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Abstract

Given the huge impact that Online Social Networks (OSN)
had in the way people get informed and form their opinion,
they became an attractive playground for malicious entities
that want to spread misinformation, and leverage their effect.
In fact, misinformation easily spreads on OSN and is a huge
threat for modern society, possibly influencing also the out-
come of elections, or even putting people’s life at risk (e.g.,
spreading “anti-vaccines” misinformation). Therefore, it is
of paramount importance for our society to have some sort
of “validation” on information spreading through OSN. The
need for a wide-scale validation would greatly benefit from
automatic tools.
In this paper, we show that it is difficult to carry out an auto-
matic classification of misinformation considering only struc-
tural properties of content propagation cascades. We focus on
structural properties, because they would be inherently dif-
ficult to be manipulated, with the the aim of circumventing
classification systems. To support our claim, we carry out an
extensive evaluation on Facebook posts belonging to conspir-
acy theories (as representative of misinformation), and sci-
entific news (representative of fact-checked content). Our
findings show that conspiracy content actually reverberates
in a way which is hard to distinguish from the one scientific
content does: for the classification mechanisms we investi-
gated, classification F1-score never exceeds 0.65 during con-
tent propagation stages, and is still less than 0.7 even after
propagation is complete.

1 Introduction
An increasing number of people get informed on Online So-
cial Networks (OSN) (Newman, N. and Levy, D.A.L. and
Nielsen, R.K. 2015). However, as OSN allow every user to
post content, which propagates among users through viral
processes, these platforms became attractive targets for mis-
information creators. Moreover, the hyperconnected world
and increasing complexity of reality create a scenario in
which viral processes on OSN are driven by confirmation
bias, eliciting the proliferation of unsubstantiated rumors
and hoaxes all the way up to conspiracy theories (Bessi et
al. 2015b; 2015a). News stories undergo the same popu-
larity dynamics as other forms of online contents (such as
selfies and cat pictures) (Newman, N. and Levy, D.A.L. and
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Nielsen, R.K. 2015). It is not a surprise then that the Oxford
Dictionary in 2016 elected Post-truth as word of the year.
The definition reads:

“Relating to or denoting circumstances in which objec-
tive facts are less influential in shaping public opinion
than appeals to emotion and personal belief”.
Several studies pointed out the effects of social influence

online (Centola 2010; Fowler and Christakis 2010; Quattro-
ciocchi, Caldarelli, and Scala 2014; Salganik, Dodds, and
Watts 2006). Results reported in (Kramer, Guillory, and
Hancock 2014) indicate that emotions expressed by others
on Facebook influence our own emotions, providing exper-
imental evidence of massive-scale contagion via social net-
works. As a result of disintermediated access to informa-
tion and of algorithms used in content promotion, commu-
nication has become increasingly personalized, both in the
way messages are framed and how they are shared across
social networks. Selective exposure has been shown to fa-
vor the emergence of echo-chambers — polarized groups of
like-minded people where users reinforce their world view
with information adhering to their system of beliefs (Del Vi-
cario et al. 2016). Confirmation bias, indeed, plays a piv-
otal role in informational cascades (Quattrociocchi, Scala,
and Sunstein 2016; Bessi et al. 2015b; Zollo et al. 2015a;
Sunstein 2002). Recent works (Bessi et al. 2015a; Zollo et
al. 2015a) showed that attempts to debunk false information
are largely ineffective. In particular, discussion degenerates
when the two polarized communities interact with one an-
other (Zollo et al. 2015b). OSN users therefore tend to se-
lect information that are consistent with their beliefs (even
if containing false claims) and propagate it to like-minded
friends, and to ignore information dissenting with their be-
liefs. This confirms that misinformation is a huge threat for
modern society. Not only it can put people’s life at risk, as
in the case of “anti-vaccines” misinformation, it is also start-
ing to be used against political opponents, such as in the US,
during the 2016 electoral campaign (Silverman et al. 2016)
and during Election Day (Rogers, K. and Bromwich, J.E.
2016).

