show how the

translational frequencies (rigorously, the frequencies of trans-

lational modes) undergo only minimal qualitative changes if the

parameter set (�2, χ2, δ) vary in the technically-relevant range.

On the contrary, the rotational frequencies (rigorously, the fre-

quencies of rotational modes) strongly depend on the δ and χ

parameters, with an approximately linear law of direct and in-

verse proportionality, respectively. Finally, growing �2-values

let all the rotational frequencies become increasingly close to

each other, fixed the highest frequency root [40].

As technically-relevant result, the rectangular geometry does

not present low-frequency band gaps among the translational

curves, and extensive parametric analyses have confirmed this

finding along both the orthogonal propagation directions for a

generic parameter set. The absence of band-gaps is mainly due

to the structural property of the governing matrix, which forces

the curve ends to coincide in pairs at each boundary of the B1-

range. The possibility of band-gaps is also limited by the fre-

quent occurrence of crossing points in the mid B1-range, in-

volving curve pairs of some consecutive low-frequencies (2nd-

3rd or 4th-5th, for instance). On the contrary, two well-distinct

band-gaps may exist in the high frequency range, falling be-

tween the roots of translational-rotational curves (gray region

BGI) or rotational-rotational curves (gray region BGII). The

latter is certainly a partial band-gap, since it can be verified

to disappear along the short-side cell direction (for certain β2-

wavenumbers). The gap amplitudes can be verified to increase

proportionally to an increment of the δ-values (or �2-values,

taking fixed the highest frequency ω12) or, alternatively, to a

decrement of the χ2-values. The square shape closes the band

gap BGII at higher frequency, whereas a small-amplitude par-

tial band-gap opens at low-frequencies along the diagonal di-

rection of wave propagation [40], spanned by the combination

wavenumber β12 = (β2
1
+β2

2
)1/2 with β1 = β2, and corresponding

to the direction of minimum auxeticity of the material [26].

Taking the left B1-boundary as reference point (β∗
1
= β◦

1
=

0), the asymptotic perturbation approximations of the twelve

eigenvalues are reported as explicit functions of the param-

eters in Table 4 for the SPPM (before the replacement of

the ξ-parameter) and Table 5 for the MPPM (before the re-

absorption of the ε-parameter). Independently of the approxi-

mation method, a remarkable property of the asymptotic pertur-

bation solutions is the absence of all the series terms with odd-

power order (say ξn or εn, with n = 1, 3), due to the null value

determined for by the corresponding sensitivities (λ̇i =
...
λ i = 0,

or λ′
i
= λ′′′

i
= 0). Such remark can be mathematically justified

by the inherent symmetry of all the spectrum branches with re-

spect to the axis βi = 0. This property reflects into the even-

ness of all the analytical functions which describe the disper-

sion curves by adopting the null value as origin of the inde-

pendent βi-variable, including – as particular case – the two

perturbation expansions which employ β∗
1
= β◦

1
= 0 as unper-

turbed point. For the sake of completeness, it can be remarked

that the spectrum branches are anti-symmetric with respect to

the axis βi = π. All the Y- and J-coefficients multiplying the

perturbation variables ξ and ε can be verified to be O(1), ac-

cording to the different parameter ordering, and are reported

in the Appendix. The corresponding approximate dispersion

curves are represented by the circles (SPPM) and dots (MPPM)

in Figures 5 and 6. Despite the relatively-low (fourth-order) ap-

proximation, the asymptotic results turn out to closely match

the exact solution throughout a large range of the varying pa-

rameters. In particular, the approximate solutions well-fit the

twelve dispersion curves in almost the whole B1-range, and

(somehow unexpectedly) not only in the closest neighborhood

of the reference value. Indeed, a satisfying effectiveness of the

asymptotic approximations generally persists up to the oppo-

site boundary, expect for minor mismatches in a few dispersion

curves, no matter if the reference β1-value is fixed at the leftB1-

boundary (left approximations, in Figures 5a and 6a) or right

B1-boundary (right approximations, in Figures 5b and 6b).
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Table 4: SPPM asymptotic approximation: zeroth-order eigenvalue

multiplicity and eigensensitivity solution scheme for β∗1 = 0.

λi(ξ)

λ1(ξ)=λ∗
1
+Y12ξ

2+Y14ξ
4+O(ξ 5)

λ2(ξ)=λ∗
2
+Y22ξ

2+Y24ξ
4+O(ξ 5)

λ3(ξ)=λ∗
3
+Y32ξ

2+Y34ξ
4+O(ξ 5)

λ4(ξ)=λ∗
4
+Y42ξ

2+Y44ξ
4+O(ξ 5)

λ5(ξ)=λ∗
5
+Y52ξ

2+Y54ξ
4+O(ξ 5)

λ6(ξ)=λ∗
6
+Y62ξ

2+Y64ξ
4+O(ξ 5)

λ7(ξ)=λ∗
7
+Y72ξ

2+Y74ξ
4+O(ξ 5)

λ8(ξ)=λ∗
8
+Y82ξ

2+Y84ξ
4+O(ξ 5)

λ9(ξ)=λ∗
9
+Y92ξ

2+Y94ξ
4+O(ξ 5)

λ10(ξ)= λ∗
10
+Y102ξ

2+Y104ξ
4+O(ξ 5)

λ11(ξ)= λ∗
11
+Y112ξ

2+Y114ξ
4+O(ξ 5)

λ12(ξ)= λ∗
12
+Y122ξ

2+Y124ξ
4+O(ξ 5)

Note: ξ =β1 can be understood as far as β∗
1
=0.

