
Accepted Manuscript

Reversibility in session-based concurrency: A fresh look

Claudio Antares Mezzina, Jorge A. Pérez

PII: S2352-2208(16)30063-3
DOI: http://dx.doi.org/10.1016/j.jlamp.2017.03.003
Reference: JLAMP 174

To appear in: Journal of Logical and Algebraic Methods in Programming

Received date: 25 July 2016
Revised date: 2 March 2017
Accepted date: 15 March 2017

Please cite this article in press as: C.A. Mezzina, J.A. Pérez, Reversibility in session-based concurrency: A fresh look, J. Log. Algebraic
Methods Program. (2017), http://dx.doi.org/10.1016/j.jlamp.2017.03.003

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing
this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is
published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.jlamp.2017.03.003

Reversibility in Session-Based Concurrency: A Fresh Look

Claudio Antares Mezzinaa, Jorge A. Pérezb

aIMT, School for Advanced Studies Lucca, Italy
bUniversity of Groningen & CWI, Amsterdam, The Netherlands

Abstract

Much research has studied foundations for correct and reliable communication-centric software
systems. A salient approach to correctness uses verification based on session types to enforce

structured communications; a recent approach to reliability uses reversible actions as a way of

reacting to unanticipated events or failures. In this paper, we develop a simple observation: the

semantic machinery required to define asynchronous (queue-based), monitored communications

can also support reversible protocols. We propose a framework of session communication in which

monitors support reversibility of (untyped) processes. Main novelty in our approach are session
types with present and past, which allow us to streamline the semantics of reversible actions. We

prove that reversibility in our framework is causally consistent, and define ways of using monitors

to control reversible actions.

Keywords: Concurrency, Reversible Computation, Behavioral Types, Process Calculi

1. Introduction

Much research has studied foundations for reliable communication-centric software systems, cf. [1,

2, 3, 4]. Our interest is in programming models that support the analysis of message-passing pro-

grams building on foundations offered by core calculi for concurrency. While early such models

focused on (static) verification of protocol correctness, as enforced by properties such as safety,

fidelity, and progress (deadlock-freedom), extensions of the basic models with external mecha-

nisms have been proposed to enforce protocol correctness even in the presence of unanticipated

events, such as failures or new requirements. Such mechanisms include, e.g., exceptions, interrup-

tions and compensations [5, 6, 7], adaptation [8], and monitors [9]. They also include reversible
semantics [10, 11, 12], the main topic of this paper.

Comprehensive approaches to correctness and reliability, which enforce both kinds of require-

ments, seem indispensable in the principled design of communication-centric software systems.

As these systems are typically built using heterogeneous services whose provenance/correctness

cannot always be certified in advance, static validation techniques (such as type systems) fall short.

Correctness must then be guaranteed by mechanisms that (dynamically) inspect the (visible) behav-

ior of interacting services and take action if they deviate from prescribed communication protocols.

Preprint submitted to Elsevier March 16, 2017

In this work, we aim at uniform approaches to correct and reliable communicating systems. We

address the interplay between concurrent models of reversible computation [13, 14] and session-
based concurrency [1]. In reversible models of concurrency the usual forward semantics is coupled

with a backward semantics that enable to “undo” process actions. In this setting, a central correct-

ness criterion is causal consistency, which ensures that a computational step is reversed only when

all its causes (if any) have already been reversed. In this way, causally consistent reversibility leads

to states of the system that could have been reached by performing forward steps only. In session-

based concurrency, concurrent interactions between processes can be conceptually divided in two

phases: first, processes requesting/offering protocols seek a compatible partner; subsequently, the

(compatible) partners establish a session and interact following the stipulated protocols. Session

protocols are resource-aware: the first phase defines non-deterministic interactions along unre-

stricted names; the second one uses deterministic interaction sequences along linear names.

Following the seminal work of Danos and Krivine [13], a key technical device in formalizing

reversible semantics are memories: these are run-time constructs that make it possible to revert

actions. Memories are the bulk of a reversible model; their definition and maintenance requires

care, as demonstrated by Tiezzi and Yoshida [10, 12], who were the first to adapt known approaches

to reversible semantics [13, 15] into session-based concurrency. Using different kinds of memories

(recording events for actions, choices, and forking), their work shows that the standard (untyped)

reduction semantics for the session π-calculus satisfies causal consistency.

While insightful, the route to reversibility in session-based concurrency taken in [12] is some-

what unsatisfactory, for session types do not play any role in the underlying (reversible) semantics

nor in the proof of causal consistency. If one considers that session types offer a compact abstrac-

tion of the communication behavior of the channels/names in a process, then it is natural to think

of them as auxiliary mechanisms in the definition of forward and backward reduction semantics.

That is, the communication structures given by session types already contain valuable information

for enabling causally consistent reversible semantics. If one further considers that once a session

is established processes behave deterministically, as dictated by their session protocols, then it is

natural to expect that reversibility and causal consistency in session-based concurrency arise more

orderly than in untyped models of concurrency, such as those in, e.g., [13, 14].

Following these considerations, in this paper we investigate to what extent session types can

streamline the definition of reversible, causally consistent semantics for interacting processes. Our

main discovery is that external mechanisms typically used to support asynchronous (queue-based)

and monitored semantics in session-based concurrency (cf. [16, 17, 18, 19, 20]) can also effectively

support the definition of reversible sessions. In such semantics, monitors are run-time devices that

register the current state of the session protocols implemented in and executed by a process. We

explore a fresh approach to reversibility by using monitors as memories. The key idea is simple:

we exploit the type information in monitors to define the reversible semantics of session processes.