Rising attention to the spreading of fake news and un-
substantiated rumors led researchers to investigate many
of their aspects, from the characterization of conversation
threads (Backstrom et al. 2013), to the detection of bursty
topics on microblogging platforms (Diao et al. 2012), to
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the disclosure of the mechanisms behind information dif-
fusion for different kinds of contents (Romero, Meeder, and
Kleinberg 2011). Spreading of misinformation also moti-
vated major corporations like Google and Facebook to pro-
vide solutions to the problem (First Draft News Coalition
2016). However, given the amount of content posted every-
day on OSN (e.g., Facebook reports 1.18 billion daily active
users on September 2016 (Facebook 2016)), effective fact-
checking would greatly benefit of automatic classification
tools, that would possibly not require human intervention.
Moreover, classification of fake news and misinformation
should ideally use properties that misinformation creators
can not manipulate. Considering in the classification, for
example, the trustworthiness of news domains, or the topic
of content, could lead to an arms race with creators of false
news. Instead, the topology of propagation cascades, and the
patterns of users’ interaction with content, are outside of the
domain of our “adversaries”, and are much more difficult to
be manipulated.

In this work, we investigate detection of viral processes by
comparing diffusion of posts from scientific and conspiracy
pages on the Italian Facebook network. The former diffuse
scientific knowledge, where details about the sources (such
as authors and funding programs) are easy to access. We
therefore select their posts as representative of fact-checked
content. The latter aim at diffusing what is neglected by
“manipulated” mainstream media. Specifically, conspiracy
theories tend to reduce the complexity of reality by explain-
ing significant social or political aspects as plots conceived
by powerful individuals or organizations. Since these kinds
of arguments can sometimes involve the rejection of science,
alternative explanations are invoked to replace the scientific
evidence. For instance, people who reject the link between
HIV and AIDS generally believe that AIDS was created by
the US Government to control the African American pop-
ulation. We therefore select their posts as representative of
misinformation.

Contribution. The contributions of this paper are the fol-
lowing:

• We show that automatic fact-checking with classification
techniques employing only structural features of content
propagation cascades (features that are robust to attacker’s
manipulation) does not suggest to bring usable results.
Given the grain of our data, we design classifiers that
leverages topological properties of content propagation
cascades, and properties of the evolution over time of
users’ interactions with content. A set of classifiers op-
erates with evolution properties to classify content during
its early propagation stage, another set of classifiers op-
erates with more features to classify content that already
propagated. Indeed, being able to issue warnings about
possible fake news as early as possible, and retroactively
flag such news can be useful, in the fight against OSN
misinformation.

• We evaluate our classifiers on a well-known dataset of
Facebook posts from Italian pages. We use posts belong-
ing to conspiracy theories as representative of misinfor-

mation, and posts belonging to scientific news as repre-
sentative of fact-checked content. Our findings highlight
the complexity of creating automatic solutions to mis-
information classification. Indeed, structural features of
content propagation do not allow us to obtain notable im-
provements from a random guess baseline: F1-score for
the classification mechanisms we investigated is always
lower than 0.65 during content propagation stages, and is
still less than 0.7 even after propagation is complete.

Outline. Section 2 overviews related work in news and
misinformation propagation in OSN. Section 3 formally
models and defines content propagation in Facebook. Sec-
tion 4 presents our experiment design and the features we
extract from content propagation cascades. Then, Section 5
evaluates our classification and, finally, Section 6 critically
discusses our results, summarizes the paper and delineates
future work.