Although marginal, the mismatches with respect to the exact

solution may deserve some further attention, in so far as they

can strongly be reduced by properly combining the companion

left and right approximations, conventionally referred to as λ−
i

and λ+
i

in the following. Among the others, a suited possibility

is to adopt the linear and weighted combination

λ∓i =w−λ−i +w+λ+i (51)

where w− and w− stand for the weighting β1-dependent func-

tions, required to be complementary to each other (w+ = 1−w−)

and attain null boundary values (w+ = 0 and w− = 0 at the left

and right B1-boundary, respectively). Consistently, the weight

of each approximation function is maximum in the closest prox-

imity of its own reference point, whereas it decays up to vanish

in the closeness of the reference point of the companion func-

tion. It is worth remarking that this combination differs from

the matched composition of inner and outer asymptotic expan-

sions (often employed in the presence of singularities), as far as

there is no need for the companion functions to attain the same

value (matching) in a certain limit point of their domain.

To the specific purposes of the present study, each combina-

tion λ∓
i

(for i = 1...12) has been build by adopting the highly-

adaptable pair of transcendental weighting functions

w− =
1

2
−

tanh
(
γ (2β−π)

)
2 tanh (γπ)

, w+ =
1

2
+

tanh
(
γ (2β−π)

)
2 tanh (γπ)

(52)

where the γ-parameter governs the higher (small γ-values) or

lower (large γ-values) smoothness of the transition from unity

to zero across the mid B1-range (centered in β1 = π/2). The

weighted combination λ∗
i

is reported in Figures 7 for all the

Table 5: MPPM asymptotic approximation: zeroth-order eigenvalue

multiplicity and eigensensitivity solution scheme for β◦1 = 0.

λi(ε)

λ1(ε)= λ◦
1
+β2

1
�2J14ε

4 +O(ε5)

λ2(ε)=λ◦
2
+β2

1
J22ε

2+β4
1
J24ε

4+O(ε5)

λ3(ε)= λ◦
3
+�2J32ε

2+β2
1
�2J34ε

4 +O(ε5)

λ4(ε)= λ◦
4
+�2J42ε

2+
(
β4

1
J
β

44
+β2

1
�2J

�

44

)
ε4+O(ε5)

λ5(ε)=λ◦
5
+β2

1
J52ε

2+
(
β4

1
J
β

64
+β2

1
δ2Jδ

64

)
ε4+O(ε5)

λ6(ε)= λ◦
6
+

(
β2

1
J
β

62
+�2J

�

62

)
ε2+

(
β4

1
J
β

64
+β2

1
δ2Jδ

64

)
ε4+O(ε5)

λ7(ε)=λ◦
7
+β2

1
�2J74ε

4

λ8(ε)= λ◦
8
+�2J82ε

2+β2
1
�2J84ε

4 +O(ε5)

λ9(ε)=λ◦
9
+β2

1
J92ε

2+
(
β4

1
J
β

94
+�2β2

1
J
�

94
+δ2β2

1
Jδ

94

)
ε4+O(ε5)

λ10(ε)= λ◦
10
+β2

1
J102ε

2+
(
β4

1
J
β

104
+�2β2

1
J
�

104
+δ2β2

1
Jδ

104

)
ε4+O(ε5)

λ11(ε)= λ◦
11
+β2

1
J112ε

2+
(
β4

1
J
β

114
+�2β2

1
J
�

114
+δ2β2

1
Jδ

114

)
ε4+O(ε5)

λ12(ε)=λ◦
12
+β2

1
J122ε

2+
(
β4

1
J
β

124
+�2β2

1
J
�

124
+δ2β2

1
Jδ

124

)
ε4+O(ε5)

Note: apex is omitted for the parameters β1, δ and �

twelve dispersion curves (for γ = 2). A satisfying agreement

among the exact and approximate solutions in the full β-range

can be appreciated for both the rectangular and the square cell,

for both the SPPM and the MPPM approximations. As minor

remark, this result is mostly inherent to the high-quality of the

asymptotic perturbation approximations, and can be proved to

persist for different choices of the weighting functions.

