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Abstract

This study proposes a multi-field asymptotic homogenization for the analysis of thermo-piezoelectric
materials with periodic microstructures. The effect of the microstructural heterogeneity is taken into
account by means of periodic perturbation functions, which derive from the solution of non homogeneous
recursive cell problems defined over the unit periodic cell. A strong coupling is present between the micro
displacement field and the micro electric potential field, since the mechanical and the electric problems
are fully coupled in the asymptotically expanded microscale field equations. The micro displacement, the
electric potential, and the relative temperature fields have been related to the macroscopic quantities and
to their gradients in the derived down-scaling relations. Average field equations of infinite order have been
obtained and the closed form of the overall constitutive tensors has been determined for the equivalent
first-order homogenized continuum. A formal solution of such equations has been derived by means of
an asymptotic expansion of the macro fields. The accuracy of the proposed formulation is assessed in
relation to illustrative examples of a bi-material periodic microstructure subjected to harmonic body
forces, free charge densities, and heat sources, whose periodicity is much greater than the characteristic
microstructural size. The good agreement obtained between the solution of the homogenized model and
the finite element solution of the original heterogeneous material problem confirms the validity of the
proposed formulation.

1 Introduction

The use of composite materials has become increasingly attractive to fulfill industry needs due to their
mechanical and physico-chemical properties. Namely composites can be tailored to meet specific design
requirements. They increase strength, durability, corrosion resistance, damage tolerance, and reduce weight.
They find applications in numerous engineering sectors such as for example aerospace, energy, automotive,
marine, electrical, chemical, and biomedical.

In such a context, electromechanical devices (transducers, resonators, acoustic wave sensors among the
others) are noteworthy. They involve the use of piezoelectric materials, exhibiting a linear coupling between
the electric and the mechanical fields. Due to their crystalline structure, which becomes electrically polar-
ized if mechanically stressed (direct piezoelectric effect), they also experience mechanical deformations in
the presence of an electric field (inverse piezoelectric effect) (Yang, 2004). Piezoelectric materials include
also pyroelectric materials, distinguished by thermo-electrical interactions. Pyroelectricity characterizes the
dependence of spontaneous polarization of crystalline materials to temperature. It is the property whereby a
change of temperature generates the presence of a charge on the surface of the pyroelectric material itself and
the direction of the pyroelectric current depends on the nature of thermal gradients (Moulson and Herbert,
2003; Batra and Aggarwal, 2013). A correct characterization of piezoelectric, pyroelectric, and, more gener-
ally, temperature-dependent properties of such material systems is of great importance to enable applications
in sensing, transduction, actuation, energy harvesting, thermal imaging, gas analysis, radiometry, and in the
biomedical field, allowing to reach the optimal device design in any operating conditions. Production of such
devices is expanding in small formats (nanometer scale), compatibly with microfabrication processes for
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micro-electronic applications (MEMS-based devices), since thin films offer distinct advantages for thermal
to electrical energy conversion over bulk samples (Kimata, 2013). Such materials are microstructured, being
characterized by a periodicity or a quasi-periodicity.

Multiscale techniques constitute a powerful method to study thermo-piezoelectric materials whose macro-
scopic behaviour is influenced by multi-field phenomena occurring at the microscale. In order to obtain an
accurate and synthetic description of the macroscopic thermo-piezoelectric properties without performing a
computationally expensive modeling of the whole heterogeneous medium, homogenization techniques can be
efficiently employed. For composites with a periodic microstructure, in particular, homogenization represents
a suitable tool for modeling the effects of the microscopic phases on the overall properties. Such techniques
developed for determining the overall static and dynamic properties of periodic composite materials can be
generally distinguished in asympthotic methods (Allaire, 1992; Andrianov et al., 2008; Auriault and Bonnet,
1985; Bacigalupo, 2014; Bakhvalov and Panasenko, 1984; Bensoussan et al., 1978; Gambin and Kröner, 1989;
Sanchez-Palencia, 1974; Tran et al., 2012), variational-asymptotic techniques (Bacigalupo and Gambarotta,
2014a,b; Bacigalupo et al., 2014; Peerlings and Fleck, 2004; Smyshlyaev and Cherednichenko, 2000), and
computational approaches based on a polynomial approximation of the macroscopic fields (Addessi et al.,
2013; Bacca et al., 2013a,b,c; Bacigalupo and De Bellis, 2015; Bacigalupo and Gambarotta, 2010; Bigoni
and Drugan, 2007; Forest and Sab, 1998; Forest and Trinh, 2011; Miehe et al., 1999; Kouznetsova et al.,
2002, 2004). In all these formulations, the equivalent homogenized macroscopic medium is described trough
a first-order continuum or, alternatively, by means of a nonlocal one.

An extension of the above mentioned techniques to a multi-field case has concerned thermomechanics
(Aboudi et al., 2001; Kanouté et al., 2009; Zhang et al., 2007), piezoelectricity (Deraemaeker and Nasser,
2010), and thermo-diffusive phenomena (Bacigalupo et al., 2014, 2016a,b). In (Salvadori et al., 2014) the
effects of the microstructure on macroscopic elastic and thermodiffusive properties and on the coupling be-
tween them has been investigated in relation to lithium-ion batteries and solid oxide fuel cells.

In this framework, the present work describes an asymptotic homogenization technique for static anal-
ysis of thermo-piezoelectric materials with a periodic microstructure, making a progress from the ap-
proaches proposed in (Bacigalupo, 2014; Bacigalupo and Gambarotta, 2014b; Bakhvalov and Panasenko,
1984; Smyshlyaev and Cherednichenko, 2000).

In this study, the asymptotic expansion of the micro-displacement, electric potential, and relative tem-
perature fields allows to obtain from the expression of the micro-scale field equations a series of recursive
differential problems defined over the periodic unit cell in terms of the microscopic variables. Solvability
conditions for such non homogeneous recursive cell problems lead to the derivation of down-scaling relations,
which correlate the microscopic fields to the macroscopic ones and to their gradients by means of pertur-
bation functions. Those functions depend exclusively on the geometrical and physico-mechanical properties
of the material under consideration and account for the influence of microstructural inhomogeneities on the
displacement, electric potential, and relative temperature, and on their coupling. The exact expressions of
the overall constitutive tensors have been determined for the class of periodic thermo-piezoelectric materials
considered herein, expressed in terms of perturbation functions and constitutive tensors at the microscale.
Average field equations of infinite order have been derived following the method proposed in (Bacigalupo,
2014; Smyshlyaev and Cherednichenko, 2000), substituting the down-scaling relations into the micro-field
equations. Their formal solution has been obtained by performing an asymptotic expansion of the macro
fields in terms of the characteristic microstructural size. Finally, truncating such expansions to the zeroth
order, field equations for the equivalent Cauchy thermo-piezoelectric medium are derived.

Section 2 of the paper is devoted to describe the governing equations at the microscale. Cell problems
and their solution are accurately presented in Section 3, which shows the existence of a strong coupling
between the mechanical and the electrical fields and the related perturbation functions. Section 4 presents
the down-scaling and the up-scaling relations, which allow to express the macroscopic displacement, electric
potential, and temperature fields in terms of the corresponding microscopic ones. Average field equations
of infinite order are described in Section 5, together with the closed form of the overall thermo-piezoelectric
constitutive parameters and the field equations of the equivalent first-order continuum.

The homogenization technique proposed in the paper is finally applied to the case of a bi-material pe-
riodic microstructure subjected to periodic body forces, charge densities, and heat sources. The solution
of the first-order homogenized problem is then compared with the numerical results obtained by a finite
element analysis of the heterogeneous problem, in order to assess the validity of the proposed homogeniza-
tion procedure and its accuracy. In this regard, a thermo-piezoelectric element has been formulated and
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Figure 1: (a) Periodic microstructure of the heterogeneous medium with structural characteristic size L;
(b)Periodic cell A with microstructural characteristic size ε and periodicity vectors v1 and v2; (c) Periodic
unit cell Q.

implemented in the finite element program FEAP (Zienkiewicz and Taylor, 1977) to numerically solve the
coupled thermo-electromechanical problem. Finally, conclusions are proposed in Section 7.

2 Field equations of the periodic heterogeneous material and kine-
matic multi-scale description

Consider a heterogeneous composite material characterized by a periodic microstructure under the assump-
tion of small strains. The continuum is described as a linear thermo-piezoelectric Cauchy medium (Mindlin,
1974) subject to stresses induced by body forces, free charge densities, and temperature changes. Restricting
the notation to the two-dimensional case for the sake of simplicity and without losing generality, the position
vector x = x1 e1+x2 e2 characterizes each material point in the orthogonal reference system {O, e1, e2} with
origin at point O, as shown in Figure 1(a).

The continuum is described by the micro displacement field u(x) = ui ei, the micro electrical potential
field φ(x), and the micro relative temperature field θ(x) = T (x) − T0, where T0 is a reference stress-free
temperature. The entire periodic medium can be obtained by spanning a periodic cell A = [0, ε]× [0, δε] by
the two orthogonal periodicity vectors defined as v1 = d1 e1 = ε e1, and v2 = d2 e2 = δε e2, being ε the char-
acteristic size of the cell A ( Figure 1(b)). Because of the A-periodicity of the material, the micro-elasticity

tensor C(m,ε)(x) = C
(m,ε)
ijkl ei⊗ej⊗ek⊗el, together with the micro-dielectric permittivity tensor (at constant

strain) β(m,ε)(x) = β
(m,ε)
ij ei⊗ej , and the micro-heat conduction tensor K(m,ε)(x) = K

(m,ε)
ij ei⊗ej obey the

following properties:

C(m,ε)(x+ vi) = C(m,ε)(x), i = 1, 2, ∀x ∈ A, (1a)

β(m,ε)(x+ vi) = β(m,ε)(x), i = 1, 2, ∀x ∈ A, (1b)

K(m,ε)(x+ vi) = K(m,ε)(x), i = 1, 2, ∀x ∈ A, (1c)

where the superscript m refers to the microscale. Analogous relations hold for the micro-coupling tensors,

namely the piezoelectric stress/charge tensor e(m,ε)(x) = e
(m,ε)
ijk ei ⊗ ej ⊗ ek, the thermal dilatation tensor
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α(m,ε)(x) = α
(m,ε)
ij ei ⊗ ej , and the pyroelectric vector γ(m,ε)(x) = γ

(m,ε)
i ei:

e(m,ε)(x+ vi) = e(m,ε)(x), i = 1, 2, ∀x ∈ A, (2a)

α(m,ε)(x+ vi) = α(m,ε)(x), i = 1, 2, ∀x ∈ A, (2b)

γ(m,ε)(x+ vi) = γ(m,ε)(x), i = 1, 2, ∀x ∈ A. (2c)

Rescaling the size of the periodic cell A by the characteristic length ε, it is possible to reproduce the periodic
microstructure by a non dimensional unit cell Q = [0, 1] × [0, δ] shown in Figure 1-(c). In this regard, two
variables, the macroscopic (slow) one x ∈ A, and the microscopic (fast) one ξ = x/ε ∈ Q allow the separation
of the scales distinguishing from the macro and the micro scales, see for example (Allaire, 1992; Bacigalupo,
2014; Bakhvalov and Panasenko, 1984; Gambin and Kröner, 1989; Peerlings and Fleck, 2004; Smyshlyaev
and Cherednichenko, 2000; Tran et al., 2012). Therefore, the constitutive tensors (1a)-(2c) are made only
dependent on the microscopic variable ξ. They result Q-periodic and defined over Q as

C(m,ε)(x) = Cm(ξ = x/ε), β(m,ε)(x) = βm(ξ = x/ε), K(m,ε)(x) = Km(ξ = x/ε),

e(m,ε)(x) = em(ξ = x/ε), α(m,ε)(x) = αm(ξ = x/ε), γ(m,ε)(x) = γm(ξ = x/ε). (3)

Constitutive relations determining the micro-stress σ(x), the micro-electric displacement D(x), and the
micro-heat flux q(x) are given by the following formulae (Mindlin, 1974):

σ(x) = Cm
(x
ε

)
ε(x) + em

(x
ε

)
∇φ(x)−αm

(x
ε

)
θ(x), (4a)

D(x) = ẽm
(x
ε

)
ε(x)− βm

(x
ε

)
∇φ(x) + γm

(x
ε

)
θ(x), (4b)

q(x) = −Km
(x
ε

)
∇θ(x), (4c)

where ε = sym∇u represents the micro-strain tensor and ẽm = ẽmijkei⊗ej ⊗ek, with ẽmijk = emjki. Under the
assumption of a quasi-static process, the time derivative of u(x) and θ(x) has been neglected in the heat flux
equation (4c) (Mindlin, 1974; Nowacki, 1986). The stress field σ(x), the electric displacement field D(x),
and the heat flux q(x) satisfy, respectively, the following local balance equations

∇ · σ(x) + b(x) = 0, ∇ ·D(x)− ρe(x) = 0, ∇ · q(x) + r(x) = 0, (5)

where body forces b(x), free charge densities ρe(x), and heat sources r(x) are made dependent only on
the slow variable x. It is assumed that volume forces are L-periodic with L = [0, L] × [0, δL], and have
vanishing mean values on L. The structural length L has to be much greater than the microstructural
length ε (L >> ε) for the validity of the scales separability condition, so that L can be considered as a
true representative portion of the whole body. The following partial differential equations result from the
substitution of constitutive relations (4a)-(4c) into the local balance equations (5)

∇ ·
(
Cm

(x
ε

)
∇u(x)

)
+∇ ·

(
em

(x
ε

)
∇φ(x)

)
−∇ ·

(
αm

(x
ε

)
θ(x)

)
+ b(x) = 0, (6a)

∇ ·
(
ẽm

(x
ε

)
∇u(x)

)
−∇ ·

(
βm

(x
ε

)
∇φ(x)

)
+∇ ·

(
γm

(x
ε

)
θ(x)

)
− ρe(x) = 0, (6b)

∇ ·
(
Km

(x
ε

)
∇θ(x)

)
+ r(x) = 0. (6c)

Denoting with [[f ]] = f i(Σ) − f j(Σ) the jump of the values of function f at the interface Σ between
two different phases i and j in the periodic cell A, the following continuity conditions hold for a perfectly
bounded interface

[[u(x)]]|x∈Σ = 0,
[[(

Cm
(x
ε

)
∇u(x) + em

(x
ε

)
∇φ(x)−αm

(x
ε

)
θ(x)

)
· n
]]∣∣∣

x∈Σ
= 0, (7a)

[[φ(x)]]|x∈Σ = 0,
[[(

ẽm
(x
ε

)
∇u(x)− βm

(x
ε

)
∇φ(x) + γm

(x
ε

)
θ(x)

)
· n
]]∣∣∣

x∈Σ
= 0, (7b)

[[θ(x)]]|x∈Σ = 0,
[[
Km

(x
ε

)
∇θ(x) · n

]]∣∣∣
x∈Σ

= 0, (7c)
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where n denotes the outward normal to the interface Σ. Because of the Q-periodicity of microscopic con-
stitutive tensors in equations (6a)-(6c) and interface conditions (7a)-(7c), and taking into account the L-
periodicity of volume forces, the micro-fields depend on both the slow variable x and the fast one ξ and can
be expressed in the following form

u = u
(
x; ξ =

x

ε

)
, φ = φ

(
x; ξ =

x

ε

)
, θ = θ

(
x; ξ =

x

ε

)
.

Deriving the solution of the set of PDEs (6a)-(6c) could be particularly complex both analytically and
numerically because of theQ-periodicity of their coefficients. The use of homogenization techniques to replace
the continuum with its microstructure by an equivalent homogeneous one can be very effective. In this regard,
the formulation of an equivalent first-order thermo-piezoelectric continuum will be derived in what follows
and the exact expressions of the overall constitutive tensors will be determined. This allows to replace the
solution of equations (6a)-(6c) of the heterogeneous medium with the solution of an equivalent homogeneous
material whose solutions are close to those of (6a)-(6c), but whose coefficients are not affected by rapid
oscillations due to the underlying microstructure. By means of the asymptotic homogenization technique,
the computational cost of solving the microscopic field equations (6a)-(6c) can therefore be overcome and
the global behaviour of the composite structure can be accurately described. In the equivalent homogenized
continuum, the macroscopic fields in each material point x are indicated asU(x) = Ui ei for the displacement,
Φ(x) for the electric potential, and Θ(x) for the relative temperature.