2 Related Work
Several studies moved towards the spreading of rumors
and behaviors on online social networks, challenging both
their structural properties and their effects on social dy-
namics (Moreno, Nekovee, and Pacheco 2004; Doerr, Fouz,
and Friedrich 2012; Seo, Mohapatra, and Abdelzaher 2012;
Borge-Holthoefer et al. 2013; Cozzo et al. 2013; Borge-
Holthoefer, Rivero, and Moreno 2012). In (Ugander et
al. 2012), authors find that the probability of contagion is
tightly controlled by the number of connected components
in an individual’s contacts neighborhood, rather than by the
actual size of the neighborhood. In (Centola and Macy 2007)
researchers show that, although long ties are relevant for
spreading information about an innovation or social move-
ment, they are not sufficient with respect to the social re-
inforcement necessary to act on that information. A key
factor in identifying true contagion in social network is to
distinguish between peer-to-peer influence and homophily:
in the first case, a node influences or causes outcomes to
its neighbors, whereas in the second one, dyadic similarities
between nodes create correlated outcome patterns among
neighbors that could mimic viral contagions even without
direct causal influence (McPherson, Smith-Lovin, and Cook
2001). The study presented in (Aiello et al. 2012) reveals
that there is a substantial level of topical similarity among
users which are close to each other in the social network,
suggesting that users with similar interests are more likely
to be friends. In (Aral, Muchnik, and Sundararajan 2009)
authors develop an estimation framework to distinguish in-
fluence and homophily effects in dynamic networks and find
that homophily explains more than 50% of the perceived be-
havioral contagion. In (Bakshy et al. 2012) the analysis faces
the role of social networks and exposure to friends’ activ-
ities in information resharing on Facebook. Once having
isolated contagion from other confounding effects such as
homophily, authors claim that there is a considerably higher
chance to share contents when users are exposed to friends’
resharing. All these contributions strive to understand the in-
ner mechanism of rumor spreading and to eventually predict



massive diffusion processes, i.e. cascades. Cascades recur-
rence and prediction has been shaped in (Cheng et al. 2014)
and (Cheng et al. 2016).

3 Methods
In this section, we first report and describe the employed
dataset (Section 3.1). We then give some necessary back-
ground knowledge, and present our reference model and
definition of content propagation mechanisms of Facebook
(Section 3.2).

3.1 Dataset
We employ a well-known dataset of posts shared by Ital-
ian Facebook users (Bessi et al. 2015a). This dataset con-
tains posts published by 73 public Facebook pages: 34 pages
that publish scientific content (e.g., press releases of peer-
reviewed articles), and 39 pages that publish conspiracy
theories-related content (e.g. new world order, chemtrails).
Additionally, the dataset contains information about the in-
teraction of users with these posts, and users’ ego-networks
(i.e., the list of users that are their friends, when such list
is public). Additionally, for a set of posts, the dataset pro-
vides information about the propagation cascade of such
content, generated by users’ reshares, and subsequent re-
shares from their friends. This propagation from one user to
other users can happen multiple times, forming a cascade of
resharing. Using information from the dataset, we extracted
112141 non-empty propagation cascades, 89491 for conspir-
acy and 22650 for science, respectively. We underline that
the dataset is obtained by using the Facebook Graph API,
and contains only public information. Hence, timestamps of
reshares and comments are available, but timestamps of like
interactions are not.

3.2 Background and Definitions
We now present our reference formal representation of
Facebook’s friendship graph, and the potential propagation
graph generated by content posted on the social network.

Facebook Friendship Graph. We model Facebook rela-
tionships as a graph G〈V,E〉, that we call Facebook friend-
ship graph, where V is the set of nodes that represent enti-
ties, namely user accounts and page accounts. We assume
two main differences among these two types of entity: (i)
pages can post new content on the OSN, while users can
only interact with such content by liking, commenting, and
resharing it; and (ii) users can establish friendship relation-
ships with other users, while pages cannot. Indeed, two
users v1, v2 ∈ V are connected by an edge e(v1, v2) ∈ E
if they are friends on Facebook. Pages are not connected
by any edge, as they do not have proper friendship relation-
ships. This model is a simplification of how Facebook actu-
ally works, because users can post new content, and pages
and users are linked by like relationships. Similarly, users
can follow other users, without having any friend relation-
ship with them. However, for this work, we do not focus
on new content generated by users. Moreover, the dataset

we use lacks information about the like and follow relation-
ships, that we therefore can not consider.