As characterizing aspect of theoretical and applied interest,

the two dispersion curves related to the lowest frequencies (i=

1, 2), featured by null roots, represent the acoustic branches of

the Floquet-Bloch spectrum [31, 38, 39], with nondimensional

• phase velocity cpi =ωi/β

• group velocity cgi = ∂ωi/∂β

which are related to the respective dimensional counterparts Cpi

and Cgi by the relations Cpi = 2cpiΩrLh and Cgi = 2cgiΩrLh.

Together, the quantities cpi and cgi comprehensively charac-

terize the propagation velocity of the acoustic waves with shear

form (for i = 1, with ± 1
2
π polarization angle like ϕ◦1 in Figure

4) or compression form (for i = 2, with 0, π polarization an-

gle like ϕ◦
2

in Figure 4). The exact velocity curves versus the

varying β1-parameter are reported in Figure 8 for the rectan-

gular (η = 3/2, red lines in Figure 8a) and square cell (η = 1,

blue lines in Figure 8b). It can be remarked that the (lower) ve-

locities of the shear waves (cp1, cg1) are almost independent of

the β1-parameter in the whole B1-range, whereas the (higher)

velocities of the compression waves (cp2, cg2) nonlinearly but

monotonically decrease for increasing β1-parameters. The re-

lation nonlinearity can be verified to grow up for decreasing

ligament slenderness �2. Only minor quantitative effects can be
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Figure 7: Floquet-Bloch spectrum in the β1-direction: exact versus matched MPPM- and SPPM-approximate frequency loci for (a) rectangular

cell (η= 3/2), (b) square cell (η= 1).

attributed to different aspect ratios η, the most important being a

small but evident decrement of the shear wave velocities in the

square cell. As general remark, the phase and group velocities

of each wave are quite similar to each other, meaning that each

harmonic component propagates with almost the same velocity

of the wave envelope. Further parametric analyses have shown

that the shear wave velocity may be significantly sensitive to

variations of the ligament slenderness �2, with faster waves re-

lated to ligaments with lower slenderness (higher �2-values).

By virtue of the asymptotic perturbation solutions, all the

wave velocities can be determined as explicit, although approx-

imate, functions of the parameters. According to the SPPM

scheme and consistently with the fourth-order (left) approxi-

mation of the eigenvalues, the phase and group velocities read

cp1 =ωc

√
Y12+β2Y14, cp2 =ωc

√
Y22+β2Y24 (53)

cg1 =ωc

Y12+2β2Y14√
Y12+β2Y14

, cg2 =ωc

Y22+2β2Y24√
Y22+β2Y24

(54)

whereas according to the MPPM scheme they read

cp1 = �ωc

√
J14, cp2 =ωc

√
J22+β2J24 (55)

cg1 = �ωc

√
J14, cg2 =ωc

J22+2β2J24√
J22+β2J24

(56)

where all the coefficients Y and J are β-independent O(1)-

terms, as reported in the Appendix. In order to exemplify the

synthetic descriptive potential of the perturbation-based results,

suited for technical application and design purposes, the dimen-

sional form of the shear wave velocities read

Cp1 =Cg1 = 2

√
EI

M(Lh+Lv)
(57)

according to the MPPM scheme. The SPPM scheme gives the

same result if the fourth order is neglected.

The asymptotic perturbation approximations of the wave ve-

locities are represented by the circles (SPPM) and dots (MPPM)

in Figures 8. The high accuracy of the approximation can be

appreciated in almost the wholeB1-range, since the asymptotic

results well-fit the exact velocities cpi and cgi, apart for mini-

mal differences occurring in the right B1-part, the farthest from

the reference point. However, this minor loss of accuracy can

be deemed not-negligible only for the high group velocities cg2

of the compression wave. In particular, the SPPM and MPPM

approximations are found to slightly under-estimate and over-

estimate the exact cg2-values, respectively, no matter the aspect

ratio. Finally, it may be worth noting that the shear-wave ve-

locities are constant in the B1-range, that is, β1-independent,

according to the MPPM approximations.
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4. Conclusions

The wave propagation features offered by a novel class of

smart cellular materials, characterized by marked auxetic prop-

erties, have been analyzed. The periodic cell microstructure is

composed by a regular pattern of equispaced rings connected

by tangent ligaments. The material auxeticity is provided by

the peculiar anti-tetrachiral symmetry of the structural geom-

etry, which activates pervasive rolling-up mechanisms of the

ring-ligament system. Adopting a rigid body assumption for

the stiff rings and the unshearable beam theory for the flexi-

ble ligaments, a linear parametric model with lumped mass and

distributed elasticity has been formulated to govern the free dy-

namic response of the elementary cell. Employing a static con-

densation of the passive degrees-of-freedom, a general proce-

dure has been adopted to impose the quasi-periodicity condi-

tions of free wave propagation in the low-dimension space of

the twelve active degrees-of-freedom. Based on the Floquet-

Bloch theory, the solution of the resulting eigenproblem (with

real-valued eigenvalues, complex-valued eigenvectors) has fur-

nished the dispersion curves and polarization modes of the

propagation waves traveling along the periodic material.