3 Asymptotic expansions of microscopic field equations

The three micro-fields governing the problem can be represented trough an asymptotic expansion in powers
of the microstructural length scale ε that mantains the micro and the macro scales separated by keeping the
slow variable x distinguished from the fast one ξ = x/ε. Following the approach presented in (Bakhvalov
and Panasenko, 1984; Bensoussan et al., 1978; Sanchez-Palencia, 1974), the asymptotic expansions take the
general form

uh

(
x,

x

ε

)
=

+∞∑

l=0

εlu
(l)
h

(
x,

x

ε

)
= u

(0)
h

(
x,

x

ε

)
+ εu

(1)
h

(
x,

x

ε

)
+ ε2u

(2)
h

(
x,

x

ε

)
+O(ε3), (8a)

φ
(
x,

x

ε

)
=

+∞∑

l=0

εlφ(l)
(
x,

x

ε

)
= φ(0)

(
x,

x

ε

)
+ εφ(1)

(
x,

x

ε

)
+ ε2φ(2)

(
x,

x

ε

)
+O(ε3), (8b)

θ
(
x,

x

ε

)
=

+∞∑

l=0

εlθ(l)
(
x,

x

ε

)
= θ(0)

(
x,

x

ε

)
+ εθ(1)

(
x,

x

ε

)
+ ε2θ(2)

(
x,

x

ε

)
+O(ε3). (8c)

Exploiting the property D
Dxj

f(x; ξ = x
ε ) =

(
∂f
∂xj

+ 1
ε

∂f
∂ξj

)∣∣∣
ξ= x

ε

=
(

∂f
∂xj

+ 1
ε f,j

)∣∣∣
ξ= x

ε

, expansions (8a)-(8c)

can be substituted into the microscopic field equations (6a)-(6c). In particular, equation (6a) takes the form

{
ε−2

[(
Cm

ijkl u
(0)
k,l

)
,j
+
(
emijk φ

(0)
,k

)
,j

]
+

+ ε−1

⎧
⎨
⎩

[
Cm

ijkl

(
∂u

(0)
k

∂xl
+ u

(1)
k,l

)]

,j

+
∂

∂xj

(
Cm

ijkl u
(0)
k,l

)
+

[
emijk

(
∂φ(0)

∂xk
+ φ

(1)
,k

)]

,j

+
∂

∂xj

(
emijk φ

(0)
,k

)
+

−
(
αm
ij θ

(0)
)
,j

}
+

+

⎧
⎨
⎩

[
Cm

ijkl

(
∂u

(1)
k

∂xl
+ u

(2)
k,l

)]

,j

+
∂

∂xj

[
Cm

ijkl

(
∂u

(0)
k

∂xl
+ u

(1)
k,l

)]
+

[
emijk

(
∂φ(1)

∂xk
+ φ

(2)
,k

)]

,j

+

+
∂

∂xj

[
emijk

(
∂φ(0)

∂xk
+ φ

(1)
,k

)]
−
(
αm
ij θ

(1)
)
,j
− ∂

∂xj

(
αm
ij θ

(0)
)}

+
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+ ε

⎧
⎨
⎩

[
Cm

ijkl

(
∂u

(2)
k

∂xl
+ u

(3)
k,l

)]

,j

+
∂

∂xj

[
Cm

ijkl

(
∂u

(1)
k

∂xl
+ u

(2)
k,l

)]
+

[
emijk

(
∂φ(2)

∂xk
+ φ

(3)
,k

)]

,j

+

+
∂

∂xj

[
emijk

(
∂φ(1)

∂xk
+ φ

(2)
,k

)]
−
(
αm
ij θ

(2)
)
,j
− ∂

∂xj

(
αm
ij θ

(1)
)}

+O(ε2)

}∣∣∣∣
ξ= x

ε

+ bi(x) = 0. (9)

Similarly, equation (6b) can be written as
{
ε−2

[(
emkli u

(0)
k,l

)
,i
−
(
βm
il φ

(0)
,l

)
,i

]
+

+ ε−1

⎧
⎨
⎩

[
emkli

(
∂u

(0)
k

∂xl
+ u

(1)
k,l

)]

,i

+
∂

∂xi

(
emkli u

(0)
k,l

)
−
[
βm
il

(
∂φ(0)

∂xl
+ φ

(1)
,l

)]

,i

− ∂

∂xi

(
βm
il φ

(0)
,l

)
+
(
γm
i θ(0)

)
,i

⎫
⎬
⎭

+

⎧
⎨
⎩

[
emkli

(
∂u

(1)
k

∂xl
+ u

(2)
k,l

)]

,i

+
∂

∂xi

[
emkli

(
∂u

(0)
k

∂xl
+ u

(1)
k,l

)]
−
[
βm
il

(
∂φ(1)

∂xl
+ φ

(2)
,l

)]

,i

+

− ∂

∂xi

[
βm
il

(
∂φ(0)

∂xl
+ φ

(1)
,l

)]
+
(
γm
i θ(1)

)
,i
+

∂

∂xi

(
γm
i θ(0)

)}
+

+ ε

⎧
⎨
⎩

[
emkli

(
∂u

(2)
k

∂xl
+ u

(3)
k,l

)]

,i

+
∂

∂xi

[
emkli

(
∂u

(1)
k

∂xl
+ u

(2)
k,l

)]
−
[
βm
il

(
∂φ(2)

∂xl
+ φ

(3)
,l

)]

,i

+

− ∂

∂xi

[
βm
il

(
∂φ(1)

∂xl
+ φ

(2)
,l

)]
+
(
γm
i θ(2)

)
,i
+

∂

∂xi

(
γm
i θ(1)

)}
+O(ε2)

}∣∣∣∣
ξ= x

ε

− ρe(x) = 0, (10)

and finally, eq. (6c) results
{
ε−2

(
Km

ij θ
(0)
,j

)
,i
+ ε−1

{[
Km

ij

(
∂θ(0)

∂xj
+ θ

(1)
,j

)]

,i

+
∂

∂xi

(
Km

ij θ
(0)
,j

)}
+

+

[
Km

ij

(
∂θ(1)

∂xj
+ θ

(2)
,j

)]

,i

+
∂

∂xi

[
Km

ij

(
∂θ(0)

∂xj
+ θ

(1)
,j

)]
+

+ ε

{[
Km

ij

(
∂θ(2)

∂xj
+ θ

(3)
,j

)]

,i

+
∂

∂xi

[
Km

ij

(
∂θ(1)

∂xj
+ θ

(2)
,j

)]}
+

+ O(ε2)
}∣∣

ξ= x
ε

+ r(x) = 0. (11)

Interface conditions (7a)-(7c) can be expressed in terms of the fast variable ξ, since the micro fields u(x; ξ),
φ(x; ξ), and θ(x; ξ) are assumed to be Q-periodic regular functions of the variable x (Bakhvalov and
Panasenko, 1984). Denoting with Σ1 the interface between two different phases in the unit cell Q, and
taking into account asymptotic expansions (8a)-(8c), interface conditions (7a) are rephrased as

[[
u
(0)
h

]]∣∣∣
ξ∈Σ1

+ ε
[[
u
(1)
h

]]∣∣∣
ξ∈Σ1

+ ε2
[[
u
(2)
h

]]∣∣∣
ξ∈Σ1

+ ... = 0,

1

ε

[[(
Cm

ijkl u
(0)
k,l + emijk φ

(0)
,k

)
nj

]]∣∣∣
ξ∈Σ1

+

[[{
Cm

ijkl

(
∂u

(0)
k

∂xl
+ u

(1)
k,l

)
+ emijk

(
∂φ(0)

∂xk
+ φ

(1)
,k

)

−αm
ij θ

(0)
}
nj

]]∣∣∣
ξ∈Σ1

+ ε

[[{
Cm

ijkl

(
∂u

(1)
k

∂xl
+ u

(2)
k,l

)
+ emijk

(
∂φ(1)

∂xk
+ φ

(2)
,k

)
− αm

ij θ
(1)

}
nj

]]∣∣∣∣∣
ξ∈Σ1

+

ε2

[[{
Cm

ijkl

(
∂u

(2)
k

∂xl
+ u

(3)
k,l

)
+ emijk

(
∂φ(2)

∂xk
+ φ

(3)
,k

)
− αm

ij θ
(2)

}
nj

]]∣∣∣∣∣
ξ∈Σ1

+ ... = 0. (12)

Analogously, interface conditions (7b) read
[[
φ(0)

]]∣∣∣
ξ∈Σ1

+ ε
[[
φ(1)

]]∣∣∣
ξ∈Σ1

+ ε2
[[
φ(2)

]]∣∣∣
ξ∈Σ1

+ ... = 0,
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1

ε

[[(
emkli u

(0)
k,l − βm

il φ
(0)
,l

)
ni

]]∣∣∣
ξ∈Σ1

+

[[{
emkli

(
∂u

(0)
k

∂xl
+ u

(1)
k,l

)
− βm

il

(
∂φ(0)

∂xl
+ φ

(1)
,l

)

+γm
i θ(0)

}
ni

]]∣∣∣
ξ∈Σ1

+ ε

[[{
emkli

(
∂u

(1)
k

∂xl
+ u

(2)
k,l

)
− βm

il

(
∂φ(1)

∂xl
+ φ

(2)
,l

)
+ γm

i θ(1)

}
ni

]]∣∣∣∣∣
ξ∈Σ1

+

ε2

[[{
emkli

(
∂u

(2)
k

∂xl
+ u

(3)
k,l

)
− βm

il

(
∂φ(2)

∂xl
+ φ

(3)
,l

)
+ γm

i θ(2)

}
ni

]]∣∣∣∣∣
ξ∈Σ1

+ ... = 0, (13)

and the interface conditions (7c) become
[[
θ(0)

]]∣∣∣
ξ∈Σ1

+ ε
[[
θ(1)

]]∣∣∣
ξ∈Σ1

+ ε2
[[
θ(2)

]]∣∣∣
ξ∈Σ1

+ ... = 0,

1

ε

[[(
Km

ij θ
(0)
,j

)
ni

]]∣∣∣
ξ∈Σ1

+

[[{
Km

ij

(
∂θ(0)

∂xj
+ θ

(1)
,j

)}
ni

]]∣∣∣∣
ξ∈Σ1

+

+ε

[[{
Km

ij

(
∂θ(1)

∂xj
+ θ

(2)
,j

)}
ni

]]∣∣∣∣
ξ∈Σ1

+ ε2
[[{

Km
ij

(
∂θ(2)

∂xj
+ θ

(3)
,j

)}
ni

]]∣∣∣∣
ξ∈Σ1

+ ... = 0. (14)

From equations (9)-(11) one can notice that a strong coupling exists between the micro-displacement
u(x; ξ) and the micro-electric potential φ(x; ξ) because the mechanical and the electric problems remain
coupled at any order ε in the asymptotically expanded microscale field equations. Hence, the proposed
homogenization model can be regarded as a generalization of the multi-field asymptotic technique proposed
in (Bacigalupo et al., 2016a) for thermo-diffusive materials with weak coupling between the micro/macro
fields and the single-field standard asymptotic technique for static problems, see for example (Bacigalupo,
2014; Bakhvalov and Panasenko, 1984). Differential problems deriving from equations (9)-(11) are now made
explicit at the different orders ε for both the thermal and the piezoelectric fields. They bring to the formu-
lation of cell problems described in Section 3.1.

Heat diffusion problem
Starting from the heat diffusion problem described by the field equation (11), at the order ε−2 one has the
following differential problem (

Km
ij θ

(0)
,j

)
,i
= h(0)(x), (15)

with interface conditions [[
θ(0)

]]∣∣∣
ξ∈Σ1

= 0,
[[(

Km
ij θ

(0)
,j

)
ni

]]∣∣∣
ξ∈Σ1

= 0. (16)

Solvability condition of (15) in the class of Q-periodic functions, together with interface conditions (16),
implies that h0(x) = 0, see (Bakhvalov and Panasenko, 1984), and the solution θ(0) corresponds to the
macroscopic temperature, namely:

θ(0)(x; ξ) = Θ(x), (17)

which depends only on the slow variable x.
Taking into account the expression (17) of the solution at the expansion order ε−2, at the order ε−1

equation (11) yields (
Km

ij θ
(1)
,j

)
,i
+Km

ij,i

∂Θ

∂xj
= h(1)(x), (18)

with interface conditions

[[
θ(1)

]]∣∣∣
ξ∈Σ1

= 0,

[[
Km

ij

(
∂Θ

∂xj
+ θ

(1)
,j

)
ni

]]∣∣∣∣
ξ∈Σ1

= 0. (19)

Due to theQ-periodicity of componentsKm
ij , one has h

1(x) =
〈
Km

ij,i

〉
= 0 for the solvability of the differential

problem (18), where 〈(·) 〉 = 1
δ

∫
Q(·)dξ. In consideration of equation (17), the solution θ(1) at the order ε−1

takes the form

θ(1)(x; ξ) = M (1)
q1 (ξ)

∂Θ(x)

∂xq1

, (20)
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where the perturbation function M
(1)
q1 expresses the influence of the fast variable ξ = x

ε .
Perturbation functions are Q-periodic and it is assumed that they have vanishing mean values over the unit

cell Q. Therefore, M
(1)
q1 (ξ) satisfies the following normalization condition

〈
M (1)

q1

〉
=

1

δ

∫

Q
M (1)

q1 (ξ) dξ = 0, (21)

which is a general property imposed for all the perturbation functions.
Bearing in mind the solutions (17) and (20) of the differential problems at orders ε−2 and ε−1, respectively,

equation (11) yields at the order ε0

[
Km

ij

(
M (1)

q1

∂2Θ

∂xq1∂xj
+ θ

(2)
,j

)]

,i

+
∂

∂xi

[
Km

ij

(
∂Θ

∂xj
+M

(1)
q1,j

∂Θ

∂xq1

)]
= h(2)(x), (22)

with interface conditions

[[
θ(2)

]]∣∣∣
ξ∈Σ1

= 0,

[[
Km

ij

(
M (1)

q1

∂2Θ

∂xq1∂xj
+ θ

(2)
,j

)
ni

]]∣∣∣∣
ξ∈Σ1

= 0. (23)

Solvability condition of the differential problem (22) entails that

h(2)(x) =

〈(
Km

iq2 M
(1)
q1

)
,i

〉
∂2Θ(x)

∂xq1∂xq2

+
〈
Km

q1q2 +Kq2j Mq1,j

〉 ∂2Θ(x)

∂xq1∂xq2

=
〈
Km

q1q2 +Kq2j Mq1,j

〉 ∂2Θ(x)

∂xq1∂xq2

,

since

〈(
Km

iq2
M

(1)
q1

)
,i

〉
= 0 for the divergence theorem and theQ-periodicity ofKm

iq2
andM

(1)
q1 . Consequently,

the solution θ(2) of the heat diffusion differential problem at the order ε−2 takes the following form

θ(2)(x; ξ) = M (2)
q1q2(ξ)

∂2Θ(x)

∂xq1∂xq2

, (24)

thus introducing the perturbation function M
(2)
q1q2 .

Piezoelectric problem
For what regards the piezoelectric problem governed by field equations (9)-(10), at the order ε−2 one has

(
Cm

ijklu
(0)
k,l

)
,j
+
(
emijkφ

(0)
,k

)
,j
= f

(0)
i (x),

(
emkliu

(0)
k,l

)
,i
−
(
βm
il φ

(0)
,l

)
,i
= g(0)(x), (25)

with interface conditions
[[
u
(0)
k

]]∣∣∣
ξ∈Σ1

= 0,
[[
φ(0)

]]∣∣∣
ξ∈Σ1

= 0,

[[(
Cm

ijklu
(0)
k,l + emijkφ

(0)
,k

)
nj

]]∣∣∣
ξ∈Σ1

= 0,
[[(

emkliu
(0)
k,l − βm

il φ
(0)
,l

)
ni

]]∣∣∣
ξ∈Σ1

= 0. (26)

Analogously to heat conduction, the solvability condition for a Q-periodic function implies that f
(0)
i (x) = 0

and g(0)(x) = 0, and therefore the solution of problem (25) does not depend on the fast variable ξ, taking
the form

u
(0)
k (x; ξ) = Uk(x), φ(0)(x; ξ) = Φ(x). (27)

In force of solutions (27) of the piezoelectric differential problem at the order ε−2, from equations (9) and
(10), at the order ε−1 one has

(
Cm

ijkl u
(1)
k,l

)
,j
+ Cm

ijkl,j

∂Uk

∂xl
+
(
emijk φ

(1)
,k

)
,j
+ emijk,j

∂Φ

∂xk
− αm

ij,j Θ = f
(1)
i (x),

(
emkli u

(1)
k,l

)
,i
+ emkli,i

∂Uk

∂xl
−
(
βm
il φ

(1)
,l

)
,i
− βm

il,i

∂Φ

∂xl
+ γm

i,i Θ = g(1)(x), (28)
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with interface conditions
[[
u
(1)
k

]]∣∣∣
ξ∈Σ1

= 0,
[[
φ(1)

]]∣∣∣
ξ∈Σ1

= 0,

[[(
Cm

ijkl

(
∂Uk

∂xl
+ u

(1)
k,l

)
+ emijk

(
∂Φ

∂xk
+ φ

(1)
,k

)
− αm

ij Θ

)
nj

]]∣∣∣∣
ξ∈Σ1

= 0,

[[(
emkli

(
∂Uk

∂xl
+ u

(1)
k,l

)
− βm

il

(
∂Φ

∂xl
+ φ

(1)
,l

)
+ γm

i Θ

)
ni

]]∣∣∣∣
ξ∈Σ1

= 0. (29)

In this case, the solvability condition implies that functions f
(1)
i (x) and g(1)(x) take the form

f
(1)
i (x) =

〈
Cm

ijkl,j

〉 ∂Uk(x)

∂xl
+
〈
emijk,j

〉 ∂Φ(x)
∂xk

−
〈
αm
ij,j

〉
Θ(x) = 0,

g(1)(x) =
〈
emkli,i

〉 ∂Uk(x)

∂xl
−
〈
βm
il,i

〉 ∂Φ(x)
∂xl

+
〈
γm
i,i

〉
Θ(x) = 0,

and, consequently, the solutions of the differential problem (28) read

u
(1)
k (x; ξ) = N

(1)
kpq1

(ξ)
∂Up(x)