Potential Propagation Graph. Before formally modeling
the spreading of content on Facebook, we describe some
fundamental concepts of the OSN. We recall that, in our
model, only pages can post new content on the social net-
work. Henceforth, we refer to the page that originally posted
some content as the seed page. Instead, users find new con-
tent by looking at their timeline, where they see recent con-
tent posted by the pages they like, and content that their
friends recently interacted with. They can then interact with
such content through the means of resharing, liking, and
commenting it. However, all of these interactions can hap-
pen directly on the original content, or on some types of
interactions of users’ friends. For example, a user observ-
ing a comment or reshare of a post by one of his friends can
decide to interact directly with the original post, or with his
friend’s interaction itself. In the first case, user’s interaction
looks exactly the same and it is impossible to understand
whether the content was found thanks to his friend’s inter-
action, or directly on the seed page. In fact, differently from
related work (Friggeri et al. 2014), the dataset we employ
does not provide this type of information. We therefore take
a conservative approach, saying that the content potentially
propagated to the user both from the seed page and from
any of his friends that interacted with the content, without
any distinction. On the other hand, in the second case, it
becomes clear that the user found the content thanks to his
friend. We therefore say that the content propagated to the
user from his friend.

We now formalize the above observations. Let P be the
set of contents posted on Facebook by seed pages. For each
post p ∈ P , created at some time t by a seed page, at a
generic subsequent point in time t+ δ we define a poten-
tial propagation graph Gpt+δ〈V

p
t+δ, E

p
t+δ〉, where V pt+δ is

the set composed by the seed page, and by the users that
interacted with p during the time interval [t, t+ δ]. Fi-
nal potential propagation graph Gp〈V p, Ep〉 is the graph
formed considering all interactions with p on the timespan
of the analysis (as new interactions with old content are
always possible on Facebook). Two nodes v1, v2 ∈ V pt+δ
are connected by an undirected potential propagation edge
ep(v1, v2) ∈ Ept+δ if either (i) v1 or v2 already interacted
with p and ∃e | e(v1, v2) ∈ E (that is, v1 and v2 are friends
on Facebook), or (ii) v1 or v2 is the seed page. Therefore,
an edge e(v1, v2) ∈ Ept+δ indicates that the content p poten-
tially propagated either from v1 to v2, or from v2 to v1. We
associate to each edge e ∈ Ept+δ two different properties:

1. Time: the time when the interaction between v1

and v2 took place;

2. Type: either “like”, “comment”, “reshare”, or
”friendship”, depending on the type of interaction
between v1 and v2.

Hereafter in the paper, we will refer to these properties for
an edge e ∈ Ept+δ with e.property name (for example,
e.time).



Figure 1 depicts an example of this propagation model.
We represent a simple Facebook friendship graph in Fig-
ure 1a, where edges represent friendship relations. Nodes
v1, ..., v4 are OSN users, while node s represents a public
page posting content on the platform. We suppose v2 and
v4 interacted with a given content posted by s, and v3 re-
shared the post from v2. Node v1 did not interact with the
content, hence is not present on the potential propagation
graph of the post, that we represent in Figure 1b. There, with
edges (s, v2), (s, v4), (v2, v4) we represent possible propa-
gation paths of the content: either v2 or v4 could have seen
the content from the seed page, or from previous interaction
of their friend. Node v3 only has an edge (v2, v3), as we
know that the interaction happened thanks to v2, and there-
fore the content propagated from this node. Additionally,
we highlight that some possible propagation edges, repre-
sented with a dashed line, correspond to friendship edges of
the friendship graph.

v1 v2

v3

v4

s

(a) Facebook Friendship Graph

v2

v3

v4

s

(b) Potential Propagation Graph

Figure 1: Sample Facebook friendship graph, and potential
propagation graph of some content. A dashed line repre-
sents potential propagation edges that also corresponds to a
friendship edge of the friendship graph. Node v1 does not
interact with the content, and is therefore not present in the
potential propagation graph.

4 Experiments
In this section, we describe the details of the experiment and
of the analysis performed on the dataset. We first describe
the experimental design (Section 4.1). We then thoroughly
report and motivate the different features that we extracted
from propagation cascades (Section 4.2).

4.1 Experimental Design
The aim of our experiments is to show that it is difficult to
discriminate between conspiracy theories, and fact-checked
scientific news, by using only the propagation graph of the
post, as it would be difficult to manipulate by misinforma-
tion creators. In particular, we evaluate this in two specific
moments of content propagation:

1. Early Stage, meaning that classification of the type
of post happens as early as possible during its prop-
agation phase;

2. Final Stage, meaning that classification happens
when the post already stopped propagating (within
the considered timespan of the employed dataset),
and its cascade is complete.