Since these types enable and guide process behavior, we may uniformly define forward and back-

ward reductions by carefully controlling such types and their associated run-time information.

Contributions. The main contributions of this paper are the following:

2

• We define a fresh approach to reversible semantics in session-based concurrency by exploit-

ing monitors as uniform memories that enable and support backward communication steps.

• We show that the reversible semantics in our approach is causally consistent, directly ex-

ploiting the disciplined interaction scenario naturally induced by session-based concurrency.

• We show that our approach can be extended to enforce controlled reversibility by using

enriched session types (rather than explicit process constructs) for guiding process behavior.

To highlight the merits of our approach, we rely on a core process model without recursion nor

asynchrony, which are important in modeling but largely orthogonal to our reversible semantics.

These and other features can be accommodated in our approach while retaining its essence.

In our view, the use of monitors for defining reversible semantics has at least two signifi-

cant implications. First, it is encouraging to discover that monitor-based semantics—introduced

in [16, 17, 18] for asynchronous communications with events and used in [19, 20] to define run-time

adaptation—may also inform the semantics of reversible protocols. Monitors have also been used

for enforcing security properties (such as information flow [21, 22]) and for assigning blame to de-

viant session processes [9]. Therefore, monitor-based semantics encompass an array of seemingly

distinct concerns in structured communications. Second, we see our work as a first step towards

validation techniques for communication and reversibility based on run-time verification. Session

frameworks with run-time verification have been developed in, e.g., [23, 6]. As these works do

not support reversibility, our work may lead to enhancements for their dynamic verification tech-

niques. Indeed, since the framework in [23, 6] introduces constructs for delimiting interruptible

sub-protocols, one could re-use such constructs (and their underlying semantic mechanisms, such

as type memories) to safely enable reversible actions within distributed protocols.

Outline. This paper is structured as follows. In the following section we motivate further the

key ideas of our development. Section 3 presents the syntax and operational semantics of our

process model with sessions and reversibility, and illustrates it via a running example. The main

property of our model, causal consistency (Theorem 4.1), is established in Section 4. Section 5

discusses an extension of our framework to enforce controlled reversible actions. Other extensions

and enhancements (including asynchrony, delegation, and recursion) are discussed in Section 6.

Section 7 elaborates on related works. Section 8 closes the paper by collecting some concluding

remarks and highlighting some directions for future work. The appendix (Appendix A) collects

omitted proofs.

This paper is a revised and substantially extended version of the workshop paper [24] and the

short communication [25]: here we offer full technical details, new examples, and an extended

account of related works. In particular, Section 3 has been streamlined and extended to handle

reversible labeled choices, not supported in [24]. Moreover, the content of Sections 4, 5, and 6 is

new to this paper.

3

2. Overview

Our approach can be seen as an optimization of the reduction semantics for sessions. In this

section, we illustrate it via approximate reduction rules, which omit unimportant notational details.

In reduction semantics for session-based concurrency, such as those in [16, 17, 18], the reduc-

tion rule for intra-session communication relies on monitors containing session types (S, T, . . .)
and message queues (h̃1, h̃2, . . .):

s〈v〉.P ‖ s̄�!U.S1 · h̃1� ‖ s(x).Q ‖ s�?U.S2 · h̃2� −→ P ‖ s̄�S1 · h̃1� ‖ Q ‖ s�S2 · h̃2, v� (1)

In (1), processes s〈v〉.P and s(x).Q denote output and input along session endpoints s̄ and s,

respectively. (Notice that s̄ and s are dual endpoints.) Thus, the reduction rule above concerns

four elements that interact under parallel composition (denoted by ‘‖’): input and output processes

and their associated monitors. Also, the session type !U.S1 (resp. ?U.S2) abstracts a protocol that

decrees the output (resp. input) of a value of type U that is followed by a protocol represented by

session type S1 (resp. S2). Given an endpoint s, process s�S · h̃� is a monitor, where S and h̃ are

the session type and message queue for s, respectively. Observe how the communicated value v is

placed in the queue of endpoint s; a subsequent synchronization between the monitor and Q (not

shown) should lead to the expected resulting process (i.e., Q{v/x}).

In the approach of [16, 17, 18], reduction rules use session types to enable communication

actions: a reduction step can only occur if the actions (in the processes) correspond to the intended

protocols (in the monitor types). After the synchronization is realized, portions of both processes

and monitor types are consumed. This way, reduction steps have an effect on both processes and

the session types in the monitors. Our approach consists in keeping, rather than consuming, these

monitor types. For this to work, we need to distinguish the part of the protocol that has been

already executed (its past), from the protocol that still needs to execute (its present). We thus

introduce session types with present and past: the type S ˆT says that the communication actions

abstracted by S are past protocol actions, whereas actions in T are present steps. Using this insight,

we may refine (1) as follows:

s〈v〉.P ‖ s̄�T ˆ !U.S1 · h̃1� ‖ s(x).Q ‖ s�T ′ ˆ ?U.S2 · h̃2��
P ‖ s̄�T.!U ˆS1 · h̃1� ‖ Q ‖ s�T ′.?U ˆS2 · h̃2, v� (2)

This is a forward reduction rule, denoted in the sequel by�. In monitors s̄�T ˆ !U.S1 · h̃1� and

s�T ′ ˆ ?U.S2 · h̃2�, we write T and T ′ to denote past protocol actions. The monitors rely on type-

checking to enable forward and backward computations; they may also implement asynchronous

communication. Observe that we use the cursor ˆ to preserve output and input protocol actions

(noted !U and ?U , respectively). Notice also that considering this enhanced form of session types

in monitors does not affect the syntax or semantics of processes.