∂xq1

+ Ñ
(1)
kq1

(ξ)
∂Φ(x)

∂xq1

+ N̂
(1)
k (ξ)Θ(x),

φ(1)(x; ξ) = W (1)
q1 (ξ)

∂Φ(x)

∂xq1

+ W̃ (1)
pq1(ξ)

∂Up(x)

∂xq1

+ Ŵ
(1)
k (ξ)Θ(x). (30)

Finally, taking into account solutions (27) and (30) of the piezoelectric differential problems at ε−2 and ε−1,
differential problems (9)-(10) at the order ε0 are expressed as

+
(
Cm

ijkl u
(2)
k,l

)
,j
+

[(
Cm

ijkq2 N
(1)
kpq1

)
,j
+ Cm

iq1pq2 + Cm
iq2kl N

(1)
kpq1,l

+
(
emijq2W̃

(1)
pq1

)
,j
+ emiq2k W̃

(1)
pq1,k

]
∂2Up

∂xq1∂xq2

+
(
emijk φ

(2)
,k

)
,j
+

[(
Cm

ijkq2 Ñ
(1)
kq1

)
,j
+ Cm

iq2kl Ñ
(1)
kq1,l

+
(
emijq2W

(1)
q1

)
,j
+ emiq1q2 + emiq2k W

(1)
q1,k

]
∂2Φ

∂xq1∂xq2

+

[(
Cm

ijkq1 N̂
(1)
k

)
,j
+ Cm

iq1kl N̂
(1)
k,l +

(
emijq1Ŵ

(1)
)
,j
+ emiq1k Ŵ

(1)
,k −

(
αm
ij M

(1)
q1

)
,j
− αm

iq1

]
∂Θ

∂xq1

= f
(2)
i (x),

+
(
emkli u

(2)
k,l

)
,i
+

[(
emkq2i N

(1)
kpq1

)
,i
+ emklq2 N

(1)
kpq1,l

+ epq2q1 −
(
βm
iq2W̃

(1)
pq1

)
,i
− βm

q2l W̃
(1)
pq1,l

]
∂2Up

∂xq1∂xq2

−
(
βm
il φ

(2)
,l

)
,i
+

[(
emkq2i Ñ

(1)
kq1

)
,i
+ emklq2 Ñ

(1)
kq1,l

−
(
βm
iq2W

(1)
q1

)
,i
− βm

q1q2 − βm
q2l W

(1)
q1,l

]
∂2Φ

∂xq1∂xq2

+

[(
emkq1i N̂

(1)
k

)
,i
+ emklq1 N̂

(1)
k,l −

(
βm
iq1Ŵ

(1)
)
,i
− βm

q1l Ŵ
(1)
,l +

(
γm
i M (1)

q1

)
,i
− γm

q1

]
∂Θ

∂xq1

= g(2)(x), (31)

with interface conditions
[[
u
(2)
k

]]∣∣∣
ξ∈Σ1

= 0,
[[
φ(2)

]]∣∣∣
ξ∈Σ1

= 0,

[[{(
Cm

ijkl u
(2)
k,l

)
+
(
emijkφ

(2)
,k

)
+
(
Cm

ijkl N
(1)
kpq1

+ emijl W̃
(1)
pq1

) ∂2Up

∂xq1∂xl
+
(
Cm

ijkl Ñ
(1)
kq1

+ emijl W
(1)
q1

) ∂2Φ

∂xq1∂xl

+
(
Cm

ijkl N̂
(1)
k + emijl Ŵ

(1) − αij M
(1)
l

) ∂Θ

∂xl

}
nj

]]∣∣∣∣
ξ∈Σ1

= 0,

[[{(
emkli u

(2)
k,l

)
−
(
βm
il φ

(2)
,l

)
+
(
emkli N

(1)
kpq1

− βm
il W̃

(1)
pq1

) ∂2Up

∂xq1∂xl
+
(
emkli Ñ

(1)
kq1

− βm
il W

(1)
q1

) ∂2Φ

∂xq1∂xl

+
(
emkli N̂

(1)
k − βm

il Ŵ
(1) + γi M

(1)
l

) ∂Θ

∂xl

}
ni

]]∣∣∣∣
ξ∈Σ1

= 0. (32)

Here, the following relations hold because of the solvability condition for problem (31)

f
(2)
i (x) =

〈
Cm

iq1pq2 + Cm
iq1pq2 N

(1)
kpq1,l

+ emiq2k W̃
(1)
pq1,k

〉 ∂2Up(x)

∂xq1∂xq2

+
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+
〈
Cm

iq2kl Ñ
(1)
kq1,l

+ emiq1q2 + emiq2k W
(1)
q1,k

〉 ∂2Φ(x)

∂xq1∂xq2

+

+
〈
Cm

iq1kl N̂
(1)
k,l + emiq1k Ŵ , k(1) − αm

iq1

〉 ∂Θ(x)

∂xq1

,

g(2)(x) =
〈
emklq2 N

(1)
kpq1,l

+ empq2q1 − βm
q2l W̃

(1)
pq1,l

〉 ∂2Up(x)

∂xq1∂xq2

+

+
〈
emklq2 Ñ

(1)
kq1,l

− βm
q1q2 − βm

q2l W
(1)
q1,l

〉 ∂2Φ(x)

∂xq1∂xq2

+

+
〈
emklq1 N̂

(1)
k,l − βm

q1l Ŵ , l(1) + γm
q1

〉 ∂Θ(x)

∂xq1

,

the solutions u
(2)
k and φ(2) take the following form

u
(2)
k (x; ξ) = N

(2)
kpq1q2

(ξ)
∂2Up

∂xq1∂xq2
+ Ñ

(2)
kq1q2

(ξ)
∂2Φ

∂xq1∂xq2
+ N̂

(2)
kq1

(ξ)
∂Θ

∂xq1

,

φ(2)(x; ξ) = W (2)
q1q2(ξ)

∂2Φ

∂xq1∂xq2

+ W̃ (2)
pq1q2(ξ)

∂Up

∂xq1∂xq2

+ Ŵ (2)
q1 (ξ)

∂Θ

∂xq1

. (33)

The general expression of higher order solutions u
(m)
k (x; ξ), φ(m)(x; ξ) and θ(m)(x; ξ), with m ∈ Z and m ≥ 1,

is reported in Appendix A.

3.1 Cell problems and perturbation functions

Solutions of recursive differential problems (9)-(11) allow to write non-homogeneous cell problems at the
different orders of ε in terms of the perturbation functions. Perturbation functions exclusively depend on
geometrical and physico-mechanical properties of the material reflecting the effects of the material inho-
mogeneities on displacements, electric potential and temperature. In the following, the form of such cell
problems is discussed at the different orders of ε, for heat diffusion and piezoelectric problems.

Heat diffusion problem
From equation (18) and in consideration of the solution (20), the cell problem at the order ε−1 takes the
form

(
Km

ij M
(1)
q1,j

)
,i
+Km

iq1,i = 0, (34)

with interface conditions expressed in terms of perturbation function M
(1)
q1 as

[[
M (1)

q1

]]∣∣∣
ξ∈Σ1

= 0,

[[
Km

ij

(
M

(1)
q1,j

+ δjq1

)
ni

]]∣∣∣
ξ∈Σ1

= 0. (35)

Once the perturbation function M
(1)
q1 is determined, from equation (22) and taking into account the solution

(24), one obtains the cell problem at the order ε0, where symmetrization with respect to indices q1 and q2
is introduced. This procedure leads to

(
Km

ij M
(2)
q1q2,j

)
,i
+

1

2

[(
Km

iq2 M
(1)
q1

)
,i
+Km

q1q2 +Km
q2j M

(1)
q1,j

+
(
Km

iq2 M
(1)
q2

)
,i
+Km

q2q1 +Km
q1j M

(1)
q2,j

]
=

1

2
〈 Km

q1q2 +Km
q2j M

(1)
q1,j

+Km
q2q1 +Km

q1j M
(1)
q2,j

〉 , (36)

with interface conditions in terms of perturbation functions taking the following form

[[
M (2)

q1q2

]]∣∣∣
ξ∈Σ1

= 0,
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[[
Km

ij

[
M

(2)
q1q2,j

+
1

2

(
δjq2 M

(1)
q1 + δjq1 M

(1)
q2

)]
ni

]]∣∣∣∣
ξ∈Σ1

= 0. (37)

The solution of the cell problem (36)-(37) allows to derive perturbation function M
(2)
q1q2 .

Piezoelectric problem
For what concerns the piezoelectric problem, from equation (28) and taking into account the form (30) of

the solutions u
(1)
k and φ(1), the strong coupling among the relative perturbation functions leads to three cell

problems at the order ε−1 whose solutions lead to the perturbation functions N
(1)
kpq1

, Ñ
(1)
kq1

, N̂
(1)
k ,W

(1)
q1 , W̃

(1)
pq1 ,

and Ŵ (1). In particular, perturbation functions N
(1)
kpq1

and W̃
(1)
pq1 are determined from the following cell

problem

⎧
⎨
⎩

(
Cm

ijkl N
(1)
kpq1,l

)
,j
+
(
emijk W̃

(1)
pq1,k

)
,j
+ Cm

ijpq1,j
= 0

(
emkli N

(1)
kpq1,l

)
,i
−
(
βm
il W̃

(1)
pq1,l

)
,i
+ empq1i,i = 0

, (38)

with interface conditions
[[
N

(1)
kpq1

]]∣∣∣
ξ∈Σ1

= 0,

[[
W̃ (1)

pq1

]]∣∣∣
ξ∈Σ1

= 0,

[[{
Cm

ijkl

(
δkp δlq1 +N

(1)
kpq1,l

)
+ emijk W̃

(1)
pq1,k

}
nj

]]∣∣∣
ξ∈Σ1

= 0,

[[{
emkli

(
δkp δlq1 +N

(1)
kpq1,l

)
− βm

il W̃
(1)
pq1,l

}
ni

]]∣∣∣
ξ∈Σ1

= 0. (39)

Perturbation functions Ñ
(1)
kq1

and W
(1)
q1 are the solutions of the following cell problem

⎧
⎨
⎩

(
Cm

ijkl Ñ
(1)
kq1,l

)
,j
+
(
emijk W

(1)
q1,k

)
,j
+ emijq1,j = 0

(
emkli Ñ

(1)
kq1,l

)
,i
−
(
βm
il W

(1)
q1,l

)
,i
− βm

iq1,i
= 0

, (40)

whose interface conditions are expressed as
[[
Ñ

(1)
kq1

]]∣∣∣
ξ∈Σ1

= 0,

[[
W (1)

q1

]]∣∣∣
ξ∈Σ1

= 0,

[[{
Cm

ijkl Ñ
(1)
kq1,l

+ emijk

(
δkq1 +W

(1)
q1,k

)}
nj

]]∣∣∣
ξ∈Σ1

= 0,

[[{
emkli Ñ

(1)
kq1,l

− βm
il

(
δlq1 +W

(1)
q1,l

)}
ni

]]∣∣∣
ξ∈Σ1

= 0. (41)

Finally, perturbation functions N̂
(1)
k and Ŵ (1) are provided by the following cell problem at the order ε−1

⎧
⎨
⎩

(
Cm

ijkl N̂
(1)
k,l

)
,j
+
(
emijk Ŵ

(1)
,k

)
,j
− αm

ij,j = 0
(
emkli N̂

(1)
k,l

)
,i
−
(
βm
il Ŵ

(1)
,l

)
,i
+ γm

i,i = 0
, (42)

with interface conditions
[[
N̂

(1)
k

]]∣∣∣
ξ∈Σ1

= 0,

[[
Ŵ (1)

]]∣∣∣
ξ∈Σ1

= 0,

[[{
Cm

ijkl N̂
(1)
k,l + emijk Ŵ

(1)
,k − αm

ij

}
nj

]]∣∣∣
ξ∈Σ1

= 0,
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[[{
emkli N̂

(1)
k,l − βm

il Ŵ
(1)
,l + γm

i

}
ni

]]∣∣∣
ξ∈Σ1

= 0. (43)

Analogously to what done at the order ε−1, from the differential problem (31) and recalling the solutions
(33), one derives the following three cell problems at the order ε0. Specifically, the following cell problem,

symmetrized with respect to indices q1 and q2, allows to derive perturbation functions N
(2)
kpq1q2

and W̃
(2)
pq1q2

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Cm

ijkl N
(2)
kpq1q2,l

)
,j
+
(
emijk W̃

(2)
pq1q2,k

)
,j
+ 1

2

[(
Cm

ijkq2
N

(1)
kpq1

)
,j
+ Cm

iq1pq2
+ Cm

iq2kl
N

(1)
kpq1,l

+

+
(
emijq2 W̃

(1)
pq1

)
,j
+ emiq2k W̃

(1)
pq1,k

+
(
Cm

ijkq1
N

(1)
kpq2

)
,j
+ Cm

iq2pq1
+ Cm

iq1kl
N

(1)
kpq2,l

+
(
emijq1 W̃

(1)
pq2

)
,j
+

+emiq1k W̃
(1)
pq2,k

]
= 1

2

〈
Cm

iq1pq2
+ Cm

iq2kl
N

(1)
kpq1,l

+ emiq2k W̃
(1)
pq1,k

+ Cm
iq2pq1

+ Cm
iq1kl

N
(1)
kpq2,l

+

+emiq1k W̃
(1)
pq2,k

〉

(
emkli N

(2)
kpq1q2,l

)
,i
−
(
βm
il W̃

(2)
pq1q2,l

)
,i
+ 1

2

[(
emkq2i N

(1)
kpq1

)
,i
+ emklq2N

(1)
kpq1,l

+ empq2q1 +

−
(
βm
iq2

W̃
(1)
pq1

)
,i
− βm

q2l
W̃

(1)
pq1,l

+
(
emkq1i N

(1)
kpq2

)
,i
+ emklq1 N

(1)
kpq2,l

+ empq1q2 −
(
βm
iq1

W̃
(1)
pq2

)
,i
+

− βm
q1l

W̃
(1)
pq2,l

]
= 1

2

〈
emklq2 N

(1)
kpq1,l

+ empq2q1 − βm
q2l

W̃
(1)
pq1,l

+ emklq1 N
(1)
kpq2,l

+ empq1q2+

−βm
q1l

W̃
(1)
pq2,l

〉

,

(44)

with interface conditions
[[
N

(2)
kpq1q2

]]∣∣∣
ξ∈Σ1

= 0,

[[
W̃ (2)

pq1q2

]]∣∣∣
ξ∈Σ1

= 0,

[[{
Cm

ijkl N
(2)
kpq1q2,l

+ emijk W̃
(2)
pq1q2,k

+
1

2

(
Cm

ijkq2 N
(1)
kpq1

+ Cm
ijkq1 N

(1)
kpq2

+ emijq2 W̃
(1)
pq1 + emijq1 W̃

(1)
pq2

)}
nj

]]∣∣∣∣
ξ∈Σ1

= 0,

[[{
emkli N

(2)
kpq1q2,l

− βm
il W̃

(2)
pq1q2,l

+
1

2

(
emkq2i N

(1)
kpq1

− βm
iq2 W̃

(1)
pq1 + emkq1i N

(1)
kpq2

− βm
iq1 W̃

(1)
pq2

)}
ni

]]∣∣∣∣
ξ∈Σ1

= 0. (45)

Perturbation functions Ñ
(2)
kq1q2

and W
(2)
q1q2 are the solutions of the following cell problem, whose expression is

reported, once again, in the symmetrized form with respect to q1 and q2 indices
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Cm

ijkl Ñ
(2)
kq1q2,l

)
,j
+
(
emijk W

(2)
q1q2,k

)
,j
+ 1

2

[(
Cm

ijkq2
Ñ

(1)
kq1

)
,j
+ Cm

iq2kl
Ñ

(1)
kq1,l

+
(
emijq2 W

(1)
q1

)
,j
+

+emiq1q2 + emiq2k W
(1)
q1,k

+
(
Cm

ijkq1
Ñ

(1)
kq2

)
,j
+ Cm

iq1kl
Ñ

(1)
kq2,l

+
(
emijq1 W

(1)
q2

)
,j
+ eiq2q1 + emiq1k W

(1)
q2,k

]
=

= 1
2

〈
Cm

iq2kl
Ñ

(1)
kq1,l

+ eiq1q2 + emiq2k W
(1)
q1,k

+ Cm
iq1kl

Ñ
(1)
kq2,l

+ emiq2q1 + emiq1k W
(1)
q2,k

〉

(
emkli Ñ

(2)
kq1q2,l

)
,i
−
(
βm
il W

(2)
q1q2,l

)
,i
+ 1

2

[(
emkq2i Ñ

(1)
kq1

)
,i
+ emklq2 Ñ

(1)
kq1,l

−
(
βm
iq2

W
(1)
q1

)
,i
− βm

q1q2 +

−βm
q2l

W
(1)
q1,l

+
(
emkq1i Ñ

(1)
kq2

)
,i
+ emklq1 Ñ

(1)
kq2,l

−
(
βm
iq1

W
(1)
q2

)
,i
− βm

q2q1 − βm
q1l

W
(1)
q2,l

]
=

= 1
2

〈
emklq2 Ñ

(1)
kq1,l

− βm
q1q2 − βm

q2l
W

(1)
q1,l

+ emklq1 Ñ
(1)
kq2,l

− βm
q2q1 − βm

q1l
W

(1)
q2,l

〉

,

(46)

with interface conditions expressed as
[[
Ñ

(2)
kq1q2

]]∣∣∣
ξ∈Σ1

= 0,

[[
W (2)

q1q2

]]∣∣∣
ξ∈Σ1

= 0,
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[[{
Cm

ijkl Ñ
(2)
kq1q2,l

+ emijk W
(2)
q1q2,k

+
1

2

(
Cm

ijkq2 Ñ
(1)
kq1

+ emijq2 W
(1)
q1 + Cm

ijkq1 Ñ
(1)
kq2

+ emijq1 W
(1)
q2

)}
nj

]]∣∣∣∣
ξ∈Σ1

= 0,

[[{
emkli Ñ

(2)
kq1q2,l

− βm
il W

(2)
q1q2,l

+
1

2

(
emkq2i Ñ

(1)
kq1

− βm
iq2 W

(1)
q1 + emkq1i Ñ

(1)
kq2

− βm
iq1 W

(1)
q2

)}
ni

]]∣∣∣∣
ξ∈Σ1

= 0. (47)