These two scenarios are of particular interest, both from
a research and a practical points of view. Indeed, be-
ing able to issue automated warnings as early as possible
about potential misinformation could help in reducing their
spread (Friggeri et al. 2014). On the other hand, still being
able to perform such a classification when the post already
propagated might serve as a warning in order to prevent its
further diffusion. Moreover, retroactively flagging old posts
as potentially fake could help training users to discriminate
between fact-checked and dubious information, a major di-
rection in the fight against misinformation (First Draft News
Coalition 2016).

To investigate these two scenarios, we set up two different
experiments, modeled as binary classification tasks, where
the two classes are conspiracy and science. We describe
them in the following.

Early Stage Classification. In this scenario, we have ac-
cess only to users’ interactions with a post up to a certain
time t + δ, after it has been created at time t, (e.g., up
to after two hours after creation). With this scenario, we
simulate how OSNs such as Facebook could try to continu-
ously detect misinformation content during its propagation.
Therefore, for each post p, given its creation time t, we ex-
tract features from the partial propagation graph Gpt+δ , and
from the evolution of properties of the propagation graph be-
fore the current time t+ δ (discussed further in Section 4.2).
We use 30 minutes steps, as this proved to be a good trade-
off between the granularity of the analysis and the number
of intervals to consider. We stop at two days (2880 min-
utes, or 96 time steps) after the publication time of a post,
because we observed that most of the interactions happen
in this period (> 95%). Finally, we compare the perfor-
mance of different well-known classifiers, namely Random
Forests (Ho 1995), Linear Discriminant Analysis (Izenman
2013), and Multi-Layer Perceptron (Haykin 1998), for each
δ ∈ [30, 60, ..., 2880], in a cross-validation scheme.

Final Stage Classification. In this scenario, we suppose
that a post already stopped its propagation, and no new in-
teractions with it have been observed for a long time. We de-
scribe the final propagation graph Gp of post p with a set of
high-level and topological features, that we describe in more
detail in Section 4.2. We then compare the performance of
different classifiers, in a cross-validation scheme.

4.2 Feature Extraction
To extract information from the different propagation graphs
Gp and Gpt , we identify three possible categories of features:
(i) high-level properties of the content propagation, (ii) topo-
logical properties of the propagation graphs, (iii) evolution



properties of the content propagation. We use feature sets
(i), (ii), and (iii) considering the evolution after two days, in
the Final Stage Classification scenario. We only use feature
set (iii), in the Early Stage Classification scenario, because
the other features characterize only Gp, but not Gpt . We sum-
marize these different features in Table 1, along with their
formal definitions, and describe them in the following.

High Level Properties. These features represent high-
level properties of the complete propagation cascade repre-
sented by Gp〈V p, Ep〉.

Some features represent very general properties related to
the virality of the content. These general properties are the
lifetime of the cascade, measured as the distance in minutes
from the first to the last captured interaction with the con-
tent; the size of the cascade in terms of number of nodes
(users who interacted with the content); the number of total
interactions; and the time required for the cascade to reach
its 90% total interactions (referred to as 90% interactions
time).

Other features derived from high level properties attempt
to capture different possible types of interaction with the
content. Friendships ratio is defined as the proportion of
edges whose type is “friendship” over the total number of
edges and represents the number of times, in proportion, that
the post potentially propagated among friends, rather than
directly from the seed node. Indeed, if no friends of users
interact with some content, its potential propagation graph
only contains edges with the seed page. Interactions ratio,
instead, represents the average exposure to interactions from
friends of users with the content. Since vertices are interact-
ing users, and edges are potential interactions, higher values
of this metric mean lower exposure (little interaction with
the content by one’s friends). These features are motivated
by the observation that it is possible that the users’ fruition
of different types of content is different, with some types of
content being interacted directly from the source, and other
types of content relying more on word-of-mouth propaga-
tion (Romero, Meeder, and Kleinberg 2011).