Based on (2), we may state a corresponding backward reduction rule, denoted in the sequel

by�, which reverts the synchronization at the level of processes, types, and message queues:

P ‖ s̄�T1.!U ˆS1 · h̃1� ‖ Q ‖ s�T2.?U ˆS2 · h̃2, v��
s〈v〉.P ‖ s̄�T1 ˆ !U.S1 · h̃1� ‖ s(x).Q ‖ s�T2 ˆ ?U.S2 · h̃2� (3)

4

We stress that rules (2) and (3) are an approximate illustration of our approach. For instance, in

our reversible operational semantics, the forward reduction rule for communication records also

the input parameter x, which is necessary in the reversible rule to reinstate the original input prefix.

One main technical contribution of this work is a core framework for session communication

and reversibility whose monitored semantics follows the spirit of rules (2) and (3). In addition to

input-output behaviors, we consider labeled choices, typical of session-based concurrency, which

are expressed at the level of processes by branching and selection constructs (external and inter-

nal choices, respectively): process s � {l1:P1, · · · , ln:Pn} offers n alternative behaviors (branches)

P1, . . . , Pn, identified by pairwise distinct labels l1, . . . , ln; this process is expected to synchronize

with a process s � lj .Q (with j ∈ 1..n), which performs a selection. Branching and selection pro-

cesses are governed by session types &{l1:S1, · · · , ln:Sn} and ⊕{l1:S1, · · · , ln:Sn}, respectively.

We illustrate the usual (forward) reduction rule for labeled choice (adapted to a monitored

semantics) by means of an example:

s̄ � l1.P ‖ s̄�⊕{l1:S1 , l2:S2} · h̃1� ‖ s � {l1 : Q1 ; l2 : Q2} ‖ s�&{l1:T1 ; l2:T2} · h̃2� −→
P ‖ s̄�S1 · h̃1� ‖ Q1 ‖ s�T1 · h̃2, l1� (4)

In (4), process s̄ � l1.P selects the branch labeled by l1 on session s, while process s � {l1 :
Q1 ; l2 : Q2} waits for a synchronization on s that selects either l1 or l2. One effect of such a

synchronization is that the two processes evolve into P and Q1, respectively, and that the message

involved (i.e., the label l1) is stored into the queue of the process on the right. Another effect of the

synchronization is both label l2 and process P2 are discarded. In this case, our approach consists

in using the static choice contexts and type contexts, which we sketch in the following rule:

s̄ � l1.P ‖ s̄�⊕{l1:S1 , l2:S2} · h̃1� ‖ s � {l1 : Q1 ; l2 : Q2} ‖ s�&{l1:T1 ; l2:T2} · h̃2��
P ‖ s̄�⊕{l1: ˆS1 ; l2:S2} · h̃1� ‖ s � {l1 : Q1 ; l2 : 〈Q2〉} ‖ s�&{l1: ˆT1 ; l2:T2} · h̃2, l1� (5)

Above, process s � {l1 : Q1 ; l2 : 〈Q2〉} uses a static choice context to indicate that the current

running process is Q1, and that process Q2 has been discarded by a previous choice. That is, Q2

in 〈Q2〉 can be seen as living in an inactive context in which it cannot execute; keeping it is useful

just to maintain the state of the process before the choice. The effect of the selection is recorded

also at the level of session types, types &{l1: ˆT1 ; l2:T2} and ⊕{l1: ˆS1 ; l2:S2}, respectively; this

way, we ensure consistent information between processes and types, useful to rebuild them in a

reversible reduction. Since now the cursor ˆ is used within a particular branch of types for labeled

choice, the session types with present and past adopt a more general structure, which is captured

by type contexts.

Using these new elements, in the backward rule for labeled choice both processes within inac-

tive contexts and its associated session types are restored:

P ‖ s̄�⊕{l1: ˆS1 ; l2:S2} · h̃1� ‖ {l1 : Q1 ; l2 : 〈Q2〉} ‖ s�&{l1: ˆT1 ; l2:T2} · h̃2, l1�
� s̄ � l1.P ‖ s̄�⊕{l1:S1 , l2:S2} · h̃1� ‖ s � {l1 : Q1 ; l2 : Q2} ‖ s�&{l1:T1 ; l2:T2} · h̃2� (6)

5

In our framework, session processes occur within configurations, denoted
〈
P · σ · ũ〉

δ
, where P

is a session process, σ denotes its state, ũ is a list that collects information on the actions already

performed, and δ is a unique identifier. Notice that while state conveniently implements substitu-

tions, monitors handle both communication and reversibility, using session types with present and

past, as motivated above. We support session establishment and the consistent use of sent values

and open variables in the state (cf. v and x in (2) and (3)). Our semantics enjoys the so-called

Loop Lemma [13, 10, 12] (Lemma 3.2, Page 17), which offers a basic consistency guarantee for

the interplay of forward and backward actions, and causal consistency (Theorem 4.1, Page 22),

which characterizes admissible rollbacks (i.e., sequences of backward steps) which are consistent

and flexible.

3. Syntax and Semantics

Here we present our framework of session processes with monitored, reversible semantics. We

introduce its syntax and semantics, illustrate it via an example, and establish its basic properties.