First, the wavenumber-dependent eigensolution has been car-

ried out by traditional techniques of numerical continuation.

Parametric analyses have disclosed a rich Floquet-Bloch spec-

trum, in which translational and rotational modes tend to dwell

in the low- and high-frequency ranges, respectively. The per-

sistent absence of low-frequency band-gaps has been verified

for different parameter sets, as natural consequence of the spec-

trum density, accompanied by the frequent occurrence of curve

cross-overs. The effect of the main mechanical parameters on

the dispersion curves has been discussed, with focus on the fre-

quency modification and inter-frequency band amplification un-

der variation of the cell aspect ratio, the ligament slenderness

and the ring density.

Second, asymptotic perturbation techniques have been em-

ployed to attack the eigenproblem, in order to analytically as-

sess the eigensolution as an explicit, although asymptotically

approximate, functions of the structural parameters. Depending

on the dimension of the perturbation vector, a single-parameter

and a multi-parameter method have been distinguished and then

separately developed, as far as they may require a different

choice of the unperturbed (reference) point in the parameter

space. The respective solution algorithms, based on a hierar-

chy of perturbation equations, have been defined in a systematic

general form for the lowest approximation orders, and finally

sketched out for the generic higher order, up to the desired ap-

proximation. Both the perturbation schemes have been success-

fully applied (up to the forth-order) to the particular problem

under investigation, furnishing explicit parametric functions of

the eigenvalues. Their comparison with the exact (numerical)

solutions has shown a satisfying approximation accuracy over

a wide range of the perturbation parameters, not limited to the

closest neighborhood of the unperturbed values. Minor accu-

racy losses have been effectively removed by virtue of a suited

weighted combination of approximate solutions with different

reference points.

Finally, the phase and group velocities of the two acoustic

branches, corresponding to shear and compression waves in the

low-frequency range, have been determined. The asymptotic

perturbation eigensolution has allowed the parametric assess-

ment of the wave velocities, which has been verified to well-fit

the exact numerical values. A simple but asymptotically con-

sistent formula for the shear wave velocities has been given,

in order to exemplify the synthetic descriptive potential of the

perturbation-based results, suited for technical application and

design purposes.
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AppendixA. Structural matrices

If the non-null 4-by-4 submatrices of the stiffness matrix Kaa

in the equation (5) are expressed in the component form

Kuu =
[
Kuu

i j

]
, Kvv =

[
Kvv

i j

]
, Kφφ =

[
K
φφ

i j

]
, (A.1)

Kuφ =
[
K

uφ

i j

]
, Kvφ =

[
K

vφ

i j

]
,

for i, j= 1...4, their non-null components read

Kuu
11 =Kuu

22 =Kuu
33 =Kuu

44 = 3(1+36η3�2) (A.2)

Kuu
12 =Kuu

21 =Kuu
34 =Kuu

43 =−1

Kuu
13 =Kuu

31 =Kuu
24 =Kuu

42 =−12η3�2

Kvv
11=Kvv

22 =Kvv
33 =Kvv

44 = 3(η+36�2)

Kvv
12=Kvv

21 =Kvv
34 =Kvv

43 =−12�2

Kvv
13=Kvv

31 =Kvv
24 =Kvv

42 =−η

K
φφ

11
=K

φφ

22
=K

φφ

33
=K

φφ

44
= 3

4
(η+1)(δ2+16�2)

K
φφ

12
=K

φφ

21
=K

φφ

34
=K

φφ

43
= 1

4
(8�2−δ2)

K
φφ

13
=K

φφ

31
=K

φφ

24
=K

φφ

42
=− 1

4
η(δ2−8�2)

K
uφ

11
=K

uφ

22
=−K

uφ

33
=−K

uφ

44
= 1

2
(δ+36η2�2)

K
uφ

12
=K

uφ

21
=−K

uφ

34
=−K

uφ

43
= 1

2
δ

K
uφ

13
=−K

uφ

31
=K

uφ

24
=−K

uφ

42
=−6η2�2

K
vφ

11
=−K

vφ

22
=K

vφ

33
=−K

vφ

44
= 1

2
(δ−36�2)

K
vφ

12
=−K

vφ

21
=K

vφ

34
=−K

vφ

43
= 6�2

K
vφ

13
=K

vφ

31
=−K

vφ

24
=−K

vφ

42
= 1

2
ηδ

Consistently with the decomposition of the matrix Kaa, if the

passive displacement vector is conveniently sorted and decom-

posed as qp = (up, vp,φp), with subvectors up = (u5, ..., u12),

vp = (v5, ..., v12) and φp = (φ5, ..., φ12), the global coupling ma-

trix Kap and the passive stiffness matrix Kpp can be expressed

Kap =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Cuu O Cuφ

O Cvv Cvφ

Cφu Cφv Cφφ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , Kpp =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Puu O Puφ