Topological Properties. We also select as features some
well-known properties of the topological structure of graphs.
These properties are commonly used to learn information
about graph structures, and have been applied in solving
problems such as link analysis and prediction (Al Hasan
et al. 2006), and especially in cascade and virality predic-
tion (Hong, Dan, and Davison 2011; Cheng et al. 2014). The
average vertex degree feature represents the average number
of possible propagation edges for the content at any given
hop. Higher values of this metric indicate the presence of
interacting users greatly exposed to the content, or able to
influence many of their social friends. The global clustering
coefficient (Holland and Leinhardt 1971), a measure of the
density of connections of graphs, is another indication of
whether the possible propagation paths are generated from
interactions between friends, or directly with the seed page.
Assortativity coefficient, defined as the degree correlation
between pairs of linked nodes (Newman 2002), can measure
how friends influence each others in interacting with con-
tent on the social network. Average path length (Fronczak,

Fronczak, and Hołyst 2004), also known as Wiener index,
gives us indications of the virality of the content, in terms of
distance of propagation from the seed page. Long cascad-
ing news, reshared many times from interacting friends, will
exhibit a longer average path length than news whose inter-
actions happened mostly from the seed node. Finally, the
diameter of a graph, defined as the longer shortest path be-
tween any pair of nodes of the graph, indicates the spreading
distance of posts.

Evolution Properties. These features represent evolution
properties over time of the post p propagation, from its cre-
ation time t to a subsequent point t + δ. To compute these
features, we construct the propagation graphs at different
time steps Gt+30, ...,Gt+δ . We then calculate the value of
three of our high-level features for each graph at each time
step: (i) Friendships Ratio, (ii) Size, and (iii) Interactions
Ratio. For each of these high-level feature, we obtain a time
series

v1, v2, ..., vδ/30,

on which we compute a set of well-known statistical mea-
sures that represent the evolution over time of the se-
ries (Wiens, Horvitz, and Guttag 2012). Namely, these sta-
tistical measures are the mean, standard deviation, linear
weighted mean and quadratic weighted mean, average ab-
solute change, and maximum of the series. These measures
capture the evolution of the time series up to the current time
and, especially, do not require us to know the whole time se-
ries, an important property for our Early Stage classification
experiment. We decided to derive time-series only for the
three high-level features listed above. Indeed, we argue that
the other features either have no temporal properties (e.g.,
lifetime, time to reach 90% interactions), evolve in similar or
predictable ways (e.g., diameter), or describe behaviors that
are already captured by the selected time series. Moreover,
evolution properties of time series would be especially used
in Early Stage classification. Social networks need to per-
form feature extraction on this scenario at every time step:
features derived from topological properties are too compu-
tationally expensive (e.g., diameter calculation runs in more
than quadratic complexity w.r.t. the number of vertices) to
be continuously calculated for each new post.

5 Results
In this section we present the results of our experiments. In
particular, we first discuss evaluation metrics and baseline
(Section 5.1). We then report the results on the Early Stage
Classification scenario (Section 5.2), and the results on the
Final Stage Classification scenario (Section 5.3).

5.1 Evaluation Metrics
As usual in binary classification, the classification base-
line is the performance of a random classifier on the data:
without any information regarding the propagation graph, it
guesses either science or conspiracy with equal probability,
as a coin flip. The goal of our experiments is to show that
structural features do not help more sophisticated models in
improving the baseline performance.



Feature Name Description

High Level Properties

Size Number of edges of the graph |Ep|

Friendships Ratio Proportion of edges whose type is “friendship”: |{e ∈ Ep | e.type = “friendship”}|/|Ep|

Interactions Ratio Number of vertices over the number of edges: |V p|/|Ep|

Lifetime Time passed between post creation time and the last interaction time: maxe∈Ep e.time− t

90% Interactions Time Time required for the content to reach its 90% number of interactions

Topological Properties

Average Vertex Degree Average possible propagation paths of the post: 2 · |Ep|/|V p|

Clustering Coefficient Ratio of connected triplets of nodes

Assortativity Coefficient Degree correlation between pairs of linked nodes

Average Path Length Average length of the shortest paths

Diameter Length of the longest shortest path between any pair of vertices

Evolution Properties

Mean 1
n

∑n
i vi

Linear Weighted Mean 2
n(n+1)

∑n
i i · vi

Quadratic Weighted Mean 6
n(n+1)(2n+1)

∑n
i i

2 · vi

Standard Deviation
√∑n

i
(vi−v̄)2

n , where v̄ is the mean of v

Average Absolute Change 1
n

∑n−1
i |vi − vi+1|

Maximum max
i

vi

Table 1: Description and formal definition of features we use on our Final Stage and Early Stage classification experiments.