We assume the following denumerable infinite mutually disjoint sets: the set S of session
names (or endpoints), ranged over by s, r, . . .; the set C of channels, ranged over by a, b, . . .; the

set of variables X , ranged over by x, y, The set N = S ∪ C is called the set of names; we

use m,n, . . . to range over N . We also assume a set of labels L, ranged over l, l′, . . ., which will

be used to denote labeled choices. We assume a total bijection over S , noted ·, relating endpoints

with their duals such that, for any s ∈ S , we have s �= s and s = s. We use k, k′ (and their

duals) to range over S ∪X . Moreover, we use õ to denote a finite sequence of objects (e.g., names)

o1, . . . , on, and ε to denote the empty sequence. We sometimes treat sequences as a set or as an

ordered list. To define and handle configurations (see below), we shall require named sequences:

given a sequence of session names s̃ and a κ ∈ N , we say that κ : s̃ is a named sequence. We write

δ, δ′, . . . to denote finite, possibly empty named sequences of session names. Given δ1 = κ1 : s̃1
and δ2 = κ2 : s̃2, we write δ1 ∩ δ2 to stand for {κ1, s̃1} ∩ {κ2, s̃2}.

3.1. Syntax
Main ingredients in our approach are configurations, processes, and protocol types, whose

syntax is given in Figure 1. We explain these ingredients next.

Configurations and Processes. The syntax of configurations includes the empty configuration 0,

the running process
〈
P · σ · ũ〉

δ
, a monitor s�S · x̃�, the name restriction νn.M , and parallel

composition M ‖ N . Running processes and monitors are central to our approach:

• A running process
〈
P · σ · ũ〉

δ
is univocally identified by δ, the named sequence of session

endpoints occurring in P . The local store σ is a list of pairs of the form {x, ṽ} (see Def. 3.5);

the list ũ collects the subjects of actions already performed by P .

• A monitor s�S ·x̃� is identified by the session name s, contains a session type S that describes

the structured behavior of s and a list x̃ containing all the variables used by the process. As

we will see, for each monitor s�S · x̃1� there will be a dual monitor s�T · x̃2�.

6

(names) n,m ::= a, b | s, s

(subjects) u ::= n | k

(expressions) e ::= a | v | li | op(e1, . . . , en)

(configurations) M,N ::= 0 | 〈
P · σ · ũ〉

δ
| s�H · ẽ� | νn.M | M ‖ N

(processes) P,Q ::= u(x : S).P | u〈x : S〉.P | k〈e〉.P | k(x).P |
k � l.P | k � {l1 : P1, l2 : P2} | νa.P | 0

(message types) U ::= bool | int | . . .

(actions) α, β ::= !U | ?U

(session types) S, T ::= end | α.S | ⊕ {l1:S1 , l2:S2} | &{l1:S1 , l2:S2}
(history types) H,K ::= ˆS | S ˆ | α1. · · · .αn. ˆS | ⊕ {li:Si , lj :Hj} | &{li:Si , lj :Hj}

Figure 1: Syntax of Configurations, Processes, and Types.

Notice that keeping the store σ in the process is useful when values can be shared among different

sessions implemented in the process. This is the reason why the store is kept in the process and not

in the monitor of a session. As it will become clear later on, the list ũ in the running process and

the list x̃ in the monitor will be used to record previously performed actions and reconstruct the

process structure accordingly.

The syntax of processes follows standard lines: we consider the idle process 0, restriction

over channels, as well as complementary prefixes for session establishment (noted u(x : S).P
and u〈x : S〉.Q, where S is a session type) and prefixes for intra-session communication, namely

k(x).P and k〈e〉.P (input and output of expressions) and k � l.P and k � {l1:P1, l2:P2} (selection

and branching). We consider binary labeled choice for simplicity; the extension to the n-ary case

is unsurprising. We write U to denote the set of possible basic values (e.g., integers and booleans);

this way, V = X ∪ U is the set of values that processes can exchange. We use v, w (and their

decorated versions) to range over V .

We will write P and M to indicate the set of processes and configurations, respectively. We call

agent an element of the set A = M∪P . We let P,Q (and their decorated versions) to range over

P; also, we use L,M,N to range over M and A,B,C to range over A. In a formula/statement

involving agents in A we silently assume that all of them are processes or are configurations, but

not both.

Types. The syntax of types assumes a set of message types (or sorts) ranged over U . We also

assume that elements in U include all possible values belonging to sorts.

7

In essence, the syntax of types S corresponds to (finite) binary session types [1]: we consider

constructs for communication (input and output) and labeled choice (branching and selection). The

type !U.S indicates that the owner of the monitor may send a value of type U and then proceed

with the behavior prescribed by S. Similarly, the type ?U.S says that the owner of the monitor

may receive a value of type U , and then proceed with a behavior described by S. A monitor

with selection type ⊕{l1:S1 , l2:S2} may either select label l1 and proceed as S1, or select l2 and

proceed as S2. Similarly, the branching type &{l1:S1 , l2:S2} says that the owner of the monitor

may offer both label l1 and then proceed as S1, or offer label l2 and then proceed as S2.

In session types, duality is essential to (statically) ensure action compatibility between partners

(and therefore, to guarantee absence of communication errors). We rely on a standard definition:

Definition 3.1 (Type Duality). The dual of a session type S, denoted S, is inductively defined as

follows:

!U.S =?U.S ?U.S =!U.S end = end

⊕{l1 : S1 , l2 : S2} = &{l1 : S1 , l2 : S2}
&{l1 : S1 , l2 : S2} = ⊕{l1 : S1 , l2 : S2}

We will write dual(S1, S2) to indicate S1 = S2.