Finally, perturbation functions N̂
(2)
kq1

and Ŵ
(2)
q1 are provided by the solution of the cell problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Cm

ijkl N̂
(2)
kq1,l

)
,j
+
(
emijk Ŵ

(2)
q1,k

)
,j
+
(
Cm

ijkq1
N̂

(1)
k

)
,j
+ Cm

iq1kl
N̂

(1)
k,l +

(
emijq1 Ŵ

(1)
)
,j
+

+emiq1k Ŵ
(1)
,k −

(
αm
ij M

(1)
q1

)
,j
− αm

iq1
=
〈
Cm

iq1kl
N̂

(1)
k,l + eiq1k Ŵ

(1)
,k − α

(m)
iq1

〉

(
emkli N̂

(2)
kq1,l

)
,i
−
(
βm
il Ŵ

(2)
q1,l

)
,i
+
(
emkq1i N̂

(1)
k

)
,i
+ emklq1 N̂

(1)
k,l −

(
βm
iq1

Ŵ (1)
)
,i
+

−βm
q1l

Ŵ
(1)
,l +

(
γm
i M

(1)
q1

)
,i
+ γm

q1 =
〈
emklq1 N̂

(1)
k,l − βm

q1l
Ŵ

(1)
,l + γm

q1

〉

,

(48)

with interface conditions
[[
N̂

(2)
kq1

]]∣∣∣
ξ∈Σ1

= 0,

[[
Ŵ (2)

q1

]]∣∣∣
ξ∈Σ1

= 0,

[[{
Cm

ijkl N̂
(2)
kq1,l

+ emijk Ŵ
(2)
q1,k

+ Cm
ijkq1 N̂

(1)
k + emijq1 Ŵ

(1) − αm
ij M

(1)
q1

}
nj

]]∣∣∣
ξ∈Σ1

= 0,

[[{
emkli N̂

(2)
kq1,l

− βm
il Ŵ

(2)
q1,l

+ emkq1i N̂
(1)
k − βm

iq1 Ŵ
(1) + γm

i M (1)
q1

}
ni

]]∣∣∣
ξ∈Σ1

= 0. (49)

The form of higher order (at εm with m ∈ Z and m ≥ 1) heat diffusion and piezoelectric cell problems can
be found in Appendix A.1.

4 Down-scaling and up-scaling relations

From the solution of the above cell problems at different ε described in Section 3.1, it is possible to express
the microscopic fields u(x; ξ), φ(x; ξ) and θ(x; ξ) as asymptotic expansions of powers of the microscopic
length ε in terms of the macroscopic fields U(x), Φ(x), and Θ(x) and their gradients and in terms of the
Q-periodic perturbation functions. In particular, from expansions (8a) and (8b), taking into account the
form of solutions (27), (30), (33), and (81) of cell problems at the different orders of ε, one derives the
down-scaling relations of the micro-displacement field and the micro-electric potential field

uk(x; ξ) =

⎡
⎣Uk(x) +

+∞∑

l=1

εl
∑

|q|=l

(
N

(l)
kpq(ξ)

∂lUp(x)

∂xq
+ Ñ

(l)
kq (ξ)

∂lΦ(x)

∂xq

)
+

+∞∑

l=1

εl
∑

|q|=l−1

N̂
(l)
kq (ξ)

∂l−1Θ(x)

∂xq

⎤
⎦
∣∣∣∣∣∣
ξ= x

ε

,

(50a)

φ(x; ξ) =

⎡
⎣φ(x) +

+∞∑

l=1

εl
∑

|q|=l

(
W (l)

q (ξ)
∂lΦ(x)

∂xq
+ W̃ (l)

pq (ξ)
∂lUp(x)

∂xq

)
+

+∞∑

l=1

εl
∑

|q|=l−1

Ŵ (l)
q (ξ)

∂l−1Θ(x)

∂xq

⎤
⎦
∣∣∣∣∣∣
ξ= x

ε

.

(50b)

Analogously, from expansion (8c) and the solutions (17), (20), (24), and (78), the down scaling relations of
the micro relative temperature field are expressed as

θ(x; ξ) =

⎡
⎣Θ(x) +

+∞∑

l=1

εl
∑

|q|=l

(
M (l)

q (ξ)
∂lΘ(x)

∂xq

)⎤
⎦
∣∣∣∣∣∣
ξ= x

ε

. (51)
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In equations (50a)-(51), q = q1, q2, ...ql is a multi-index , being |q| the length of q, and ∂l(·)
∂xq

= ∂l(·)
∂xq1

...∂xql
. The

Q-periodic perturbation functions N
(l)
kpq, Ñ

(l)
pq , N̂

(l)
kq ,W

(l)
q , W̃

(l)
pq , Ŵ

(l)
q ,M

(l)
q reflect the influence of microstruc-

tural inhomogeneities of the material trough their dependency on the fast variable ξ = x/ε, while the
macro-fields U(x), Φ(x), and Θ(x) are L-periodic functions and therefore depend only on the slow variable
x.

Up-scaling relations, allow to define the macroscopic fields in terms of the relative microscopic ones. In
particular, the macroscopic fields can be defined as the mean values of microscopic quantities (50a)-(51) over
the unit cell Q:

Uk(x)
.
=
〈
uk(x,

x

ε
+ ς)

〉
,

Φ(x)
.
=
〈
φ(x,

x

ε
+ ς)

〉
,

Θ(x)
.
=
〈
θ(x,

x

ε
+ ς)

〉
, (52)

where it has been used a new variable ς ∈ Q, such that the vector ες ∈ A defines the translation of the
medium with respect to the L-periodic volume forces b(x), ρe(x), and r(x) (Bacigalupo, 2014; Smyshlyaev
and Cherednichenko, 2000). It can be proved that a Q-periodic function g(ξ + ς) satisfies the invariance
property

〈g(ξ + ς)〉 = 1

δ

∫

Q
g(ξ + ς) dς =

1

δ

∫

Q
g(ξ + ς) dξ. (53)

Equation (53), together with the normalization condition of type (21), valid for all the perturbation functions,
leads to the up-scaling relations (52).

5 From average field equations of infinite order to homogenized
thermo-piezoelectric first-order continuum

Substituting the down scaling relations (50a)-(51) into the micro-field equations (6a)-(6c) and reordering the
different powers of ε, one obtains the following average field equations of infinite order

n
(2)
ipq1q2

∂2Up(x)

∂xq1∂xq2

+
+∞∑

n=0

εn+1
∑

|q|=n+3

n
(n+3)
ipq

∂n+3Up(x)

∂xq
+

+ ñ
(2)
iq1q2

∂2Φ(x)

∂xq1∂xq2

+
+∞∑

n=0

εn+1
∑

|q|=n+3

ñ
(n+3)
iq

∂n+3Φ(x)

∂xq
+

− n̂
(2)
iq1

∂Θ(x)

∂xq1

−
+∞∑

n=0

εn+1
∑

|q|=n+2

n̂
(n+3)
iq

∂n+2Θ(x)

∂xq
+ bi(x) = 0, (54a)

w̃(2)
pq1q2

∂2Up(x)

∂xq1∂xq2

+
+∞∑

n=0

εn+1
∑

|q|=n+3

w̃(n+3)
pq

∂n+3Up(x)

∂xq
+

− w(2)
q1q2

∂2Φ(x)

∂xq1∂xq2

−
+∞∑

n=0

εn+1
∑

|q|=n+3

w(n+3)
q

∂n+3Φ(x)

∂xq
+

+ ŵ(2)
q1

∂Θ(x)

∂xq1

+

+∞∑

n=0

εn+1
∑

|q|=n+2

ŵ(n+3)
q

∂n+2Θ(x)

∂xq
− ρe(x) = 0, (54b)

m(2)
q1q2

∂2Θ(x)

∂xq1∂xq2

+
+∞∑

n=0

εn+1
∑

|q|=n+3

m(n+3)
q

∂n+3Θ(x)

∂xq
+ r(x) = 0. (54c)
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In equations (54a)-(54c) the coefficients of the gradients of the macroscopic fields are the known terms of
the corresponding cell problem. Therefore, at the order ε0 one has

n
(2)
ipq1q2

=
1

2

〈
Cm

iq1pq2 + Cm
iq2kl N

(1)
kpq1,l

+ emiq2k W̃
(1)
pq1,k

+ Cm
iq2pq1 + Cm

iq1kl N
(1)
kpq2,l

+ emiq1k W̃
(1)
pq2,k

〉
, (55a)

w(2)
q1q2 =

1

2

〈
βm
q1q2 + βm

q2l W
(1)
q1,l

− emklq2 Ñ
(1)
kq1,l

+ βm
q2q1 + βm

q1l W
(1)
q2,l

− emq1kl Ñ
(1)
kq2,l

〉
, (55b)

m(2)
q1q2 =

1

2

〈
Km

q1q2 +Km
q2j M

(1)
q1,j

+Km
q2q1 +Km

q1j M
(1)
q2,j

〉
, (55c)

ñ
(2)
iq1q2

=
1

2

〈
Cm

iq2kl Ñ
(1)
kq1,l

+ emiq1q2 + emiq2k W
(1)
q1,k

+ Cm
iq1kl Ñ

(1)
kq2,l

+ emiq2q1 + emiq1k W
(1)
q2,k

〉
, (55d)

w̃(2)
pq1q2 =

1

2

〈
emklq2 N

(1)
kpq1,l

+ empq2q1 − βm
q2l W̃

(1)
pq1,l

+ emklq1 N
(1)
kpq2,l

+ emq2pq1 − βm
q1l W̃

(1)
pq2,l

〉
, (55e)

n̂
(2)
iq1

=
〈
αm
iq1 − Cm

iq1kl N̂
(1)
k,l − emiq1k Ŵ

(1)
,k

〉
, (55f)

ŵ(2)
q1 =

〈
emklq1 N̂

(1)
k,l − βm

q1l Ŵ
(1)
,l + γm

q1

〉
. (55g)

The corresponding quantities at the order εm, with m ∈ Z and m ≥ 1, are

n
(m+2)
ipq1...qm+2

=
1

2m+2

∑

P(q)

〈
Cm

iqm+1kqm+2
N

(m)
kpq1...qm

+ Cm
iqm+2kl N

(m+1)
kpq1...qm+1,l

+ emiqm+2k W̃
(m+1)
pq1...qm+1,k

〉
, (56a)

w
(m+2)
q1...qm+2

=
1

2m+2

∑

P(q)

〈
βm
qm+1qm+2

W (m)
q1...qm + βm

qm+2l W
(m+1)
q1...qm+1,l

− emklqm+2
Ñ

(m+1)
kq1...qm+1,l

〉
, (56b)

m
(m+2)
q1...qm+2

=
1

2m+2

∑

P(q)

〈
Km

qm+1qm+2
M (m)

q1...qm +Km
qm+2j M

(m+1)
q1...qm+1,j

〉
, (56c)

ñ
(m+2)
iq1...qm+2

=
1

2m+2

∑

P(q)

〈
Cm

iqm+2kl Ñ
(m+1)
kq1...qm+1,l

+ emiqm+1qm+2
W (m)

q1...qm + emiqm+2k W
(m)
pq1...qm,k

〉
, (56d)

w̃(m+2)
pq1...qm+2

=
1

2m+2

∑

P(q)

〈
emklqm+2

N
(m+1)
kpq1...qm+1,l

+ emkqm+2qm+1
N

(m)
kpq1...qm

− βm
qm+2l W̃

(m+1)
pq1...qm+1,l

〉
, (56e)

n̂
(m+2)
iq1...qm+1

=
1

2m+1

∑

P(q)

〈
αm
iqm+1

M (m)
q1...qm − Cm

iqm+1kl N̂
(m+1)
kq1...qm,l − emiqm+1k Ŵ

(m+1)
q1...qm,k

〉
, (56f)

ŵ
(m+2)
q1...qm+1

=
1

2m+1

∑

P(q)

〈
emklqm+1

N̂
(m+1)
kq1...qm,l − βm

qm+1l Ŵ
(m+1)
q1...qm,l + γm

qm+1
M (m)

q1...qm

〉
, (56g)

where symbol P(q) denotes all the possible permutations of the multi-index q.
The average field equations of infinite order (54a)-(54c) can be formally solved by performing an asymp-

totic expansion of the macro fields Uk(x), Φ(x), and Θ(x), in powers of ε, namely

Uk(x) =
+∞∑

j=0

εj U
(j)
k (x), (57a)

Φ(x) =
+∞∑

j=0

εj Φ(j)(x), (57b)

Θ(x) =

+∞∑

j=0

εj Θ(j)(x). (57c)

From the substitution of equations (57a)-(57c) into (54a)-(54c), three sets of recursive differential problems

can be obtained with regard to the terms of the asymptotic expansions of the macro fields U
(j)
k , Φ(j), and Θ(j).

Heat diffusion problem
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For the heat diffusion problem (54c) one has

m(2)
q1q2

(
∂2Θ(0)

∂xq1∂xq2

+ ε
∂2Θ(1)

∂xq1∂xq2

+ ε2
∂2Θ(2)

∂xq1∂xq2

+ ...

)
+ εm(3)

q1...q3

(
∂3Θ(0)

∂xq1 ...∂xq3

+ ε
∂3Θ(1)

∂xq1 ...∂xq3

+

+ε2
∂3Θ(2)

∂xq1 ...∂xq3

+ ...

)
+ ε2 m(4)

q1...q4

(
∂4Θ(0)

∂xq1 ...∂xq4

+ ε
∂4Θ(1)

∂xq1 ...∂xq4

+ ε2
∂4Θ(2)

∂xq1 ...∂xq4

+ ...

)
+ ...+ r(x) = 0,

(58)

which gives the following macroscopic recursive problems at the different orders of ε, namely at ε0

m(2)
q1q2

∂2Θ(0)

∂xq1∂xq2

+ r(x) = 0, (59)

at ε1

m(2)
q1q2

∂2Θ(1)

∂xq1∂xq2

+m(3)
q1...q3

∂3Θ(0)

∂xq1 ...∂xq3

= 0, (60)

and, at εm with m ∈ Z and m ≥ 1

m(2)
q1q2

∂2Θ(m)

∂xq1∂xq2

+
m+2∑

p=3

∑

|j|=p

m
(p)
j

∂pΘ(m−p+2)

∂xj
= 0, (61)

where j is a multi-index.

Piezoelectric problem
Analogously, from the piezoelectric problems (54a) and (54b), one derives two sets of recursive differential
problems, expressed as

n
(2)
ipq1q2

(
∂2U

(0)
p

∂xq1∂xq2

+ ε
∂2U

(1)
p

∂xq1∂xq2

+ ε2
∂2U

(2)
p

∂xq1∂xq2

+ ...

)
+ ε n

(3)
ipq1...q3

(
∂3U

(0)
p

∂xq1 ...∂xq3

+ ε
∂3U

(1)
p

∂xq1 ...∂xq3

+

+ε2
∂3U

(2)
p

∂xq1 ...∂xq3

+ ...

)
+ ε2 n

(4)
ipq1...q4

(
∂4U

(0)
p

∂xq1 ...∂xq4

+ ε
∂4U

(1)
p

∂xq1 ...∂xq4

+ ε2
∂4U

(2)
p

∂xq1 ...∂xq4

+ ...

)
+ ...+

+ ñ
(2)
iq1q2

(
∂2Φ(0)

∂xq1∂xq2

+ ε
∂2Φ(1)

∂xq1∂xq2

+ ε2
∂2Φ(2)

∂xq1∂xq2

+ ...

)
+ ε ñ

(3)
iq1...q3

(
∂3Φ(0)

∂xq1 ...∂xq3

+ ε
∂3Φ(1)

∂xq1 ...∂xq3

+

+ε2
∂3Φ(2)

∂xq1 ...∂xq3

+ ...

)
+ ε2 ñ

(4)
iq1...q4

(
∂4Φ(0)

∂xq1 ...∂xq4

+ ε
∂4Φ(1)

∂xq1 ...∂xq4

+ ε2
∂4Φ(2)

∂xq1 ...∂xq4

+ ...

)
+ ...+

− n̂
(2)
iq1

(
∂Θ(0)

∂xq1

+ ε
∂Θ(1)

∂xq1

+ ε2
∂Θ(2)

∂xq1

+ ...