Unfortunately, our dataset is highly imbalanced (com-
posed by 89491 news for conspiracy, and only 22650 news
for science). With such imbalance, standard evaluation met-
rics (such as precision, accuracy, and recall) can be mislead-
ing, because they do not account for the uneven class fre-
quencies. Even computing averages of these metrics using
weights based on the class frequencies does not fit our in-
tentions of consistently comparing our results with the fixed
baseline.

To deal with this imbalance, we performed two distinct
experiments: (i) we consider only metrics that take imbal-
ance into account and use the full dataset, and (ii) we con-
sider meaningful metrics with balanced dataset, obtained un-
dersampling the original dataset.

To perform (i), as metrics we use Area Under Receiver
Operating Curve (AUC) (Hanley and McNeil 1982), and Co-
hen’s Kappa (Cohen 1968) (scaled into the interval [0, 1]).
Indeed, the value of these metrics for a random classifier is
exactly 0.5, which we use as baseline. In this way, we can
use the full dataset and still be able to compare our results

with the baseline.
To perform (ii), we undersampled the most frequent class

(i.e., conspiracy). We therefore extracted exactly 22650 con-
spiracy samples from the full dataset, and created a subsam-
ple with perfectly balanced classes. To account for possible
biases caused by the undersampling, we repeated the pro-
cess several times, and averaged the outcomes. Using per-
fectly balanced datasets, we can evaluate precision, recall,
accuracy, and F1-score values of our classifiers. Indeed, the
value of these metrics for a random classifier on balanced
data is exactly 0.5, which we use as baseline.

Hereafter, if not differently specified, the metrics that re-
quire a positive class (such as precision, recall, and F1-
score) use conspiracy as the positive class, and science as
the negative one.

5.2 Early Stage Classification
To evaluate this scenario, we recall that we used a total
of 18 features. We then followed the methodology ex-
plained in Section 4.1, and evaluated three separate clas-



sifiers (namely, Linear Discriminant (LD), Random Forest
(RF), Multi-Layer Perceptron (MLP)) at every 30 minutes
time step. As discussed, we first evaluated AUC and Cohen’s
Kappa of these classifiers on the full, unbalanced dataset.
We then evaluated precision, recall, and accuracy of these
classifiers on undersampled balanced datasets.

Figure 2 reports the AUC and the Cohen’s Kappa metrics,
on a 5-fold cross-validation scheme, at different time steps
after the original post is published. We can see that evolu-
tion properties of the propagation graph do not help signif-
icantly our classifiers. Indeed, the curves are close to the
random classification baseline (dotted horizontal line), and
far from perfect classification (i.e., 1.0). Cohen’s Kappa lies
almost exactly on the random classification baseline, sug-
gesting that the classification performance is almost random.
Using AUC, it is possible to set good classification thresh-
olds, slightly improving the performance. MLP performs
slightly better than RF and LD, and we can observe that re-
sults do not change significantly after a few hours of analy-
sis. However the outcome remains unsatisfying (i.e., AUC
under 0.6 for each classifier at each time step).
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Figure 2: Early Stage Classification scenario, AUC and Co-
hen’s Kappa, as a function of elapsed time.

Figure 3 reports the F1-score obtained on the undersam-
pled balanced dataset, on a 5-fold cross-validation scheme,
averaged over ten repetitions of the undersampling proce-
dure afterwards. Figure 3 further confirms the findings high-
lighted in Figure 2: classifiers are not able to leverage the
evolution properties to discriminate between science and
conspiracy. In fact the F1-score curve, after a slight incre-
ment during the first 10 hours, stabilizes relatively close to
the baseline, and remains below 0.65 throughout the whole
48 hours timespan.