A key novelty in our work is the use of history (session) types, i.e., session types with present
and past. In essence, a history type is a session type enhanced with a separator (or cursor), de-

noted ˆ . This way, a history type of the form S1 ˆS2 indicates that S1 is the past (already executed)

behavior of the associated session, while S2 represents the present behavior (yet to be executed).

History types occur only at run-time; the intent is that each time that the process performs a forward

computation the cursor will be moved forward by one action; as result of a reversible step, it will

be moved backwards by one action.

Intuitively, a history type ˆS describes a protocol whose actions have not been yet executed

(as in, e.g., a just established session); dually, a type S ˆ corresponds to a protocol whose actions

have all been executed. For protocols without labeled choices (as in [24]), history types can be seen

as sequences of actions: type α1. · · · .αn. ˆS is the (intermediate) protocol state in which n > 0
communication actions (input or output) have been already performed, and the protocol abstracted

by S is yet to be executed. For protocols with labeled choices, however, this scheme should be

more general, as cursors need to be injected into labeled branches. Indeed, reversing protocols with

labeled choices requires history types of the form ⊕{li:Si , lj :Hj} and &{li:Si , lj :Hj} (where Hj

is a history type, with i, j ∈ {1, 2} and i �= j), as choices made in selection and branching protocols

must be recorded. Hence, we formulate history types as tree-like structures (see Figure 1).

Before formally presenting the operational semantics, we give some intuitions on the informa-

tion carried by monitors. Consider the following configuration, with s ∈ δ:〈
P · σ · ũ, k〉

δ
‖ s�S.?U ˆT · x̃, x�

8

(E.PARC) A ‖ B ≡ B ‖ A (E.PARA) A ‖ (B ‖ C) ≡ (A ‖ B) ‖ C (E.NILM) A ‖ 0 ≡ A

(E.NEWN) νn.0 ≡ 0 (E.NEWC) νn.νm.A ≡ νm.νn.A (E.NEWP) (νn.A) ‖ B ≡ νn.(A ‖ B)

(E.α) A =α B =⇒ A ≡ B

Figure 2: Structural congruence

By inspecting the history type S.?U ˆT , we know that the last action of the process was an input

of a value of type U ; the information in the lists allows us to infer that the subject and object of the

action were k and x, respectively. That is, the previous shape of the process was k(x).P .

3.2. Operational Semantics
The operational semantics of our calculus is defined via a reduction relation, coupled with a

structural congruence relation; these relations are denoted −→ and ≡, respectively. The former is

defined as a binary relation over configurations, i.e., −→⊂ M×M, while the latter is defined as

a binary relation over processes and configurations, i.e., ≡⊂ P2 ∪M2. We require the following

definition of contexts.

Definition 3.2 (Contexts). Configuration contexts, also called evaluation contexts, are configura-

tions with one hole “•” defined by the following grammar: E ::= • | (M ‖ E) | νn.E. General

contexts C are processes or configurations with one hole •, and are obtained from processes or

configurations by replacing one occurrence of 0 (either as a process or as a configuration) with •.

A congruence on processes and configurations is an equivalence relation R that is closed under

general contexts: P RQ =⇒ C[P]RC[Q] and MRN =⇒ C[M]RC[N]. The relation ≡ is

defined as the smallest congruence, on processes and configurations, that satisfies rules in Figure 2.

In defining the rules we adopt Barendregt’s Variable Convention: if terms t1, . . . , tn occur in a

certain context, then in these terms all bound identifiers and variables are chosen to be different

from the free ones. This explains why in Rule (E.NEWP) there is no check on free names.

A binary relation R on closed configurations is evaluation-closed if it satisfies the inference

rules:

(CTX)
M RN

E[M]RE[N]
(EQV)

M ≡ M ′ M ′RN ′ N ′ ≡ N

M RN

To enable reversible labeled choices, we define the following class of choice contexts:

Definition 3.3 (Choice Context). Choice contexts are processes with one hole, denoted “•”, and

defined by the following grammar:

K,H ::= • | k � {li:〈Qi〉 , lj : K}

9

We use the brackets 〈 · 〉 in context k �{li:〈Qi〉 , lj : •} to explicitly indicate the inactive part of

the process (i.e., the discarded branch). Choice contexts are defined for processes; we also require

a counterpart in the type syntax:

Definition 3.4 (Context Type). Type contexts are types with one hole, denoted “•”, defined by the

following grammar:

T, S ::= • | !U.T | ?U.T | ⊕ {li:Si, lj : T} | &{li:Si, lj : T}

The reduction relation −→ is defined as the union of two relations, the forward and backward
reduction relations, denoted� and�, respectively. That is, −→=� ∪ �. Relations� and�
are the smallest evaluation-closed relations satisfying the rules in Figures 3 and 4. Moreover, we

indicate with −→∗,�∗, and�∗ the reflexive and transitive closure of −→,�, and�, respectively.

Before commenting the reduction relations we need some definitions in place. We first formally

define the store σ present in running processes and the operations on stores.

Definition 3.5 (Local Store). A local store σ is a mapping from variables to an ordered list of

values. Given a store σ, a variable x, and a value v, we define the update, denoted σ[x �→ v], and

reverse update, denoted σ \ x, as follows:

σ[x �→ v] =

{
σ ∪ {x, v} if x �∈ dom(σ)

σ1 ∪ {x, ṽ · v} if σ = σ1 ∪ {x, ṽ}

σ \ x =

{
σ1 if σ = σ1 ∪ {x, v}

σ1 ∪ {x, ṽ} if σ = σ1 ∪ {x, ṽ · v}

The evaluation of name n under a store σ, written σ(n), is the value v if {n, v} ∈ σ or {n, ṽ·v} ∈ σ;

otherwise, it is n itself.