O Pvv Pvφ

Pφu Pφv Pφφ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (A.3)

where Pφu =P�uφ and Pφv =P�vφ for the sake of symmetry. There-

fore, if the non-null 4-by-8 submatrices (in Kap) and the 8-by-8

submatrices (in Kpp) are expressed as

Cuu =
[
Cuu

i j

]
, Cvv =

[
Cvv

i j

]
, Cφφ =

[
C
φφ

i j

]
, (A.4)

Cuφ =
[
C

uφ

i j

]
, Cvφ =

[
C

vφ

i j

]
,

Puu =
[
Puu

jh

]
, Pvv =

[
Pvv

jh

]
, Pφφ =

[
P
φφ

jh

]
, (A.5)

Puφ =
[
P

uφ

jh

]
, Pvφ =

[
P

vφ

jh

]

for i= 1...4 and j, h= 1...8, their non-null components read

Puu
11 =Puu

22 =Puu
33 =Puu

44 = 2 (A.6)

Puu
55 =Puu

66 =Puu
77 =Puu

88 = 96η3�2

Pvv
11 =Pvv

22 =Pvv
33 =Pvv

44 = 96�2

Pvv
55 =Pvv

66 =Pvv
77 =Pvv

88 = 2η

P
φφ

11
=P

φφ

22
=P

φφ

33
=P

φφ

44
= 8�2

P
φφ

55
=P

φφ

66
=P

φφ

77
=P

φφ

88
= 8η�2

P
uφ

55
=P

uφ

66
=−P

uφ

77
=−P

uφ

88
=−24η2�2

P
vφ

11
=−P

vφ

22
=P

vφ

33
=−P

vφ

44
= 24�2

Cuu
11 =Cuu

22 =Cuu
33 =Cuu

44 =−2

Cuu
15 =Cuu

26 =Cuu
37 =Cuu

48 =−96η3�2

Cvv
11 =Cvv

22 =Cvv
33 =Cvv

44 =−96�2

Cvv
15 =Cvv

26 =Cvv
37 =Cvv

48 =−2η

C
φφ

11
=C

φφ

22
=C

φφ

33
=C

φφ

44
= 4�2

C
φφ

15
=C

φφ

26
=C

φφ

37
=C

φφ

48
= 4η�2

C
uφ

15
=C

uφ

26
=−C

uφ

37
=−C

uφ

48
= 24η2�2

C
vφ

11
=−C

vφ

22
=C

vφ

33
=−C

vφ

44
=−24�2

C
φu

11
=C

φu

22
=−C

φu

33
=−C

φu

44
=−δ

C
φu

15
=C

φu

26
=−C

φu

37
=−C

φu

48
=−24η2�2

C
φv

11
=−C

φv

22
=C

φv

33
=−C

φv

44
= 24�2

C
φv

15
=−C

φv

26
=C

φv

37
=−C

φv

48
=−ηδ (A.7)

AppendixB. Asymptotic and perturbation methods

AppendixB.1. Generalized Scott equation

A variant of the Scott version of the Faà di Bruno’s formula

[43], for the n-th derivative of the composite function g
(
f (t)

)
is

here generalized for a sufficiently differentiable function g
(
f(t)

)
,

depending on the vector function f(t) =
(
f1(t), ..., fi(t), .., f�(t)

)
.

The n-th derivative with respect to the t-variables reads

dn

dtn
g
(
f(t)

)
=

n∑
k=0

∑
|p|=k

1

k!

∂|p|

∂fp
g(f)

[
dn

dtn

(
f(t)

)p
]

f(t)⇒0

(B.1)

where p denotes a multi-index (with |p| = k, and k = 0, ..., n)

and f(t)⇒ 0 requires zeroing the function f(t) after formal t-

differentiation. Denoting G
(n)

0
the n-th derivative evaluated in

the generic value t0 of the variable t, the following relation holds

G
(n)

0
=

[
dn

dtn
g
(
f(t)

)]
t=t0

= (B.2)

=

n∑
k=0

∑
|p|=k

1

k!

[
∂|p|

∂fp
g(f)

]
f=f0

[
dn

dtn

(
f(t)

)p
]

f(t)⇒0
t=t0

where f0 stands for the value assumed by f(t) in t = t0 and the

power
(
f(t)

)p
= fp1

(t)... fpk
(t), where |p|= k with k ∈Z

+.

If the vector function f(t) is an integer t-power series function

which can be expressed as f(t) =
∑

f[ j] (t− t0) j, with i-th entry

fi(t)=
∑

f
[ j]

i
(t− t0) j and i= 1..�, then zp(t)=

(
f(t)

)p
is again an

integer t-power series (of higher order) which can be expressed

as zp(t)=
∑

z
[ j]
p (t− t0) j. Therefore the notable relations yield

[
dn

dtn

(
f(t)

)p
]

f(t)⇒0
t=t0

= n!
[
z[n]

p

]
f [0]⇒0

, f0 = f[0] (B.3)
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stating that the n-derivative of the zp(t)-series (if evaluated at

t= t0) depends only on the coefficient z
[n]
p of the (t− t0)n-power.