)
− ε n̂

(3)
iq1q2

(
∂2Θ(0)

∂xq1∂xq2

+ ε
∂2Θ(1)

∂xq1∂xq2

+

+ε2
∂2Θ(2)

∂xq1∂xq2

+ ...

)
− ε2 n̂

(4)
iq1...q3

(
∂3Θ(0)

∂xq1 ...∂xq3

+ ε
∂3Θ(1)

∂xq1 ...∂xq3

+ ε2
∂3Θ(2)

∂xq1 ...∂xq3

+ ...

)
+ ...+ bi(x) = 0,

(62a)

w̃(2)
pq1q2

(
∂2U

(0)
p

∂xq1∂xq2

+ ε
∂2U

(1)
p

∂xq1∂xq2

+ ε2
∂2U

(2)
p

∂xq1∂xq2

+ ...

)
+ ε w̃(3)

pq1...q3

(
∂3U

(0)
p

∂xq1 ...∂xq3

+ ε
∂3U

(1)
p

∂xq1 ...∂xq3

+

+ε2
∂3U

(2)
p

∂xq1 ...∂xq3

+ ...

)
+ ε2 w̃(4)

pq1...q4

(
∂4U

(0)
p

∂xq1 ...∂xq4

+ ε
∂4U

(1)
p

∂xq1 ...∂xq4

+ ε2
∂4U

(2)
p

∂xq1 ...∂xq4

+ ...

)
+ ...+

− w(2)
q1q2

(
∂2Φ(0)

∂xq1∂xq2

+ ε
∂2Φ(1)

∂xq1∂xq2

+ ε2
∂2Φ(2)

∂xq1∂xq2

+ ...

)
− εw(3)

q1...q3

(
∂3Φ(0)

∂xq1 ...∂xq3

+ ε
∂3Φ(1)

∂xq1 ...∂xq3

+

+ε2
∂3Φ(2)

∂xq1 ...∂xq3

+ ...

)
− ε2 w(4)

q1...q4

(
∂4Φ(0)

∂xq1 ...∂xq4

+ ε
∂4Φ(1)

∂xq1 ...∂xq4

+ ε2
∂4Φ(2)

∂xq1 ...∂xq4

+ ...

)
+ ...+

+ ŵ(2)
q1

(
∂Θ(0)

∂xq1

+ ε
∂Θ(1)

∂xq1

+ ε2
∂Θ(2)

∂xq1

+ ...

)
+ ε ŵ(3)

q1q2

(
∂2Θ(0)

∂xq1∂xq2

+ ε
∂2Θ(1)

∂xq1∂xq2

+
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+ε2
∂2Θ(2)

∂xq1∂xq2

+ ...

)
+ ε2 ŵ(4)

q1...q3

(
∂3Θ(0)

∂xq1 ...∂xq3

+ ε
∂3Θ(1)

∂xq1 ...∂xq3

+ ε2
∂3Θ(2)

∂xq1 ...∂xq3

+ ...

)
+ ...− ρe(x) = 0.

(62b)

Equations (62a) and (62b), at the order ε0, bring to the following macro problems

n
(2)
ipq1q2

∂2U
(0)
p

∂xq1∂xq2

+ ñ
(2)
iq1q2

∂2Φ(0)

∂xq1∂xq2

− n̂
(2)
iq1

∂Θ(0)

∂xq1

+ bi(x) = 0, (63a)

w̃(2)
pq1q2

∂2U
(0
p

∂xq1∂xq2

− w(2)
q1q2

∂2Φ(0)

∂xq1∂xq2

+ ŵ(2)
q1

∂Θ(0)

∂xq1

− ρe(x) = 0. (63b)

At the order ε1, one has

n
(2)
ipq1q2

∂2U
(1)
p

∂xq1∂xq2

+ ñ
(2)
iq1q2

∂2Φ(1)

∂xq1∂xq2

− n̂
(2)
iq1

∂Θ(1)

∂xq1

+

+ n
(3)
ipq1...q3

∂3U
(0)
p

∂xq1 ...∂xq3

+ ñ
(3)
iq1...q3

∂3Φ(0)

∂xq1 ...∂xq3

− n̂
(3)
iq1q2

∂2Θ(0)

∂xq1∂xq2

= 0, (64a)

w̃(2)
pq1q2

∂2U
(1)
p

∂xq1∂xq2

− w(2)
q1q2

∂2Φ(1)

∂xq1∂xq2

+ ŵ(2)
q1

∂Θ(1)

∂xq1

+

+ w̃(3)
pq1...q3

∂3U
(0)
p

∂xq1 ...∂xq3

− w(3)
q1...q3

∂3Φ(0)

∂xq1 ...∂xq3

+ ŵ(3)
q1q2

∂2Θ(0)

∂xq1∂xq2

= 0, (64b)

and finally, at the order εm (with m ∈ Z and m ≥ 1) equations (62a) and (62b) provide

n
(2)
ipq1q2

∂2U
(m)
p

∂xq1∂xq2

+ ñ
(2)
iq1q2

∂2Φ(m)

∂xq1∂xq2

− n̂
(2)
iq1

∂Θ(m)

∂xq1

+

m+2∑

r=3

∑

|j|=r

(
n
(r)
ipj

∂rU
(m−r+2)
p

∂xj
+ ñ

(r)
ij

∂rΦ(m−r+2)

∂xj

)
+

−
m+2∑

r=3

∑

|j|=r−1

n̂
(r)
ij

∂r−1Θ(m−r+2)

∂xj
= 0, (65a)

w̃
(2)
pq1q2

∂2U
(m)
p

∂xq1∂xq2

− w(2)
q1q2

∂2Φ(m)

∂xq1∂xq2

+ ŵ(2)
q1

∂Θ(m)

∂xq1

+

m+2∑

r=3

∑

|j|=r

(
w̃

(r)
pj

∂rU
(m−r+2)
p

∂xj
− w

(r)
j

∂rΦ(m−r+2)

∂xj

)
+

+
m+2∑

r=3

∑

|j|=r−1

ŵ
(r)
j

∂r−1Θ(m−r+2)

∂xj
= 0. (65b)

The L-periodic solutions of differential problems (59)-(65b) are required to fulfill the following normalization
conditions

1

δL2

∫

L
U (m)
p (x) dx = 0,

1

δL2

∫

L
Φ(m)(x) dx = 0,

1

δL2

∫

L
Θ(m)(x) dx = 0, (66)

for each m ∈ Z. Truncating expansions (57a)-(57c) of the macro fields at the zeroth order, namely

Uk(x) ≈ U
(0)
k (x), Φ(x) ≈ Φ(0)(x), Θ(x) ≈ Θ(0)(x),

one obtains the equivalent first-order (Cauchy) homogeneous continuum of the investigated periodic thermo-

piezoelectric medium. Thanks to the symmetry and positive definiteness of tensors n(2) = n
(2)
ipq1q2

ei ⊗ ep ⊗
eq1 ⊗eq2 , w

(2) = w
(2)
q1q2eq1 ⊗eq2 , m

(2) = m
(2)
q1q2eq1 ⊗eq2 , and the equality between the components of tensors

ñ(2) = ñ
(2)
iq1q2

ei⊗eq1 ⊗eq2 and w̃(2) = w̃
(2)
iq1q2

ei⊗eq1 ⊗eq2 (see the detailed demonstration of such properties
in Appendix B), the zeroth order problems (63a),(63b) and (59) can be written in terms of the components
Ciq1pq2 , βq1q2 , Kq1q2 , eiq1q2 , αiq1 , and γq1 of the overall constitutive tensors, namely:

Ciq1pq2

∂2Up(x)

∂xq1∂xq2

+ eiq1q2
∂2Φ(x)

∂xq1∂xq2

− αiq1

∂Θ(x)

∂xq1

+ bi(x) = 0, (67a)
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epq1q2
∂2Up(x)

∂xq1∂xq2

− βq1q2

∂2Φ(x)

∂xq1∂xq2

+ γq1
∂Θ(x)

∂xq1

− ρe(x) = 0, (67b)

Kq1q2

∂2Θ(x)

∂xq1∂xq2

+ r(x) = 0. (67c)

In Appendix B, the relations between the components of tensors n(2), w(2), m(2), ñ(2), and w̃(2), as expressed
in equations (55a)-(55e), and the components of the corresponding overall constitutive tensors C,β,K, and
e, are derived in detail. Such relations are expressed as

n
(2)
ipq1q2

=
1

2
(Cpq1iq2 + Cpq2iq1) , w(2)

q1q2 = βq1q2 , m(2)
q1q2 = Kq1q2 , ñ

(2)
iq1q2

= w̃
(2)
iq1q2

= eiq1q2 .

6 Benchmark test: homogenization of a two-phase thermo-piezoelectric
material

In order to assess the capabilities of the presented first-order homogenization technique, the general for-
mulation derived in the previous sections is now tested in the case of a two-dimensional infinite thermo-
piezoelectric material subjected to L-periodic body forces b(x), free charge densities ρe(x), and heat sources
r(x), for the problem geometry shown in figure 2(a).

Figure 2: (a) Heterogeneous model and homogenized one subject to L-periodic volume forces bi(x1), free
charge densities ρe(x1), and heat sources r(x1); (b)Periodic cell A with characteristic size ε made of FR4
and a ceramic PZT inclusion.

The analytical solution of the homogenized model in terms of macro displacement U(x), electric potential
Φ(x), and temperature Θ(x) is compared with the results provided by a finite element analysis of the
corresponding heterogeneous model.

The periodic cell A of the considered thermo-piezoelectric material is a 10mm× 10mm cell with a 5mm×
5mm inclusion (see figure 2(b)). The two different phases constituting the periodic cell are assumed to be
homogeneous. The geometry of such periodic cell reproduces the one of a pyroelectric cell typically used as
an energy harvester and organized in array of elements (Hsiao and Jia-Wai, 2015; Hsiao et al., 2015). The
inclusion is made of a material like the Lead Zirconate Titanate (PZT-5H) which has marked piezoelectric
and pyroelectric properties. Such a material is characterized by the following constitutive tensors (Guo et al.,
2003; Kommepalli et al., 2010; Malmonge et al., 2003; Umemiya et al., 2006; Yang, 2004) that, accordingly
to the notation detailed in Appendix C, equation (116), are expressed as

CPZT =

⎛
⎝

11.7 8.41 0
8.41 12.6 0
0 0 2 · 2.3

⎞
⎠ 1010

N

m2
, βPZT =

(
1.302 0
0 1.505

)
10−8 C

Vm
,

KPZT =

(
1.5 0
0 1.5

)
W

mK
, ẽPZT =

(
23.3 −6.5 0

0 0
√
2 · 17

)
C

m2
,
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αPZT =

⎛
⎝

1.71
1.71
0

⎞
⎠ 106

N

m2 K
, γPZT =

(
5
5

)
10−4 C

m2 K
.

The matrix of the periodic cell is made of a glass-reinforced epoxy laminate sheet (FR-4) having negligible
piezoelectric and pyroelectric properties (i.e. eFR4 = 0, γFR4 = 0) described by the following constitutive
tensors (Azar and Graebner, 1996; Wang et al., 2001):

CFR4 =

⎛
⎝

1.75 0.53 0
0.53 1.75 0
0 0 2 · 6.15

⎞
⎠ 1010

N

m2
, βFR4 =

(
4.16 0
0 4.16

)
10−11 C

Vm
,

KFR4 =

(
0.81 0
0 0.81

)
W

mK
, αFR4 =

(
4.5 0
0 4.5

)
105

N

m2 K
.

Perturbation functions N
(1)
kpq1

, Ñ
(1)
kq1

, N̂
(1)
k ,W

(1)
q1 , W̃

(1)
pq1 , Ŵ

(1), and M
(1)
q1 have been derived trough the nu-

merical resolution obtained by a finite element procedure of the cell problems (34), (38), (40) and (42) at
the order ε−1. Some of the obtained perturbation functions over the unit cell Q are represented in figure 3,
which shows that perturbation functions are Q-periodic, smooth along the boundaries of the unit cell, and
have vanishing mean values over Q for the imposed normalization condition of type (21).

(a) (b)

(c) (d)

Figure 3: Perturbation functions obtained trough the finite element solution of cell problems at the order ε−1

over the unit cell Q made of FR4 with a PZT-5H inclusion whose topology is the one of figure 2-b: (a) N
(1)
211;

(b) W̃
(1)
11 ; (c) N̂

(1)
2 ; (d) M

(1)
2 .

Once perturbation functions are determined, the overall constitutive tensors of the first-order homoge-
nized medium have been computed by means of closed-forms equations (55a)-(56a) and they result

C =

⎛
⎝

2.56 0.73 0
0.73 2.50 0
0 0 2 · 0.81

⎞
⎠ 1010

N

m2
, β =

(
7.194 0
0 7.198

)
10−11 C

Vm
,
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K =

(
9.415 0
0 9.415

)
10−1 W

mK
, ẽ =

(
0.0146 −5.8674 0

0 0
√
2 · 0.0076

)
C

m2
,

α =

⎛
⎝

4.49
5.58

−
√
2 · 0.31

⎞
⎠ 105

N

m2 K
, γ =

(
8.88
5.94

)
10−7 C

m2 K
. (68)

One considers the piezo-electric tensor of the inclusion in the form eINC = η ePZT as a function of
the piezo-electric properties of the ceramic material PZT through a piezo-electric multiplicative factor η
with 0 ≤ η ≤ 2, and such that, for η = 0, the inclusion presents vanishing piezo-electric features. In
such conditions, the components of the overall constitutive tensors C,β,α, and γ, expressed respectively by
equations (55a), (55b), (55f), and (56a), vary with respect to η, as represented in figure 4. In particular,
figure 4 depicts the dimensionless components of the overall constitutive tensors, defined as

C̃iq1pq2 =
Ciq1pq2

C1111|η=0

, β̃q1q2 =
βq1q2

β11|η=0

, α̃iq1 =
αiq1

α11|η=0

, γ̃q1 =
γq1

γ1|η=0

. (69)

(a) (b)

(c) (d)

Figure 4: Dimensionless components of the overall constitutive tensors vs piezo-electric multiplicative factor
η, with 0 ≤ η ≤ 2. (a) C̃1111 (blue curve), C̃2222 (red curve), C̃1212 (magenta curve), and C̃1112 = C̃2212

(black curve); (b) β̃11 (blue curve), and β̃22 (red curve); (c) α̃11 (blue curve), α̃22 (red curve), and α̃12

(magenta curve); (d) γ̃1 (blue curve), and γ̃2 (red curve).

The overall pyroelectric tensor γ results to be the most affected by the variation of the piezo-electricity
of the inclusion, since at η = 2 the component γ̃1 shows a variation of about 58% and γ̃2 of 70% with respect
to their values at η = 0. The variation of the overall elastic tensor C at η = 2 ranges from 4% for C̃2222 to
10.7% for C̃1111 with respect to their values at η = 0, while the variation of the overall tensor α ranges from
10% for α̃11 to 15.7% for α̃22.
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Figure 5: Eigenvalues of C̃ vs the piezo-electric multiplicative factor η.

The overall dielectric permittivities tensor β results to be weakly influenced by the values of ePZT , since
at η = 2 β̃11 varies of 0.25% and β̃22 of 0.3% with respect to their values at η = 0. In figure 5 the eigenvalues
of the dimensionless overall C̃ tensor are represented with respect to the piezo-electric multiplication factor
η. Specifically, figure 5 shows that the lowest eigenvalue of C̃ decreases with increasing η, while the other
two eigenvalues increase. The positive definiteness of the overall tensor C is confirmed by the fact that all
the eigenvalues are greater than zero and such a property of C has been proved in detail in Appendix B.

In the model problem herein considered, the two-phase periodic medium, whose geometry is depicted
figure 2(a), is subjected to L-periodic harmonic body forces b(x), free charge densities ρe(x), and heat
sources r(x) depending only on x1 and expressed as

bj(x1) = Bj e
(i 2π nb x1/L), ρe(x1) = Pe e

(i 2π nρe x1/L), r(x1) = Re(i 2π nr x1/L), (70)

with j = 1, 2, nb = 1, 2, nρe = 1, 2, and nr = 1, 2. Because of the periodicity of the heterogeneous material
and volume forces, only a portion of the heterogeneous model has to be considered and solved. In particular,
given the invariance of volume forces (70) with respect to x2, the problem has been modeled using 11 cells
along the e1 direction and 1 cell along the e2 direction.