We stress that the store maintains a correspondence between variables and lists of values in

order to enable reversibility. The list represents at a given time the assignment history of the

variable to which it corresponds, with the actual value of the variable being at the top of the list. If

σ(n) = n then n is not a variable.

Remark 3.1 (Store and Explicit Substitutions). One challenge in defining reversible semantics for

processes is how to treat substitutions, since in general a substitution is not a bijective function.

There are at least two possibilities. One may create a copy of a process before applying a substitu-

tion and then replace the process with its copy when reverting the substitution [15]. Alternatively,

one may use a store and mechanisms based on explicit substitutions [26, 27]. The first technique

creates a memory each time a value is substituted; here we implement the second technique, which

is more economical because it just remembers the pair variable/value for each substitution.

We now briefly discuss the rules in Figures 3 and 4:

10

(OPEN)

dual(S, T) s �∈ δ s �∈ δ′ σ1(u) = σ2(u
′)〈

K[u〈x : S〉.P] · σ1 · ũ1
〉
δ
‖ 〈

H[u′(y : T).Q] · σ2 · ũ2
〉
δ′ �

(νs, s).
(〈
K[P] · σ1[x �→ s] · ũ1, u

〉
δ, s

‖ s� ˆS · x� ‖ 〈
H[Q] · σ2[y �→ s] · ũ2, u′

〉
δ′, s ‖ s� ˆT · y�)

(COM)

σ1(k) = s s ∈ δ σ2(k
′) = s s ∈ δ′ σ2(e) = v〈

K[k(x).P] · σ1 · ũ1
〉
δ
‖ 〈

H[k′〈e〉.Q] · σ2 · ũ2
〉
δ′ ‖ s�T[ˆ ?U.S] · ẽ1� ‖ s�S[ˆ !U.T] · ẽ2�

�〈
K[P] · σ1[x �→ v] · ũ1, k

〉
δ
‖ 〈

H[Q] · σ2 · ũ2, k′
〉
δ′ ‖ s�T[?U. ˆS] · ẽ1, x� ‖ s�S[!U. ˆT] · ẽ2, e�

(CHOICE)

σ1(k) = s s ∈ δ σ2(k
′) = s s ∈ δ′ H

′[•] = H[k′ � {lj : 〈Qj〉 , li : •}]〈
K[k � li.P] · σ1 · ũ1

〉
δ
‖ 〈

H[k′ � {lj : Qj , li : Qi}] · σ2 · ũ2
〉
δ′ ‖

s�T[ˆ ⊕ {lj :Sj , li:Si}] · ẽ1� ‖ s�S[ˆ&{lj :Tj , li:Ti}] · ẽ2� �〈
K[P] · σ1 · ũ1, k

〉
δ
‖ 〈

H
′[Qi] · σ2 · ũ2, k′

〉
δ′ ‖

s�T[⊕{lj :Sj , li: ˆSi}] · ẽ1, li� ‖ s�S[&{lj :Tj , li: ˆTi}] · ẽ2�

Figure 3: Operational Semantics: Forward Reduction Semantics (�).

• Rule OPEN is the forward rule for session establishment. It creates two fresh, dual endpoints and

their associated monitors. Each monitor stores a session type; each store records the mapping

between the name of the endpoint and the associated channel. The monitor records the variable

used by the process to refer to the endpoint, while the name on which the session has started

is put on top of the process subject list. The new endpoints are recorded also in the named

sequences δ and δ′. Establishing a new session requires type duality (cf. Definition 3.1) and that

the two processes refer to the same name (cf. condition σ1(u) = σ2(u
′)). Note that, thanks to

Barendregt’s Variable Convention, there is no need to check whether the two endpoints are fresh

in the two contexts K and H.

• Rule OPEN� is the opposite of Rule OPEN. In order to revert a session creation, the rule checks

that the types of the monitors corresponding to the two endpoints on top of the named list are

at their initial position (e.g., ˆS and ˆT). Moreover, the variable lists should contain just one

element each. A further check on the names contained on the top of the subjects lists guarantees

that the reverted session is the right one. Let us note that since the names list δ is ordered, from

a process point the session to be closed correspond to the last opened one (that is the top of

the named list). The rule garbage-collects the two endpoints and their associated monitors, and

restores the prefixes in the processes.

• Rule COM describes intra-session communication. Two running processes can communicate if

11

(OPEN
�)

dual(S, T) σ1(x) = s σ2(y) = s σ1(u) = σ2(u
′)

(νs, s).
(〈
K[P] · σ1 · ũ1, u

〉
δ, s

‖ s� ˆS · x� ‖ 〈
H[Q] · σ2 · ũ2, u′

〉
δ′, s ‖ s� ˆT · y�) �〈

K[u〈x : S〉.P] · σ1 \ x · ũ1
〉
δ
‖ 〈

H[u′(y : T).Q] · σ2 \ y · ũ2
〉
δ′

(COM
�)