This coefficient can be assessed by the recursive formula

z[n]
p =

�∑
i=1

1

n f
[0]

i

n∑
j=1

(
j(1+ |p|)−n

)
f

[ j]

i
z

[n− j]
p (B.4)

to be inizialized with z
[0]
p =

(
f[0])p

. Finally, the n-th derivative

for the composite function g
(
f(t)

)
of a multi-variable integer-

power series f(t), evaluated in t0, reads

G
(n)

0
=

n∑
k=0

∑
|p|=k

n!

k!

[
z[n]

p

]
f [0]⇒0

[
∂|p|

∂fp
g(f)

]
f=f [0]

(B.5)

and can be applied to directly obtain the n-th derivative G
(n)

0
in

the MPPM expansion (39) of the characteristic function (where

the zero-subscript is omitted for the sake of simplicity) by as-

suming ε as independent t-variable, ν(ε) as interior function

f(t) and F
(
ν(ε)

)
as exterior function g

(
f(t)

)
. Similarly, the n-th

derivative G
(n)

0
in the SPPM expansion (28) of the characteristic

function can be obtained as special sub-case, by assuming ξ as

independent t-variable, and defining the two-component vector

variable f(t)=
(
λ(ξ), ξ

)
.

The general formula can be specialized to deal with the n-th

derivative of the two-variable composite function g
(
α(t), x(t)

)
,

depending on the distinct scalar α(t) and vector function x(t)=

(x1(t), ..., x�(t)). The n-th derivative reads

dn

dtn
g
(
α(t), x(t)

)
= (B.6)

=
∑
S(h,k)

∑
|p|=k

1

(h+k)!
D

h,|p|

g(α,x)

[
dn

dtn

((
α(t)

)h(
x(t)

)p
)]
α(t)⇒0
x(t)⇒0

where the index set S(h, k)=
{
h, k ∈

[
0, h+k = n

]
∪h, k ∈Z

+
}

and

D
h,|p|

g(α,x)
=
∂h+|p|

∂αh∂xp
g(α, x)=

∂h+|p|g(α, xp1
, ..., xpk

)

∂αh∂xp1
... ∂xpk

(B.7)

If the n-th derivative is evaluated in the generic value t0 of the

independent variable t, the following relation holds

G
(n)

0
=

dn

dtn

[
g
(
α(t), x(t)

)]
t=0
= (B.8)

=
∑
S(h,k)

∑
|p|=k

1

(h+k)!

[
D

h,|p|

g(α,x)

]
α=α0
x=x0

[
dn

dtn

((
α(t)

)h(
x(t)

)p
)]
α(t)⇒0
x(t)⇒0

t=t0

where α0 and x0 stands for the values of α(t) and x(t) in t= t0.

If both the interior functions can be expressed as t-power

series α(t) =
∑
α[ j] (t− t0) j and x(t) =

∑
x[ j] (t− t0) j, with i-th

entry xi(t) =
∑

x
[ j]

i
(t− t0) j, then yhp(t) =

(
α(t)

)h(
x(t)

)p
is again

a t-power series (of higher order) which can be expressed as

yhp(t)=
∑

y
[ j]

hp
(t− t0) j. Therefore α0 =α

[0], x0 = x[0] and

[
dn

dtn

((
α(t)

)h(
x(t)

)p
)]
α(t)⇒0
x(t)⇒0

t=t0

= n!
[
y

[n]

hp

]
α[0]⇒0
x[0]⇒0

(B.9)

where the coefficient y
[n]

hp
obeys to the recursive formula

y
[n]

hp
=

�∑
i=1

1

nα[0]x
[0]

i

n∑
j=1

(
j
(
1+h+ |p|

)
−n

)
α[ j]x

[ j]

i
y

[n− j]

hp
(B.10)

to be initialized with y
[0]

hp
=

(
α[0]

)h (
x[0]

)p
. Finally, the n-th

derivative for the composite function g
(
f(t)

)
of a multi-variable

integer-power series f(t), evaluated in t0, reads

G
(n)

0
=

∑
S(h,k)

∑
|p|=k

n!

(h+k)!

[
D

h,|p|

g(α,x)

]
α=α[0]

x=x[0]

[
y

[n]

hp

]
α[0]⇒0
x[0]⇒0

(B.11)

and can be applied to directly obtain the n-th coefficient G(n)

of the MPPM equation (43) (where the subscript is omitted) by

assuming ε as independent t-variable, λ(ε) and μ(ε) as interior

functionsα(t) and x(t) and finally F
(
λ(ε),μ(ε)

)
as exterior func-

tion g
(
α(t), x(t)

)
. Similarly, the n-th derivative G

(n)

0
in the SPPM

expansion (28) of the characteristic function can be obtained as

special sub-case, by assign ξ the twofold role of independent

t-variable and single-component vector variable x(t), and then

defining λ(ξ) as interior scalar function α(t).