5.3 Final Stage Classification
To evaluate this scenario, we recall that we used a total of 28
features with three distinct classifiers: Linear Discriminant
(LD), Random Forest (RF), Multi-Layer Perceptron (MLP).
Again, we first evaluated the unbalanced dataset, and then
evaluated the undersampled balanced datasets.
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Figure 3: Early Stage Classification scenario, classification
F1-score, as a function of elapsed time.

Figure 4 reports average AUC and Cohen’s Kappa on a
5-fold cross-validation scheme, on the full dataset. The dot-
ted horizontal line shows the baseline performance of ran-
dom classification. Indeed, we observe that our classifiers
do not significatively improve the baseline, with the metrics
remaining below 0.75. LD performance is poorer than RF
and MLP, probably due to the simplicity of the classification
tool.
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Figure 4: Final Stage Classification scenario, AUC and Co-
hen’s Kappa.

In Figure 5 we report the ROC curve, on a 5-fold cross-
validation scheme, on the full dataset. From Figure 5 we
can observe that no classifier can reach a good tradeoff be-
tween true positive rate and false positive rate. Indeed, the
curves are relatively close to the baseline (diagonal dotted
line), meaning that, as the decision threshold changes, lots
of samples are misclassified.

Table 2 reports several metrics computed on the under-
sampled balanced dataset. Results are averaged on a 5-fold
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Figure 5: Final Stage Classification scenario, ROC curves.
For visual clarity, we linearly interpolated the points in the
curves, and plotted markers at each 0.02 step in the false
positive rate.

cross-validation scheme, and then over ten repetitions of the
undersampling procedure. These metrics show that even if
the classifiers are able to improve the baseline slightly, they
can not reach good performance.

Classifier Precision Recall Accuracy F1 score

LD 0.578 0.523 0.570 0.549

RF 0.654 0.742 0.675 0.695

MLP 0.659 0.688 0.665 0.672

Table 2: Final Stage Classification scenario, performance of
the classifiers.

6 Conclusions
Early detection of misinformation plays a crucial role in so-
cial networks. In this paper, we analyzed the difficulty of
discerning conspiracy posts from scientific posts on Face-
book. We focused on using only structural features of con-
tent propagation, because they cannot be easily manipulated
by misinformation creators. Our results show that misinfor-
mation classification during its early propagation stage with
these features is unsuccessful, suggesting that the spreading
dynamics captured by our features are independent on the
type of content. Furthermore, even considering the cascade
at the end of content propagation does not help: also in this
case, the improvement provided by a classifier over random
coin flips is negligible.

Our findings suggest that in Facebook users interact with
different types of content in similar ways, reinforcing the
hypothesis of echo chambers (Del Vicario et al. 2016). In-
side these chambers, strongly polarized by topic (Bessi et
al. 2015b), content propagation exhibits very similar struc-
tural properties, that are therefore less useful in content clas-

sification. These results highlight the necessity of includ-
ing content-related features, or polarization metrics, in fu-
ture analysis (i.e., whether particular users and their echo
chambers are more polarized towards one type of content).
Unfortunately, misinformation creators can easily control
content-related features, in order to avoid algorithmic detec-
tion. Moreover, user polarization can be clearly understood
from past users’ behaviors, but it takes time to understand
polarization of new users. Hence, automatic detection of
fake news remains an open challenge.

Future Work. The employed dataset has some limita-
tions, bound to the Facebook API: (i) it only contains Face-
book public information; (ii) it does not contain the times-
tamp of likes, one of the most common interactions; and
(iii) it does not always provide information about whether
interaction with content happened because of interactions of
user’s friends. We would like to analyze finer-grained data,
that takes these factors into account, because it could lead to
improved results.

In our analysis, we identified a set of features and used
them in well-known classifiers. Our experiments were ex-
tensive, but not complete. However, we expect that the use
of different models would not provide significant improve-
ment. This claim needs to be further validated, possibly also
using more recent datasets.

In the future, we also plan to test different methods for
misinformation classification, based on user polarization
and content-related features, to investigate whether these in-
formation could help propagation properties, and overcome
the difficulty of this problem.
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