σ1(k) = s s ∈ δ σ2(k
′) = s s ∈ δ′〈

K[P] · σ1 · ũ1, k
〉
δ
‖ 〈

H[Q] · σ2 · ũ2, k′
〉
δ′ ‖ s�T[?U. ˆS1] · ẽ1, x� ‖ s�S[!U. ˆS2] · ẽ2, e�
�〈

K[k(x).P] · σ1 \ x · ũ1
〉
δ
‖ 〈

H[k〈e〉.Q] · σ2 · ũ2
〉
δ′ ‖ s�T[ˆ ?U.S1] · ẽ1� ‖ s�S[ˆ !U.S2] · ẽ2�

(CHOICE
�)

σ1(k) = s s ∈ δ σ2(k
′) = s s ∈ δ′ H

′[•] = H[k′ � {lj : 〈Qj〉 , li : •}]〈
K[P] · σ1 · ũ1, k

〉
δ
‖ 〈

H
′[Qi] · σ2 · ũ2, k′

〉
δ′ ‖

s�T[⊕{lj :Sj , li: ˆSi}] · ẽ1, li� ‖ s�S[&{lj :Tj , li: ˆTi}] · ẽ2� �〈
K[k � li.P] · σ1 · ũ1

〉
δ
‖ 〈

H[k′ � {lj : Qj , li : Qi}] · σ2 · ũ2
〉
δ′ ‖

s�T[ˆ ⊕ {lj :Sj , li:Si}] · ẽ1� ‖ s�S[ˆ&{lj :Tj , li:Ti}] · ẽ2�
Figure 4: Operational Semantics: Backward Reduction Semantics (�).

they refer to the same session. The sent value v is obtained by evaluating e under the sender store

σ2. As a result, the store of the receiver is updated with a new value, bound to the read variable:

σ1[x �→ v]. Also, monitor types are moved one step forward, and both read and sent variables

are put on the top of the list in their respective monitors; the same occurs for the session names

which are put in the subjects lists. This way we keep information about the prefixes (noted

k(x).− and k′〈e〉.− in the rule).

• Rule COM� undoes a communication: the sent value (along with the variable used to read it)

is eliminated from the store of the receiving process. The variable list of the monitor keeps

information on which variable to unbound: indeed, it is the variable at the top of this list the

one that has to be eliminated, as we want to revert the input of its associated value. Moreover,

information contained in the subjects list of the processes is used to recover output and input

prefixes. Notice that the information about the kind of prefix to be built again (input or output)

is given by the type of the monitor. A further consequence of undoing a communication is that

the session types are moved one step backward.

• Rule CHOICE is the forward rule for the choice. A choice is made by a running process that

selects a branch (identified by a label li) of those offered by a complementary process in the same

session. Subsequently, the two processes proceed into executing the selected branch, and the

remaining branches (lj in the rule) are discarded. To keep track of these non selected branches,

12

we use static choice contexts (cf. Definition 3.3), inserting process Qj in the brackets 〈 · 〉. As

in the rule for communication, the information needed to restore the selection and branching

prefixes is recorded in the corresponding lists, and the cursors in their types are moved forward

by one position. In this case, this means moving the cursor inside the selected branch.

• Rule CHOICE� undoes a choice. For this reverse step to be enabled, the types of both monitors

have to be in initial position inside the same branch (denoted li in the rule). The two cursors

are moved backwards by one position to the point of the protocol that preceded the choice. The

prefix of the monitored process that performed the selection is restored by using the information

contained in the variable and subject lists. The process that offered the choice reverts it by

enabling again the discarded branch, i.e., the process contained into the brackets 〈 · 〉 is restored.

3.3. Example

We illustrate our approach by means of a simple protocol: a variation of the two buyers proto-
col [2]. The protocol involves three participants: a Buyer, a Seller, and a Buyer’s Friend. Buyer

first sends to Seller the title of a book he is interested in buying. Seller replies with the price of

the book and offers two choices to the Buyer: either to continue with the purchase or to quit the

session. If the Buyer is willing to finalize the purchase, then Seller awaits for additional informa-

tion (shipping address and order confirmation) from Buyer, before providing a delivery date. Once

Buyer receives the price and accepts it, he contacts Friend in order to get a loan and finalize the

purchase.

The set of structured interactions of Buyer with Seller and Friend can be described by the

following session types:

Sa : ?str.!int.&{ok:?str.?int.!cal.end , quit:end} Sb : ?int.!int.end

Above, Sa describes the interaction between Buyer and Seller, from Seller’s perspective; also, Sb

represents the interaction between Buyer and Friend, from Friend’s perspective. We write Ta and

Tb to denote the dual session types of Sa and Sb, respectively.

We now proceed to examine some possible process implementations for Buyer, Seller, and

Friend. The behavior of Buyer may be specified by the following process:

BUYER � a〈z : Ta〉.z〈“dune”〉.z(prc).
if(decide(prc))

then z � ok.b〈w : Tb〉.w〈loan(prc)〉.w(cash).
z〈addr〉.z〈cash〉.z(date).0

else z � quit.0

For simplicity, we have used the process if e thenP elseQ, which has the expected meaning. Al-

though it is not present in the our syntax, it is similar to a labeled choice and its reversible semantics

(forward and backward rules, associated contexts) can be formalized in a straightforward manner.