AppendixB.2. SPPM asymptotic approximation

The explicit parametric expressions of the twelve eigenvalues

of the ideal system (for β∗
1
= 0) in Table 4 must be distinguished

depending on the aspect ratio. First, for the square cell (η = 1)

the twelve zeroth-order eigenvalues are

λ∗1 =λ
∗
2 = 0, λ∗3 =λ

∗
4 = 4, (B.12)

λ∗5 =λ
∗
6 = 48�2, λ∗7 =λ

∗
8 = 4+48�2

λ∗9 =λ
∗
10 =

16�2+δ2

χ2
, λ∗11 = 24

�2

χ2
, λ∗12 = 2

4�2+δ2

χ2

whereas the coefficients of the second-order terms are

Y12 =
3

2
�2 (B.13)

Y22 =
1

8

δ2+8�2

δ2+4�2

Y32 =
1

4

2
(
12χ2−3δ2+4

)
�2−24�4−2χ2+δ2+R342

4χ2−δ2−16�2

Y42 =
1

4

2
(
12χ2−3δ2+4

)
�2−24�4−2χ2+δ2−R342

4χ2−δ2−16�2

Y52 =
1

2

(
12

(
7−12χ2

)
�2+12χ2+3δ2−4+R452

)
�2

(
48χ2−16

)
�2−δ2

Y62 =
1

2

(
12

(
7−12χ2

)
�2+12χ2+3δ2−4−R452

)
�2

(
48χ2−16

)
�2−δ2

Y72 =−
1

16

48χ2�2+4χ2−δ2−24�2

12χ2�2+χ2−6�2

Y82 =−3

(
24χ2�2+2χ2−δ2−10�2

)
�2

24χ2�2+2χ2−δ2−4�2

Y92 =
64

(
3χ2+2

)
�4+8

(
6χ2−1

)
δ2�2+4χ2δ2−δ4

16
(
δ2+16�2−48χ2�2

)
χ2
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Y102 =
64

(
9χ2−2

)
�4+8

(
4χ2+δ2

)
�2+δ4

16
(
δ2+16�2−4χ2

)
χ2

Y112 =

(
24

(
6χ4−5χ2+1

)
�2+2χ2(6χ2+3δ2−2)−3δ2

)
�2

8
(
6
(
2χ2−1

)
�2+χ2

)
χ2

Y122 =
8
(
3χ2+1

)
�6+

(
12χ2δ2−4χ2+3δ2

)
�4

(
δ2+4�2

) (
δ2+4�2−24χ2�2−2χ2

)
χ2
+

+
24

(
2χ4δ2−χ2δ4

)
�2+4χ4δ2−4χ2δ4+δ6

16
(
δ2+4�2

) (
24χ2�2+2χ2−δ2−4�2

)
χ2

where the auxiliary R-coefficients read

R342 =
(
576�8+96

(
3δ2−12χ2+4

)
�6+ (B.14)

4(144χ4−72χ2δ2+9δ4−120χ2+72δ2+16)�2+

4(24χ2−18χ2δ2+3δ2−8χ2
+4δ2)�2

+ (δ2−χ2)2
)1/2

R452 =
(
144(144χ4−168χ2

+49)�4
+

24(144χ4−36χ2δ2−132χ2+21δ+28)�2+

9δ4+4(15−18χ2)+144χ4−96χ2+16
)1/2

Second, for the rectangular cell (η� 1) the twelve zeroth-order

eigenvalues are

λ∗1 =λ
∗
2 = 0, λ∗3 = 4, λ∗4 = 48�2, λ∗5 = 4η, (B.15)

λ∗6 = 48η3�2, λ∗7 = 4+48η3�2, λ∗8 = 4η+48�2

λ∗9 = 12
�2(1+η)