In force of expressions (70), the solution in terms of macro displacement, electric potential, and relative
temperature will depend only on the x1 variable and, consequently, the homogenized field equations (67a)-
(67c) take the form

C1i1i Ui,11(x1) + ei11 Φ,11(x1)− αi1 Θ,1(x1) = −bi(x1),

e111 U1,11(x1)− β11 Φ,11 + γ1 Θ,1 = ρe(x1),

K11 Θ,1(x1) = −r(x1), (71)

where the index i is not summed. Equations (71) allow to derive the expressions of the analytical solution
for the macro fields as

U1(x1) =B1
β11

C1111 β11 + e2111

(
L

2π

)2
1

n2
b

e(i 2π nb x1/L)+

− Pe
e111

e2111 + β11 C1111

(
L

2π

)2
1

n2
ρe

e(i 2π nρe x1/L)+

− i R
α11β11 − γ1e111

K11(e2111 + C1111β11)

(
L

2π

)3
1

n3
r

e(i 2π nr x1/L), (72a)

U2(x1) =B2
1

C1212

(
L

2π

)2
1

n2
b

e(i 2π nb x1/L)+

− i R
α21

C1212 K11

(
L

2π

)3
1

n3
r

e(i 2π nr x1/L), (72b)
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Φ(x1) =B1
e111

C1111 β11 + e2111

(
L

2π

)2
1

n2
b

e(i 2π nb x1/L)+

+ Pe
C1111

e2111 + β11 C1111

(
L

2π

)2
1

n2
ρe

e(i 2π nρe x1/L)+

+ i R
1

e111 K11

[
C1111 (α11β11 − γ1e111)

e2111 + C1111β11
− α11

](
L

2π

)3
1

n3
r

e(i 2π nr x1/L), (72c)

Θ(x1) =R
1

K11

(
L

2π

)2
1

n2
r

e(i 2π nr x1/L). (72d)

If only the imaginary part of the macroscopic fields (72a)-(72d) is considered, solutions (72a)-(72d) read

U1(x1) =B1
β11

C1111 β11 + e2111

(
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)2
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1
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2π

)3
1
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r

cos(2π nr x1/L), (73a)
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L

2π
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1
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−R
α21

C1212 K11

(
L

2π

)3
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cos(2π nr x1/L), (73b)

Φ(x1) =B1
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C1111 β11 + e2111

(
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sin(2π nb x1/L)+

+ Pe
C1111

e2111 + β11 C1111

(
L

2π

)2
1

n2
ρe

sin(i 2π nρe x1/L)+

+R
1

e111 K11

[
C1111 (α11β11 − γ1e111)

e2111 + C1111β11
− α11

](
L

2π

)3
1

n3
r

cos(2π nr x1/L), (73c)

Θ(x1) =R
1
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(
L
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r
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(a) (b)

Figure 6: Dimensionless macro fields Ũ1 and Φ̃ induced by ρe(x1) vs x̃1 = x1/L. The solution of the first-
order homogenized model (continuous lines) is compared with the finite element solution of the heterogeneous
model via the up-scaling relations (squares). Blue lines and squares correspond to the case nρe

= 1, red ones
to nρe

= 2.

22



(a) (b)

(c) (d)

Figure 7: Dimensionless macro fields Ũ1, Ũ2, Φ̃ and Θ̃ induced by ρe(x1) and r(x1). The solution of the first-
order homogenized model (continuous lines) is compared with the finite element solution of the heterogeneous
model via the up-scaling relations (squares). Blue lines and squares correspond to nρe = 1 and nr = 1,
magenta ones to nρe

= 1 and nr = 2, black ones to nρe
= 2 and nr = 1, and red ones to nρe

= 2 and nr = 2.

The obtained analytical solutions in terms of the macroscopic fields (73a)-(73d) for the homogeneous
model with overall constitutive tensors as described in (68), are then compared with those obtained from
a finite element analysis of the fully heterogeneous model where periodic boundary conditions have been
imposed on the displacement, electric potential, and relative temperature fields. A detailed formulation of
the finite element framework that has been developed to solve the cell problems and analyze the heterogeneous
model is reported in Appendix C. The macro displacement field U(x1), the electric potential Φ(x1), and the
relative temperature Θ(x1), as expressed in (73a)-(73d), are compared to the solutions of the heterogeneous
problem, which are obtained from the corresponding microscopic solutions trough the up-scaling relations
(52).

One defines the following dimensionless macro-fields

Ũ1(x1) =
U1(x1)

L
, Ũ2(x1) =

U2(x1)

L
, Φ̃(x1) =

Φ(x1)
√
β11√

C1111 L
, Θ̃(x1) =

Θ(x1)α11

C1111
, (74)

together with the dimensionless amplitudes of volume forces (70)

B̃1 =
B1 L

C1111
, B̃2 =

B2 L

C1111
, P̃e =

Pe L√
C1111 β11

, R̃ =
RL2 α11

C1111 K11
. (75)
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(a) (b)

(c) (d)

Figure 8: Macro fields Ũ1, Ũ2, Φ̃ and Θ̃ induced by ρe(x1), r(x1), b1(x1) and b2(x1). The solution of the first-
order homogenized model (continuous lines) is compared with the finite element solution of the heterogeneous
model via the up-scaling relations (squares). Results are reported for nρe = 1, nr = 1, and nb = 1 (blue
curves), nρe

= 1, nr = 1, and nb = 2 (magenta curves), nρe
= 1, nr = 2, and nb = 1 (black curves), nρe

= 1,
nr = 2, and nb = 2 (red curves).

In figure 6, the analytical solutions (73a)-(73d) are compared with the numerical results provided by the
heterogeneous model when only free charge densities are applied (b(x) = 0 and r(x) = 0) with wave number
nρe = 1, 2 and dimensionless amplitude P̃e = 1. In this case, the displacement in the e2 direction and the
relative temperature, namely U2(x1) and Θ(x1) are vanishing, while the dimensionless component of the
displacement in the e1 direction, Ũ1(x1), and the dimensionless electric potential Φ̃(x1) show the trend in
figure 6 with respect to the dimensionless length x̃1 = x1

L .

If heat sources r(x1) act such that R̃ = 1 simultaneously with free charge densities ρe(x1) with P̃e = 1,
the resulting dimensionless components of the displacement field Ũ1(x1), Ũ2(x1), the dimensionless electric
potential Φ̃(x1), and the dimensionless relative temperature Θ̃(x1) are shown in figure 7 vs x̃1 for wave
numbers nρe

= 1, 2 and nr = 1, 2. The obtained solutions confirm that Ũ2(x1) and θ̃(x1) are not influenced
by the presence of free charge densities, being the results for nρe

= 1 coincident with the ones for nρe
= 2

for these two macro-fields.
Finally, the dimensionless macro-fields in the case of free charge densities ρe(x1), heat sources r(x1),

and body forces b1(x1) and b2(x1) acting simultaneously with dimensionless amplitudes P̃e = 1, R̃ = 1,
B̃1 = 1, and B̃2 = 1 and wave numbers nρe = 1, 2, nr = 1, 2, and nb = 1, 2 are shown in figures 8 and
9. In all the cases investigated, a good agreement has been obtained between the solution of the first-order
homogenized model and the numerical solution of the heterogeneous one, confirming the accuracy of the
proposed asymptotic homogenization approach for this class of periodic thermo-piezoelectric materials.
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(a) (b)

(c) (d)

Figure 9: Macro fields Ũ1, Ũ2, Φ̃ and Θ̃ induced by ρe(x1), r(x1), b1(x1) and b2(x1). The solution of the first-
order homogenized model (continuous lines) is compared with the finite element solution of the heterogeneous
model via the up-scaling relations (squares). Results are reported for nρe = 1,nr = 1, and nb = 1 (blue
curves), nρe

= 2, nr = 1, and nb = 2 (magenta curves), nρe
= 2, nr = 2, and nb = 1 (black curves),

nρe
= 2, nr = 2, and nb = 2 (red curves).

7 Conclusions

The present work has been devoted to formulate an asymptotic homogenization model for thermo-piezoelectric
materials with periodic microstructure. Down-scaling relations have been derived, which allow to express
the micro-displacement, the micro-electric potential, and the micro-relative temperature in terms of the
macroscopic fields and their gradients trough perturbation functions. Such functions are obtained from the
solution of recursive non homogeneous differential cell problems defined over the unit cell Q.

Perturbation functions are Q-periodic and have vanishing mean values over the unit cell. They reflect
the effect of the microstructure on the microscopic fields and on their coupling. The mechanical and the
electric problems remain coupled in the asymptotically expanded microscale field equations, resulting in a
strong coupling between the micro-displacement field and the micro-electric potential. Substitution of the
down-scaling relations into the microscopic field equations of the considered thermo-piezoelectric material
led to the average field equations of infinite order, whose formal solution can be obtained by inserting an
asymptotic expansion of the macro-fields in powers of the microstructural size. Truncation of the asymp-
totic expansions of the macro fields to the zeroth order led the field equations of the homogeneous first-order
(Cauchy) thermo-piezoelectric medium equivalent to the heterogeneous one in terms of the overall constitu-
tive tensors of the equivalent first-order medium whose exact expressions have been provided.

The accuracy of the first-order homogenization model has been assessed in reference to a model problem
in which a two-phase medium with periodic microstructure has been considered. The microstructure of the
periodic cell reflected the one of pyroelectric cells employed as energy harvesters, which take advantage of
temperature fluctuations to generate electrical outputs with the purpose of powering devices and systems.
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The periodic cell was made of a ceramic inclusion on a substrate with negligible piezoelectric and pyroelec-
tric properties. The two-phase composite material was subject to periodic volume forces, free electric charge
densities, and heat sources, whose periodicity is much greater than the microstructural size.

The analytical solution for the macro-displacement, electric potential and relative temperature fields ob-
tained from the homogenized field equations of the first-order equivalent continuum subjected to harmonic
volume forces has been compared with the numerical solution obtained from a finite element analysis of the
entire heterogeneous model. To this purpose, a thermo-piezoelectric finite element has been implemented
in the finite element software FEAP and the derived finite element solution in terms of micro fields has
been correlated to the macroscopic displacements, electric potential, and relative temperature trough the
up-scaling relations.

The very good matching between the homogenized first-order solution and the numerical one of the het-
erogeneous model in all the load cases examined confirmed the validity and the accuracy of the proposed
multi-field homogenization technique for periodic thermo-piezoelectric materials.

Applications of piezoelectric and pyroelectric devices are numerous, especially in the field of thermal de-
tectors, passive infrared sensors, energy harvesters (Graf et al., 2007; Wilson et al., 2007) as well as biomedical
devices (De Rossi and Dario, 1983). An accurate characterization of the macroscale constitutive relations
can reveal of great importance for the improvement of the efficiency of such materials and the design of new
ones. The asymptotic homogenization technique presented in this study constitutes a rigorous tool for the
study of thermo-piezoelectric materials whose microstructure has no requirements other than periodicity and
can be of any geometry.

The macroscopic thermo-piezoelectric behaviour of a periodic heterogeneous medium can therefore be
accurately described by the presented homogenization technique by means of the derivation of the overall
constitutive constants of the first-order (Cauchy) equivalent continuum. As such, first-order homogenization
techniques show deficiencies in reproducing the behaviour of thermo-piezoelectric materials in the presence
of nonlocal phenomena or, equivalently, high gradients of stresses, deformations, electric potential, relative
temperature, and volume forces, to cite a few. In fact, nonlocal phenomena related to the microstructural
length scale and size effects cannot in general be properly described by homogenization techniques of first-
order. In these cases, higher accuracy could be achieved trough the solution of higher order cell problems.
Alternatively, nonlocal higher order homogenization techniques, which involve characteristic length scale as-
sociated to the microstructural effects, can be conveniently deployed in order to derive constitutive relations
of equivalent higher order continua. These topics are left for further research.
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A Solution of higher order recursive differential problems

In this appendix, the general form of higher order differential problems is reported for heat diffusion and
piezoelectric problems at the order εm with m ∈ Z and m ≥ 1. Such differential problems have been derived
substituting the asymptotic expansions of the micro fields (8a)-(8c) into the local balance equations (6a)-(6c).

Heat diffusion problem
For heat diffusion problem one has

[
Km

ij

(
∂θ(m+1)

∂xj
+ θ

(m+2)
,j

)]

,i

+
∂

∂xi

[
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(
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∂xj
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,j

)]
= h(m+2)(x), (76)

with interface conditions

[[
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ξ∈Σ1

= 0,

[[
Km

ij

(
∂θ(m+1)

∂xj
+ θ

(m+2)
,j

)
ni

]]∣∣∣∣
ξ∈Σ1

= 0. (77)

Solvability condition in the class of Q-periodic functions (Bakhvalov and Panasenko, 1984) implies that

hm+2(x) =
〈
Km

qm+1qm+2
M (m)

q1...qm +Km
qm+2j M

(m+1)
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,

and the solution θ(m+2) takes the form
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. (78)
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Piezoelectric problem
From equations (9), and (10), the piezoelectric differential problem at εm with m ∈ Z and m ≥ 1 is expressed
as
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whose interface conditions have the form
[[
u
(m+2)
k

]]∣∣∣
ξ∈Σ1

= 0,
[[
φ(m+2)

]]∣∣∣
ξ∈Σ1

= 0,

[[(
Cm

ijkl

(
∂u

(m+1)
k

∂xl
+ u

(m+2)
k,l

)
+ emijk

(
∂φ(m+1)

∂xk
+ φ

(m+2)
,k

)
− αm

ij θ
(m+1)

)
nj

]]∣∣∣∣∣
ξ∈Σ1

= 0,

[[(
emkli

(
∂u

(m+1)
k

∂xl
+ u

(m+2)
k,l

)
− βm

il

(
∂φ(m+1)

∂xl
+ φ

(m+2)
,l

)
+ γm

i θ(m+1)

)
ni

]]∣∣∣∣∣
ξ∈Σ1

= 0. (80)

Once again, solvability condition imposes that
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∂xqm ...∂xqm+1

,

and the solutions are expressed as

u
(m+2)
k (x; ξ) = N

(m+2)
kpq1...qm+2

(ξ)
∂m+2Up(x)

∂xq1 ...∂xqm+2

+ Ñ
(m+2)
kq1...qm+2

(ξ)
∂m+2Φ(x)

∂xq1 ...∂xqm+2

+

+N̂
(m+2)
kq1...qm+1

(ξ)
∂m+1Θ(x)

∂xq1 ...∂xqm+1

,

φ(m+2)(x; ξ) = W (m+2)
q1...qm+2

(ξ)
∂m+2Φ(x)

∂xq1 ...∂xqm+2

+ W̃ (m+2)
pq1...qm+2

(ξ)
∂Up(x)

∂xq1 ...∂xqm+2

+

+Ŵ (m+2)
q1...qm+1

(ξ)
∂m+1Θ(x)

∂xq1 ...∂xqm+1

. (81)
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A.1 Higher order cell problems

From the solution of differential problems (76) and (79) and of those at the previous orders of ε as detailed
in Section 3, it is possible to derive the form of cell problems at the order εm (with m ∈ Z and m ≥ 1)
in terms of the perturbation functions from manipulation of differential problems (76) and (79) and of the
relative interface conditions (77) and (80).

Heat diffusion problem
The heat diffusion cell problem at order εm and the relative interface conditions are expressed has

(
Km

ij M (m+2)
q1...qm+2

)
,i
+

1

2m+2

∑

P(q)

[(
Km

iqm+2
M (m+1)

q1...qm+1

)
,i
+Km

qm+1qm+2
M (m)

q1...qm+

+ Km
qm+2j M

(m+1)
q1...qm+1,j

]
=

1

2

∑

P(q)

〈
Km

qm+1qm+2
M (m)

q1...qm +Km
qm+2j M

(m+1)
q1q2qm+1,j

〉
,

[[
M (m+2)

q1...qm+2

]]∣∣∣
ξ∈Σ1

= 0,

⎡
⎣
⎡
⎣
⎧
⎨
⎩Km

ij

⎡
⎣M (m+2)

q1...qm+2,j
+

1

2m+2

∑

P(q)

(
δiqm+2

M (m+1)
q1...qm+1

)
⎤
⎦
⎫
⎬
⎭ni

⎤
⎦
⎤
⎦
∣∣∣∣∣∣
ξ∈Σ1

= 0, (82)

where P(q) stands for all the possible permutations of the multi-index q. The solution of problem (82)

allows to derive the form of the Q-periodic perturbation functions M
(m+2)
q1...qm+2 which satisfy the normalization

condition of type (21) over the unit cell Q.

Piezoelectric problem
In the following, the three sets of piezoelectric cell problems at order m (with m ∈ Z and m ≥ 1) resulting
from the strong coupling that exist between the displacement and the electric potential fields, are reported
with the relative interface conditions. The first cell problem results

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Cm

ijkl N
(m+2)
kpq1...qm+2,l

)
,j
+
(
emijk W̃

(m+2)
pq1...qm+2,k

)
,j
+ 1

2m+2

∑
P(q)

[(
Cm

ijkqm+2
N

(m+1)
kpq1...qm+1

)
,j
+

+Cm
iqm+1kqm+2

N
(m)
kpq1...qm

+ Cm
iqm+2kl

N
(m+1)
kpq1...qm+1,l

+
(
emijqm+2

W̃
(m+1)
pq1...qm+1

)
,j
+

+emiqm+2k
W̃

(m+1)
pq1...qm+1,k

]
= 1

2m+2

∑
P(q)

〈
Cm

iqm+1kqm+2
N

(m)
kpq1...qm

+ Cm
iqm+2kl

N
(m+1)
kpq1...qm+1,l

+

+emiqm+2k
W̃

(m+1)
pq1...qm+1,k

〉

(
emkli N

(m+2)
kpq1...qm+2,l

)
,i
−
(
βm
il W̃

(m+2)
pq1...qm+2,l

)
,i
+ 1

2m+2

∑
P(q)

[(
emkqm+2i

N
(m+1)
kpq1...qm+1

)
,i
+

+emklqm+2
N

(m+1)
kpq1...qm+1,l

+ emkqm+2qm+1
N

(m)
kpq1...qm

−
(
βm
iqm+2

W̃
(m+1)
pq1...qm+1

)
,i
− βm

qm+2l
W̃

(m+1)
pq1...qm+1,l

]
=

= 1
2m+2

∑
P(q)

〈
emklqm+2

N
(m+1)
kpq1...qm+1,l

+ emkqm+2qm+1
N

(m)
kpq1...qm

− βm
qm+2l

W̃
(m+1)
pq1...qm+1,l

〉

,

(83)

with interface conditions
[[
N

(m+2)
kpq1...qm+2

]]∣∣∣
ξ∈Σ1

= 0,

[[
W̃ (m+2)

pq1...qm+2

]]∣∣∣
ξ∈Σ1

= 0,

⎡
⎣
⎡
⎣
⎧
⎨
⎩Cm

ijkl

⎡
⎣N (m+2)

kpq1...qm+2,l
+

1

2m+2

∑

P(q)

(
δqm+2l N

(m+1)
kpq1...qm+1

)
⎤
⎦+ emijk

[
W̃

(m+2)
pq1...qm+2,k

+
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+
1

2m+2

∑

P(q)

(
δqm+2k W̃

(m+1)
pq1...qm+1

)
⎤
⎦
⎫
⎬
⎭nj

⎤
⎦
⎤
⎦
∣∣∣∣∣∣
ξ∈Σ1

= 0,

⎡
⎣
⎡
⎣
⎧
⎨
⎩emkli

⎡
⎣N (m+2)

kpq1...qm+2,l
+

1

2m+2

∑

P(q)

(
δqm+2l N

(m+1)
kpq1...qm+1

)
⎤
⎦− βm

il

[
W̃

(m+2)
pq1...qm+2,l

+

+
1

2m+2

∑

P(q)

(
δqm+2l W̃

(m+1)
pq1...qm+1

)
⎤
⎦
⎫
⎬
⎭ni

⎤
⎦
⎤
⎦
∣∣∣∣∣∣
ξ∈Σ1

= 0.

It allows the determination of perturbation functions Nm+2
kpq1...qm+2

and W̃
(m+2)
pq1...qm+2 .

The second piezoelectric cell problem has the following form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Cm

ijkl Ñ
(m+2)
kq1...qm+2,l

)
,j
+
(
emijk W

(m+2)
q1...qm+2,k

)
,j
+ 1

2m+2

∑
P(q)

[(
Cm

ijkqm+2
Ñ

(m+1)
kq1...qm+1

)
,j
+

+Cm
iqm+2kl

Ñ
(m+1)
kq1...qm+1,l

+
(
emijqm+2

W
(m+1)
q1...qm+1

)
,j
+ emiqm+1qm+2

W
(m)
q1...qm + emiqm+2k

W
(m+1)
q1...qm+1

]
=

= 1
2m+2

∑
P(q)

〈
Cm

iqm+2kl
Ñ

(m+1)
kq1...qm+1,l

+ eiqm+1qm+2 W
(m)
q1...qm + emiqm+2k

W
(m+1)
q1...qm+1,k

〉

(
emkli Ñ

(m+2)
kq1...qm+2,l

)
,i
−
(
βm
il W

(m+2)
q1...qm+2,l

)
,i
+ 1

2m+2

∑
P(q)

[(
emkqm+2i

Ñ
(m+1)
kq1...qm+1,l

)
,i
+

emklqm+2
Ñ

(m+1)
kq1...qm+1,l

−
(
βm
iqm+2

W
(m+1)
q1...qm+1

)
,i
− βm

qm+1qm+2
W

(m)
q1...qm − βm

qm+2l
W

(m+1)
q1...qm+1,l

]
=

= 1
2m+2

∑
P(q)

〈
emklqm+2

Ñ
(m+1)
kq1...qm+1,l

− βm
qm+1qm+2

W
(m)
q1...qm − βm

qm+2l
W

(m+1)
q1...qm+1,l

〉

,

(84)

with interface conditions
[[
Ñ

(m+2)
kq1...qm+2

]]∣∣∣
ξ∈Σ1

= 0,

[[
W (m+2)

q1...qm+2

]]∣∣∣
ξ∈Σ1

= 0,

⎡
⎣
⎡
⎣
⎧
⎨
⎩Cm

ijkl

⎡
⎣Ñ (m+2)

kq1...qm+2,l
+

1

2m+2

∑

P(q)

(
δqm+2l Ñ

(m+1)
kq1...qm+1

)
⎤
⎦+ emijk

[
W

(m+2)
q1...qm+2,k

+

+
1

2m+2

∑

P(q)

(
δqm+2k W

(m+1)
q1...qm+1

)
⎤
⎦
⎫
⎬
⎭nj

⎤
⎦
⎤
⎦
∣∣∣∣∣∣
ξ∈Σ1

= 0,

⎡
⎣
⎡
⎣
⎧
⎨
⎩emkli

⎡
⎣Ñ (m+2)

kq1...qm+2,l
+

1

2m+2

∑

P(q)

(
δqm+2l Ñ

(m+1)
kq1...qm+1

)
⎤
⎦− βm

il

[
W

(m+2)
q1...qm+2,l

+

− 1

2m+2

∑

P(q)

(
δqm+2l W

(m+1)
q1...qm+1

)
⎤
⎦
⎫
⎬
⎭ni

⎤
⎦
⎤
⎦
∣∣∣∣∣∣
ξ∈Σ1

= 0,
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which provides perturbation functions Ñ
(m+2)
kq1...qm+2

and W
(m+2)
q1...qm+2 .

Finally, the third piezoelectric cell problem is expressed with its interface conditions as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Cm

ijkl N̂
(m+2)
kq1...qm+1,l

)
,j
+
(
emijk Ŵ

(m+2)
q1...qm+1,k

)
,j
+ 1

2m+1

∑
P(q)

[(
Cm

ijkqm+1
N̂

(m+1)
kq1...qm

)
,j
+

+Cm
iqm+1kl

N̂
(m+1)
kq1...qm,l +

(
emijqm+1

Ŵ
(m+1)
q1...qm

)
,j
+ emiqm+1k

Ŵ
(m+1)
q1...qm,k+

−
(
αm
ij M

(m+1)
q1...qm+1

)
,j
− αm

iqm+1
M

(m)
q1...qm

]
=

= 1
2m+1

∑
P(q)

〈
Cm

iqm+1kl
N̂

(m+1)
kq1...qm,l + eiqm+1k Ŵ

(m+1)
q1...qm,k − αm

iqm+1
M

(m)
q1...qm

〉

(
emkli N̂

(m+2)
kq1...qm+1,l

)
,i
−
(
βm
il Ŵ

(m+2)
q1...qm+1,l

)
,i
+ 1

2m+1

∑
P(q)

[(
emkqm+1i

N̂
(m+1)
kq1...qm

)
,i
+

+emklqm+1
N̂

(m+1)
kq1...qm,l −

(
βm
iqm+1

Ŵ
(m+1)
q1...qm

)
,i
− βm

qm+1l
Ŵ

(m+1)
q1...qm,l +

(
γm
i M

(m+1)
q1...qm+1

)
,i
+

+γm
qm+1

M
(m)
q1...qm

]
= 1

2m+1

∑
P(q)

〈
emklqm+1

N̂
(m+1)
kq1...qm,l − βm

qm+1l
Ŵ

(m+1)
q1...qm,l + γm

qm+1
M

(m)
q1...qm

〉

,

[[
N̂

(m+2)
kq1...qm+1

]]∣∣∣
ξ∈Σ1

= 0,

[[
Ŵ (m+2)

q1...qm+1

]]∣∣∣
ξ∈Σ1

= 0,

⎡
⎣
⎡
⎣
⎧
⎨
⎩Cm

ijkl

⎡
⎣N̂ (m+2)

kq1...qm+1,l
+

1

2m+1

∑

P(q)

(
δqm+1l N̂

(m+1)
kq1...qm

)
⎤
⎦+ emijk

[
Ŵ

(m+2)
q1...qm+1,k

+

+
1

2m+1

∑

P(q)

(
δqm+1l Ŵ

(m+1)
q1...qm

)
⎤
⎦− αm

ij M
(m+1)
q1...qm+1

⎫
⎬
⎭nj

⎤
⎦
⎤
⎦
∣∣∣∣∣∣
ξ∈Σ1

= 0,

⎡
⎣
⎡
⎣
⎧
⎨
⎩emkli

⎡
⎣N̂ (m+2)

kq1...qm+1,l
+

1

2m+1

∑

P(q)

(
δqm+1l N̂

(m+1)
kq1...qm

)
⎤
⎦− βm

il

[
Ŵ

(m+2)
q1...qm+1,l

+

+
1

2m+1

∑

P(q)

(
δqm+1l Ŵ

(m+1)
q1...qm

)
⎤
⎦+ γm

i M (m+1)
q1...qm+1

⎫
⎬
⎭ni

⎤
⎦
⎤
⎦
∣∣∣∣∣∣
ξ∈Σ1

= 0, (85)

which gives N̂m+2
kq1...qm+1

and Ŵ
(m+2)
q1...qm+1 .

B Symmetry and positive definiteness of the overall thermo-piezoelectric
tensors

In this appendix, the simmetries of tensors of components n
(2)
ipq1q2

, w
(2)
q1q2 , and m

(2)
q1q2 that appear in the aver-

age field equations of infinite order (54a)-(54c), together with the equality ñ
(2)
pq1q1 = w̃

(2)
pq1q2 and the ellipticity

of field equations (59), (63a) and (63b) are demonstrated in order to relate the coefficients n
(2)
ipq1q2

, w
(2)
q1q2 ,

m
(2)
q1q2 , and ñ

(2)
pq1q2 to the overall thermo-piezoelectric constants of the the equivalent first-order continuum

Ciq1pq2 , βq1q2 ,Kq1q2 and epq2q2 .

Tensor n(2)

One considers the expression of tensor n(2) whose components are derived from the known term of the first
equation of cell problem (44) at order ε0, namely

n
(2)
ipq1q2

=
1

2

〈
Cm

iq1pq2 + Cm
iq2kl N

(1)
kpq1,l

+ emiq2k W̃
(1)
pq1,k

+ Cm
iq2pq1 + Cm

iq1kl N
(1)
kpq2,l

+ emiq1k W̃
(1)
pq2,k

〉
. (86)

The weak form of the first equation of cell problem (38) at the order ε−1

(
Cm

rjkl N
(1)
kpq1,l

)
,j
+
(
emrjk W̃

(1)
pq1,k

)
,j
+ Cm

rjpq1,j = 0, (87)
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can be written as 〈(
Cm

rjkl N
(1)
kpq1,l

+ emrjk W̃
(1)
pq1,k

+ Cm
rjpq1

)
N

(1)
riq2,j

〉
= 0, (88)

where equation (87) has been multiplied by a test function N
(1)
riq2

, and the divergence theorem, together
with the Q-periodicity of perturbation functions and of micro constitutive tensors, have been exploited. A
permutation of indices q1 and q2 in equation (88) gives

〈(
Cm

rjkl N
(1)
kpq2,l

+ emrjk W̃
(1)
pq2,k

+ Cm
rjpq2

)
N

(1)
riq1,j

〉
= 0. (89)

By adding the vanishing terms (88) and (89) to expression (86), after some manipulations n
(2)
ipq1q2

takes the
form

n
(2)
ipq1q2

=
1

2

〈
Cm

rjkl

(
N

(1)
riq2,j

+ δirδjq2

)(
N

(1)
kpq1,l

+ δpkδlq1

)
+ emiq2k W̃

(1)
pq1,k

+ emrjk W̃
(1)
pq1,k

N
(1)
riq2,j

+

+Cm
rjkl

(
N

(1)
riq1,j

+ δirδjq1

)(
N

(1)
kpq2,l

+ δpkδlq2

)
+ emiq1k W̃

(1)
pq2,k

+ emrjk W̃
(1)
pq2,k

N
(1)
riq1,j

〉
. (90)

Analogously, the weak form of the second equation of cell problem (38) at the order ε−1

(
emklj N

(1)
kpq1,l

)
,j
−
(
βm
jl W̃

(1)
pq1,l

)
,j
+ empq1j,j = 0, (91)

is expressed as 〈(
emklj N

(1)
kpq1,l

− βm
jl W̃

(1)
pq1,l

+ empq1j

)
W̃

(1)
iq1,j

〉
= 0, (92)

with test function W̃
(1)
iq1

. The summation of equation (92) and its counterpart, obtained by exchanging q1

and q2, to equation (90) leads to the final expression for n
(2)
ipq1q2

, which takes the form

n
(2)
ipq1q2

=
1

2

〈
Cm

rjkl

(
N

(1)
riq2,j

+ δirδjq2

)(
N

(1)
kpq1,l

+ δpkδlq1

)
+ βm

jl W̃
(1)
pq1,l

W̃
(1)
iq2,j

+

+Cm
rjkl

(
N

(1)
riq1,j

+ δirδjq1

)(
N

(1)
kpq2,l

+ δpkδlq2

)
+ βm

jl W̃
(1)
pq2,l

W̃
(1)
iq1,j

〉
=

=
1

2

(
Cm

pq1iq2 + Cm
pq2iq1

)
. (93)

Equation (93) proves the positive definiteness of tensor n(2). Symmetry properties of n(2) come from the
major and minor symmetries of the elastic microscopic tensor Cm, i.e.

Cm
pq1iq2 = Cm

iq2pq1 , Cm
pq1iq2 = Cm

q1piq2 = Cm
q1pq2i = Cm

pq1q2i, (94)

and from the equality N
(1)
kpq1

= N
(1)
kq1p

, whose validity is guaranteed by the structure of cell problem (38). In
particular, because of the repetition of indices q1 and q2, the following relation holds

n
(2)
ipq1q2

∂2Up(x)

∂xq1∂xq2

=
1

2
(Cpq1iq2 + Cpq2iq1)

∂2Up(x)

∂xq1∂xq2

=

1

2

(
Cpq1iq2

∂2Up(x)

∂xq1∂xq2

+ Cpq1iq2

∂2Up(x)

∂xq2∂xq1

)
= Cpq1iq2

∂2Up(x)

∂xq1∂xq2

,

with the components of the overall elastic tensor C equal to

Cpq1iq2 =
〈
Cm

rjkl

(
N

(1)
riq2,j

+ δirδjq2

)(
N

(1)
kpq1,l

+ δpkδlq1

)
+ βm

jl W̃
(1)
pq1,l

W̃
(1)
iq2,j

〉
.

Tensor w(2)

For what regards tensor w(2), its components are given by the known term of the second equation of cell
problem (44) at order ε0, and have the form

w(2)
q1q2 =

1

2

〈
βm
q1q2 + βm

q2l W
(1)
q1,l

− emklq2 Ñ
(1)
kq1,l

+ βm
q2q1 + βm

q1l W
(1)
q2,l

− emklq1 Ñ
(1)
kq2,l

〉
. (95)
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Following the same path previously adopted for n(2), the weak form of the first equation of cell problem
(40), namely (

Cm
ijkl Ñ

(1)
kq1,l

)
,j
+
(
emijk W

(1)
q1,k

)
,j
+ emijq1,j = 0, (96)

takes the form
〈(

Cm
ijkl Ñ

(1)
kq1,l

+ emijk W
(1)
q1,k

+ emijq1

)
Ñ

(1)
iq2,j

〉
= 0, (97)

thanks to the divergence theorem and Q-periodicity of perturbation functions and micro constitutive tensors.
By summing equation (97) and its counterpart, obtained exchanging q1 and q2, to equation (95) one obtains

w(2)
q1q2 =

1

2

〈
βm
q1q2 + βm

q2l W
(1)
q1,l

+ Cm
ijkl Ñ

(1)
kq1,l

Ñ
(1)
iq2,j

+ emijk W
(1)
q1,k

Ñ
(1)
iq2,j

+βm
q2q1 + βm

q1l W
(1)
q2,l

+ Cm
ijkl Ñ

(1)
kq2,l

Ñ
(1)
iq1,j

+ emijk W
(1)
q2,k

Ñ
(1)
iq1,j

〉
. (98)

From the second equation of cell problem (40), namely

(
emkli Ñ

(1)
kq1,l

)
,i
−
(
βm
il W̃

(1)
q1,l

)
,i
− βm

iq1,i = 0, (99)

one can write the weak form
〈(

emkli Ñ
(1)
kq2,l

− βm
il W

(1)
q2,l

− βm
iq2

)
W

(1)
q1,i

〉
= 0, (100)

assuming W
(1)
q1 as a test function. By adding the vanishing term (100) and its counterpart to equation (98),

the final expression of w
(2)
q1q2 is derived

w(2)
q1q2 =

1

2

〈
βm
q1q2 + βm

q2l W
(1)
q1,l

+ Cm
ijkl Ñ

(1)
kq1,l

Ñ
(1)
iq2,j

+ βm
il W

(1)
q1,l

W
(1)
q2,i

+ βm
iq1 W

(1)
q2,i

+

+βm
q2q1 + βm

q1l W
(1)
q2,l

+ Cm
ijkl Ñ

(1)
kq2,l

Ñ
(1)
iq1,j

+ βm
il W

(1)
q2,l

W
(1)
q1,i

+ βm
iq2 W

(1)
q1,i

〉
=

=
1

2

〈
βm
il

(
W

(1)
q1,l

+ δq1l

)(
W

(1)
q2,i

+ δq2i

)
+ Cm

ijkl Ñ
(1)
kq1,l

Ñ
(1)
iq2,j

+

+ βm
il

(
W

(1)
q2,l

+ δq2l

)(
W

(1)
q1,i

+ δ
(1)
q1i

)
+ Cm

ijkl Ñ
(1)
kq1,l

Ñ
(1)
iq2,j

〉
=

=
〈
βm
il

(
W

(1)
q1,l

+ δq1l

)(
W

(1)
q2,i

+ δq2i

)
+ Cm

ijkl Ñ
(1)
kq1,l

Ñ
(1)
iq2,j

〉
, (101)

which demonstrates the positive definiteness and the symmetry of tensor w(2). Components w
(2)
q1q2 of tensor

w(2) correspond to those of the overall symmetric dielectric permittivities tensor β, thus having w
(2)
q1q2 = βq1q2 .