χ2
, λ∗10 =

δ2η+4η�2+δ2+4�2

χ2
,

λ∗11 =
12η�2+δ2+4�2

χ2
, λ∗12 =

12�2+δ2η+4η�2

χ2

and the related coefficients of the second-order terms are

Y12 = 3
η�2

η+1

Y22 =
1

4

δ2η+4η�2+4�2

δ2η+4η�2+δ2+4�2

Y32 =−
1

4

η(δ2+4�2)−4χ2+δ2+12�2

η(δ2+4�2)−4χ2+12�2

Y42 =−
3
(
12(4χ2−η)�2−δ2−16�2

)
�2

12(4χ2−η)�2−δ2−4�2

Y52 =
3
(
4χ2−δ2−4�2

)
η�2

(4χ2−δ2−4�2)η−12�2

Y62 =

(
12χ2η3−3η−1

)
�2

12(4χ2η2−1)η�2−δ2−4�2

Y72 =−
1

16

12(4χ2η3−η−1)�2+4χ2−δ2

3(4χ2η3−η−1)�2+χ2

Y82 =−
3
(
(4χ2−δ2−4�2)η+16(3χ2−1)�2−δ2

)
�2

(4χ2−δ2−4�2)η+4(12χ2−1)�2−δ2

Y92 =
N94η

4+N93η
3+N92η

2+N91η+N90

16 (η+1)
(
3(4χ2η3−η−1)�2+χ2

)
χ2

Y102 =
N102η

2+N101η+N100

16χ2
(
δ2+4�2

)
(η+1)Q102

Y112 =
N114η

4+N113η
3+N112η

2+N111η+N110

16χ2Q112

Y122 =
N122η

2+N121η+N120

16χ2Q112

where the auxiliaryN- and Q-coefficients read

N94 = 12
(
δ2−8�2

)
χ2�2

N93 = 12
(
48χ2�2+δ2−8�2

)
�2χ2

N92 = 24�4−3δ2�2

N91 = 48
(
1−3χ2

)
�4−2

(
4χ2+3δ2

)
�2

N90 = 24
(
1−6χ2

)
�4+

(
48χ4−8χ2−3δ2

)
�2

N102=−
(
δ2+4�2

) (
δ2−8�2

) (
4χ2−δ2−4�2

)
N101=−256

(
3χ2+1

)
�6+

(
4χ2− (12χ2+3)δ2

)
�4−

−48χ2δ4�2+16χ4δ2−8χ2δ4+2δ6

N100=−128
(
6χ2+1

)
�6−48

(
8χ2+1

)
δ2�4−

−16
(
3δ4− (12χ2−1)δ2

)
χ2�2−4χ2δ4+δ6

N114= 576
(
δ2−8�2

)
χ2�4

N113=−48
(
δ2+4�2

) (
48χ2�2−δ2+8�2

)
�2χ2

N112=−144
(
δ2−8�2

)
�4

N111= 768
(
3χ2+1

)
�6+96

(
6χ2+1

)
δ2�4+24

(
2χ2−δ2

)
δ2�2

N110= 128
(
6χ2
+1

)
�6
+48

(
8χ2
+1

)
δ2�4
+

+16
(
3δ2−12χ2

+1
)
χ2δ2�2

+4χ2δ4−δ6

N122=−
(
δ2+4�2

) (
δ2−8�2

) (
4χ2−δ2−4�2

)
N121= 728

(
3χ2−1

)
�6+32

(
18χ2δ2−3δ2+16χ2

)
�4+

+8
(
3δ4−2χ2δ2−16χ4

)
�2

N120= 1152
(
6χ2−1

)
�6+48

(
3δ2−48χ4+8χ2

)
�4

Q102= 48χ2�2+4χ2η−δ2η−4η�2−δ2−4�2

Q112=
(
4(12χ2−3η−1)�2−δ2

) (
4(12χ2η3−3η−1)�2−δ2

)
Q122=

(
(4χ2−δ2−4�2)η−12�2

) (
4χ2−12�2− (δ2+4�2)η

)

and the cumbersome forth-order terms are omitted for the sake

of conciseness.

AppendixB.3. MPPM asymptotic approximation

The explicit parametric expressions of the twelve eigenvalues

of the ideal system (for β◦
1
= 0) in Table 5 are

λ◦1 =λ
◦
2 =λ

◦
3 =λ

◦
4 = 0, λ◦5 =λ

◦
6 = 4, λ◦7 =λ

◦
8 = 4η (B.16)

λ◦9 = (η+1)
4�2+δ2

χ2
, λ◦10 = 12(η+1)

�2

χ2

λ◦11 = 4(η+3)
�2

χ2
+η
δ2

χ2
, λ◦12 =

16�2+δ2

χ2
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whereas the coefficients (all evaluable as O(1) according to the

parameter ordering) in the higher order eigensensitivities read

J22 =
�2

δ2+4�2
+
η

4G1

δ2

(δ2+4�2)

J32 =J82 = 48 (B.17)

J42 = 48η3+
G2β

2
1

δ2+4�2G2

J52 =−
1

4
−

δ2

4η(δ2+4�2)+16(3�2−χ2)

J
�

62
= 48η3,

J
β

62
=−

1

4
+

δ2

16χ2−48G1�2

J92 =
δ2

4G1(δ2+4�2)
−
δ2−8�2

16χ2

J102 =
3G1�

2δ2

48G1�2χ2−16χ4
−
�2

2χ2

J112 =
δ2

16G4�2+4ηδ2−16χ2
+
δ2−8�2

16χ2

J122 =
δ2

16G2�2+4δ2
−
δ2−8�2

16χ2

J14 = 3
η

G1

J24 =−
χ2δ2(ηδ2+4G1�

2)
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(B.18)

where the auxiliary G-parameters

G1 = η+1, G2 = 3η+1, G3 = η
3−1, (B.19)

G4 = η+3, G5 = η
3
+1

depend only on the cell geometric shape.
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