Tensor m(2)

Components of tensor m(2) are the known term of the cell problem (36) and are expressed as

m(2)
q1q2 =

1

2

〈
Km

q1q2 +Km
q2j M

(1)
q1,j

+Km
q2q1 +Km

q1j M
(1)
q2,j

〉
. (102)

If one considers the thermal cell problem (34) of order ε−1

(
Km

ij M
(1)
q1,j

)
,i
+Km

iq1,i = 0, (103)

and multiplies equation (103) by the test function M
(1)
q2 , the following weak form holds

〈(
Km

ij M
(1)
q1,j

+Km
iq1

)
M

(1)
q2,i

〉
= 0. (104)

Analogously, exploiting M
(1)
q1 as test function, one has

〈(
Km

ij M
(1)
q2,j

+Km
iq2

)
M

(1)
q1,i

〉
= 0. (105)
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By adding equations (104) and (105) to (102), one obtains

m(2)
q1q2 =

1

2

〈
Km

q1q2 +Km
q1j M

(1)
q2,j

+
(
Km

ij M
(1)
q1,j

+Km
iq1

)
M

(1)
q2,i

+Km
q1q2 +Km

q2j M
(1)
q1,j

+

+
(
Km

ij M
(1)
q2,j

+Km
iq2

)
M

(1)
q1,j

〉
=

=
1

2

〈
Km

ij

(
M

(1)
q1,j

+ δjq1

)(
M

(1)
q2,i

+ δq2i

)
+Km

ij

(
M

(1)
q1,i

+ δiq1

)(
M

(1)
q2,j

+ δq2j

)〉
=

=
〈
Km

ij

(
M

(1)
q1,j

+ δjq1

)(
M

(1)
q2,i

+ δq2i

)〉
, (106)

which, once again, is the proof of symmetry and positive definiteness of m(2) whose components correspond

to those of the symmetric overall thermal conduction tensor K, thus having m
(2)
q1q2 = Kq1q2 .

Tensors ñ(2) and w̃(2)

In the following it will be shown that ñ
(2)
pq1q2 = w̃

(2)
pq1q2 . To prove this equality, one considers the expression

of the components of ñ(2), namely the known term of the first equation of cell problem (46)

ñ(2)
pq1q2 =

1

2

〈
Cm

pq2kl Ñ
(1)
kq1,l

+ empq1q2 + empq2k W
(1)
q1,k

+ Cm
pq1kl Ñ

(1)
kq2,l

+ empq2q1 + empq1k W
(1)
q2,k

〉
. (107)

Taking the equations (87) and (91) of cell problem (38) at the order ε−1, their weak forms can be written
as: 〈(

Cm
pjkl N

(1)
kiq1,l

+ empjk W̃
(1)
iq1,k

+ Cm
pjiq1

)
Ñ

(1)
pq2,j

〉
= 0, (108)

and 〈(
emklj N

(1)
kiq1,l

− βm
jl W̃

(1)
iq1,l

+ emiq1j

)
W

(1)
q2,j

〉
= 0, (109)

with Ñ
(1)
pq2 and W

(1)
q2 as test functions. Summation of equations (108), (109) and their counterpart, obtained

exchanging indices q1 and q2, to equation (107), leads to

ñ(2)
pq1q2 =

1

2

(
〈emijk

(
δpi δjq1 δkq2 −N

(1)
ipq2,j

W
(1)
q1,k

− W̃
(1)
pq2,k

Ñ
(1)
iq1,j

)
− Cm

ijkl N
(1)
ipq2,j

Ñ
(1)
kq1,l

+

+βm
il W̃

(1)
pq2,i

W
(1)
q1,l

+ emijk

(
δpi δjq2 δkq1 −Nipq1, j

(1) W
(1)
q2,k

− W̃
(1)
pq1,k

Ñ
(1)
iq2,j

)
+

−Cm
ijkl N

(1)
ipq1,j

Ñ
(1)
kq2,l

+ βm
il W̃

(1)
pq1,i

W
(1)
q2,l

〉
. (110)

In the same way, w̃
(2)
pq1q2 is the known term of the second equation of cell problem (44) at the order ε0

w̃(2)
pq1q2 =

1

2

〈
emklq2 N

(1)
kpq1,l

+ empq2q1 − βm
q2l W̃

(1)
pq1,l

+ emklq1 N
(1)
kpq2,l

+ empq1q2 − βm
q1l W̃

(1)
pq1,l

〉
. (111)

The weak forms of the first and the second equation of cell problem (40), namely equations (96) and (99),
take the form 〈

Cm
ijkl Ñ

(1)
kq1,l

+ emijk W
(1)
q1,k

+ emijq1

〉
N

(1)
ipq2,j

= 0, (112)

and 〈
emkli Ñ

(1)
kq1,l

− βm
il W

(1)
q1,l

− βm
iq1

〉
W̃

(1)
pq2,i

= 0, (113)

with N
(1)
ipq2

and W̃
(1)
pq2 as test functions. Once again, by adding equations (112) and (113) and their counter-

parts to equation (111), one finally has

w̃(2)
pq1q2 =

1

2

(
〈emijk

(
δpi δjq1 δkq2 −N

(1)
ipq2,j

W
(1)
q1,k

− W̃
(1)
pq2,k

Ñ
(1)
iq1,j

)
− Cm

ijkl N
(1)
ipq2,j

Ñ
(1)
kq1,l

+

+βm
il W̃

(1)
pq2,i

W
(1)
q1,l

+ emijk

(
δpi δjq2 δkq1 −N

(1)
ipq1,j

W
(1)
q2,k

− W̃
(1)
pq1,k

Ñ
(1)
iq2,j

)
+

−Cm
ijkl N

(1)
ipq1,j

Ñ
(1)
kq2,l

+ βm
il W̃

(1)
pq1,i

W
(1)
q2,l

〉
, (114)
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from which is clear that ñ
(2)
pq1q2 = w̃

(2)
pq1q2 . Furthermore one has

ñ(2)
pq1q2

∂2Φ

∂xq1∂xq2

=
1

2
(epq1q2 + epq2q1)

∂2Φ

∂xq1∂xq2

= epq1q2
∂2Φ

∂xq1∂xq2

,

where the components of the overall piezoelectric tensor e are expressed as

epq1q2 =
1

2

〈
emijk

(
δpi δjq1 δkq2 −N

(1)
ipq2,j

W
(1)
q1,k

− W̃
(1)
pq2,k

Ñ
(1)
iq1,j

)
− Cm

ijkl N
(1)
ipq2,j

Ñ
(1)
kq1,l

+ βm
il W̃

(1)
pq2,i

W
(1)
q1,l

〉
.

C Finite Element Formulation

In this appendix, a detailed formulation of the thermo-piezoelectric finite element framework developed
to solve the whole heterogeneous problem and the cell problems is given. The expression of the linear
constitutive equations (4a)-(4c) for the thermo-piezoelectric material is

σij = Cm
ijkl uk,l + emijk φ,k − αm

ij θ,

Di=e
m
kli uk,l − βm

il φ,l + γm
i θ,

qi = −Km
ij θ,j , (115)

where, in a 2-D space, the rigorous form of constitutive equations (115) in a tensorial fashion is (Mehrabadi
and Cowin, 1990)

⎛
⎝

σ11

σ22√
2σ12

⎞
⎠ =

⎛
⎝

C1111 C1122

√
2C1112

C2211 C2222

√
2C2212√

2C1211

√
2C1222 2C1212

⎞
⎠
⎛
⎝

u1,1

u2,2√
2
2 (u1,2 + u2,1)

⎞
⎠+

+

⎛
⎝

e111 e112
e221 e222√
2 e121

√
2 e122

⎞
⎠
(

φ,1

φ,2

)
−

⎛
⎝

α11

α22√
2α12

⎞
⎠ θ,

(
D1

D2

)
=

(
e111 e221

√
2 e121

e112 e222
√
2 e122

)⎛
⎝

u1,1

u2,2√
2
2 (u1,2 + u2,1)

⎞
⎠+

−
(

β11 β12

β21 β22

)(
φ,1

φ,2

)
+

(
γ1
γ2

)
θ,

(
q1
q2

)
=−

(
K11 K12

K21 K22

)(
θ,1
θ,2

)
. (116)

The stress tensor σ, the electric displacement vector D, and the heat flux vector q satisfy the local balance
equations that take the following form in the hypothesis of quasi-static processes

(
Cm

ijkl uk,l

)
,j
+
(
emijk φ,k

)
,j
−
(
αm
ij θ

)
,j
+ bi = 0,

(emkli uk,l),i − (βm
il φ,l),i + (γm

i θ),i = ρe,(
Km

ij θ,j
)
,i
+ r = 0, (117)

in the presence of body forces b, free charge densities ρe, and heat sources r. The boundary ∂Ω of domain Ω
is the union of a Dirichlet (∂Ωu, ∂Ωφ, ∂Ωθ) and a Neumann (∂Ωσ, ∂ΩD, ∂Ωq) parts with ∂Ω = ∂Ωu ∪ ∂Ωσ =
∂Ωφ∪∂ΩD = ∂Ωθ ∪∂Ωq and ∂Ωu∩∂Ωσ = ∂Ωφ∩∂ΩD = ∂Ωθ ∩∂Ωq = ∅. Boundary conditions can therefore
be written in the form

{
ui = ūi on ∂Ωu

σij nj = t̄i on ∂Ωσ
,

{
φ = φ̄i on ∂Ωφ

Di ni = −τ̄e on ∂ΩD
,

{
θ = θ̄i on ∂Ωθ

qi ni = q̄i on ∂Ωq
, (118)

where t̄i, τ̄e and q̄ are the prescribed values of tractions, free surface charge and heat flux, respectively, and
n is the outward normal to ∂Ω. After introducing the three test functions ψui

, ψφ and ψθ, local balance
equations (117) and boundary conditions (118) allow to write the weak forms

−
∫

Ω

(
Cm

ijkl uk,l + emijk φ,k − αij θ
)
ψu,j dV +

∫

Ω

bi ψui dV +

∫

∂Ωσ

t̄i ψui dS = 0, ∀ψui s.t. ψui = 0 on ∂Ωu,
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−
∫

Ω

(emkli uk,l − βm
il φ,l + γi θ)ψφ,i dV −

∫

Ω

ρe ψφ dV −
∫

∂ΩD

τ̄e ψφ dS = 0, ∀ψφ s.t. ψφ = 0 on ∂Ωφ,

+

∫

Ω

Km
ij θ,j ψθ,i dV +

∫

Ω

r ψθ dV −
∫

∂Ωq

q̄ ψθ dS = 0, ∀ψθ s.t. ψθ = 0 on ∂Ωθ. (119)

In the finite element discretization, the displacement field u(x), the electric potential field φ(x), and the
relative temperature field θ(x) are approximated by a linear combination of shape functions Nj(x) and nodal
unknowns uij , φj and θj

ui(x) =

Nh∑

j=1

Nj(x)uij , φ(x) =

Nh∑

j=1

Nj(x)φj , θ(x) =

Nh∑

j=1

Nj(x) θj , (120)

where Nh is the finite dimension of a space Vh for which {Nj |j = 1, 2, ..., Nh} is a basis. Analogously, for
test functions one has

ψui
(x) =

Nh∑

j=1

Nj(x) δuij , ψφ(x) =

Nh∑

j=1

Nj(x) δφj , ψθ(x) =

Nh∑

j=1

Nj(x) δθij . (121)

Being x = x1 e1+x2 e2 in a two-dimensional space, one can define the following matrices on the single finite
element e

Bu = Du Nu, Bφ = Dφ Nφ, Bθ = Dθ Nθ, (122)

where differential matrices Du,Dφ and Dθ are

Du =

⎡
⎣

∂
∂x1

0

0 ∂
∂x2

∂
∂x2

∂
∂x1

⎤
⎦ , Dφ = Dθ =

[ ∂
∂x1
∂

∂x2

]
, (123)

and matrices Nu,Nφ and Nθ collect the shapes functions

Nu =

[
N1 0 N2 0 ... NNnod 0
0 N1 0 N2 ... 0 NNnod

]
, Nφ = Nθ =

[
N1 N2 ... NNnod

]
, (124)

with NNnod being the number of element nodes.
Over each element domain δΩe, weak forms (119) can therefore be written in matrix form as

−δuT

∫

Ωe

BT
u Cm Bu dV u− δuT

∫

Ωe

BT
u em Bφ dV φ+ δuT

∫

Ωe

BT
u αm Nθ dV θ +

+δuT

∫

Ωe

NT
u b dV + δuT

∫

∂Ωeσ

NT
u t̄ dS = 0,

−δφT

∫

Ωe

BT
φ ẽm Bu dV u+ δφT

∫

Ωe

BT
φ βm Bφ dV φ− δφT

∫

Ωe

BT
φ γm Nθ dV θ = 0 +

−δφT

∫

Ωe

NT
φ ρe dV − δφT

∫

∂ΩeD

NT
φ τ̄e dS = 0,

δθT

∫

Ωe

BT
θ Km Bθ dV θ + δθT

∫

Ωe

NT
θ r dV − δθT

∫

∂Ωeq

NT
θ q̄ dS = 0, (125)

which must be satisfied for all δu, δφ and δθ. In equations (125), constitutive tensors Cm, βm, Km, em,
αm, and γm have been turned to the corresponding matrix representation Cm, βm, Km, em, αm, and γm.
After defining the following elemental stiffness matrices

Ke
uu =

∫

Ωe

BT
u Cm Bu dV, Ke

uφ =

∫

Ωe

BT
u em Bφ dV, Ke

uθ = −
∫

Ωe

BT
u αm Bθ dV,

Ke
φu =

∫

Ωe

BT
φ ẽm Bu dV, Ke

φφ = −
∫

Ωe

BT
φ βm Bφ dV, Ke

φθ =

∫

Ωe

BT
φ γm Nθ dV,
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Ke
θθ =

∫

Ωe

BT
θ Km Bθ dV, (126)

and the external force vectors as

feuext
=

∫

Ωe

NT
u b dV +

∫

∂Ωeσ

NT
u t̄ dS,

feφext
= −

∫

Ωe

NT
φ ρe dV −

∫

∂ΩeD

NT
φ τ̄e dS,

feθext
=

∫

Ωe

NT
θ r dV −

∫

∂Ωeq

NT
θ q̄ dS, (127)

the following linear system provides the finite element solution z = {u,φ,θ}T
⎡
⎣

Kuu Kuφ Kuθ

Kφu Kφφ Kφθ

0 0 Kθθ

⎤
⎦
⎧
⎨
⎩

u
φ
θ

⎫
⎬
⎭ =

⎧
⎨
⎩

fuext

fφext

fθext

⎫
⎬
⎭ , (128)

where the elemental stiffness matrices (126) and the external forces vectors (127) have been assembled in
the corresponding global ones.
The thermo-piezoelectric element has been implemented in the finite element software FEAP for numerically
solving the coupled thermo-electromechanical problem, exploiting the isoparametric concept to approximate
the element geometry and using triangular finite elements.

C.1 Periodic boundary conditions

In order to impose periodic boundary conditions on displacements, electric potential, and relative temper-
ature fields, and on tractions t̄, free surface charge densities τ̄e, and heat fluxes q̄, a static condensation of
the global stiffness matrix, as defined in equation (128), has been performed.

All the nodes of the considered discretization can be classified in three different sets: the internal nodes,
indicated with i; the nodes belonging to the left and upper boundaries of the system, indicated with b+;
and the nodes belonging to the right and lower boundaries of the system, indicated with b−. It is therefore
possible to reorder the degrees of freedom u,φ, and θ of system (128), collected in the generalized vector z,
in three different vectors referring, respectively, to the internal nodes zi, to the left and upper boundaries
nodes zb+ , and to the right and lower boundaries nodes zb− , in order to rewrite the system (128) in the form

⎡
⎣

Kii Kib+ Kib−

Kb+i Kb+b+ Kb+b−

Kb−i Kb−b+ Kb−b−

⎤
⎦
⎧
⎨
⎩

zi
zb+
zb−

⎫
⎬
⎭ =

⎧
⎨
⎩

fiext

fb+ext

fb−ext

⎫
⎬
⎭ . (129)

The following conditions have to be imposed in order to assure the periodicity of the unknown fields and
external forces {

b+ = b−

fb+ext
= −fb−ext

. (130)

From conditions (130), one finally has

zi =
[
Kii − (Kib+ +Kib−) (Kb−b+ +Kb−b− +Kb+b+ +Kb+b−)

−1
(Kb+iKb−i)

]−1

fiext

zb+ = zb− = − (Kb−b+ +Kb−b− +Kb+b+ +Kb+b−)
−1

(Kb+i +Kb−i) zi (131)
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