13

Process BUYER involves the creation of two interleaved sessions: the first one is established with

the prefix a〈z : Ta〉, which explicitly declares the protocol to be executed with Seller’s implemen-

tation; the second session is established with Friend’s implementation through the prefix b〈w : Tb〉.
Implementations for Seller and Friend can be specified by the following processes:

SELLER � a(z : Sa).z(title).z〈quote(title)〉.
z � {ok:z(addr).z(payment).z〈date(addr)〉.0 , quit:0}

FRIEND � b(w : Sb).w(amount).w〈loan〉.0

Above, we use functions loan(), quote() and date() to abstract away from the amount of money

to be borrowed, the price of the book, and the delivery date, respectively. The overall system spec-

ification is then given by the parallel composition of configurations containing the three processes

(in what follows, ε denotes the empty list):

SYSTEM �
〈
BUYER · ε · ε〉

κ1:ε
‖ 〈

SELLER · ε · ε〉
κ2:ε

‖ 〈
FRIEND · ε · ε〉

κ3:ε

In the following, we will indicate with BUYERi (resp. SELLERi and FRIENDi) the process BUYER

after performing its i-th action. We will follow a similar convention with types.

The first forward reduction of SYSTEM is establishing a session between Buyer and Seller,

using the fact that Ta and Sa are dual types. We have:

SYSTEM �(νs, s).

(〈
BUYER1 · {z, s} · a

〉
κ1:s

‖ s� ˆTa · z� ‖〈
SELLER1 · {z, s} · a

〉
κ2:s

‖ s� ˆSa · z� ‖
〈
FRIEND · ε · ε〉

κ3:ε

)
= M0 (7)

Once a session is established two monitors are created, one per endpoint: their task is to discipline

the behavior of the process holding the endpoint. For example, the behavior of Buyer in session s
has to obey session type Sa. Following Sa, Buyer then sends to Seller the request for the book, and

so the entire system evolves as follows:

M0 �(νs, s).

(〈
BUYER2 · ({z, s}) · a, z

〉
κ1:s

‖ s�!str ˆTa1 · z, “dune”� ‖〈
SELLER2 · ({z, s}, {title, “dune”}) · a, z

〉
κ2:s

‖

s�?str ˆSa1 · z, title� ‖
〈
FRIEND · ε · ε〉

κ3:ε

)
= M (8)

One effect of the reduction is that both types register the action and move forward. Another effect

is that the information needed to restore back the consumed prefixes is stored into the running con-

figurations and the related monitors. The forward step in (8) can be reverted by moving backward

14

the monitor types, restoring the prefixes, and deleting the read value from the receiver store:

M �(νs, s).

(〈
z〈”dune”〉.BUYER2 · {z, s} · a

〉
κ1:s

‖ s� ˆ !str.Ta1 · z� ‖〈
z(title).SELLER2 · {z, s} · a

〉
κ2:s

‖ s� ˆ ?str.Sa1 · z� ‖
〈
FRIEND · ε · ε〉

κ3:ε

)
(9)

We can easily check that the configurations in (7) and (9) are equivalent. From M in (8) the

interaction between Buyer and Seller can go on. Let us suppose that the Buyer decides that the

price is fine and the session goes along the “ok” branch. Then we have the following configuration:

M �∗(νs, s).
(〈

H[BUYERok] · ({z, s}, {prc, 10}) · a, z, z, z
〉
κ1:s

‖

s�T[⊕{ok: ˆT ok
a , quit:end}] · z, “dune”, prc, ok� ‖〈

K[SELLERok] · ({z, s}, {title, “dune”}) · a, z, z, z
〉
κ2:s

‖
s�S[&{ok: ˆSok

a , quit:end}] · z, title, quote(title)� ‖〈
FRIEND · ε · ε〉

κ3:ε

)
= M1 (10)

where BUYERok, SELLERok, T ok
a and Sok

a are respectively the Buyer and the Seller processes after

choosing ok and their corresponding types. Moreover, we have:

H[•] = if(decide(prc)) then • else 〈z � quit〉 T[•] = !str.?int.•
K[•] = z � {ok:• , quit:〈0〉} S[•] = ?str.!int.•

From M1 in (10), the Buyer can establish a new session with Friend:

M1 �(νs, s, r, r).

(〈
H[BUYERok1] · ({z, s}, {prc, 10}, {w, r}) · a, z, z, z, b

〉
κ1:s,r

‖

s�T[⊕{ok: ˆT ok
a , quit:end}] · z, “dune”, prc, ok� ‖ r� ˆTb · w� ‖〈

K[SELLERok] · ({z, s}, {title, “dune”}) · a, z, z
〉
κ2:s

‖
s�S[&{ok: ˆSok

a , quit:end}] · z, title, quote(title), z� ‖〈
FRIEND1 · {w, r} · b

〉
κ3:r

‖ r� ˆSb · w�
)

(11)

Thus, the running process for Buyer is present in two sessions: one with Seller and another one

with Friend, and has two associated monitors, identified by endpoints s, r. The list of subjects

stored into the running process allows us to reverse session communications (possibly in different

sessions) and session establishments exactly in the same order in which they were performed, thus

respecting causality of actions. In this way, Buyer cannot undo a communication with Seller while

the session with Friend is still established.

15

3.4. Basic Properties
Having illustrated the way in which our semantics intuitively respects causality of actions,

we now move on to formally establish this property for our reversible framework. We will show

that our framework satisfies the Loop Lemma, a property that gives us a basic guarantee of the

consistency between forward and backward reductions. We require some auxiliary definitions,

notations, and results. In the following, we write
∏

i∈I Ai as a short-hand notation for A1 ‖ · · · ‖
An with I = {1, . . . , n}. Notice that, by convention, we assume that

∏
i∈I Ai = 0 if I = ∅.

Definition 3.6 (Initial and Reachable Configurations). A configuration M is initial if

M ≡ νã.

(∏
i∈I

〈
Pi · σi · ε

〉
κ i:ε

)
with ∀i, j ∈ I =⇒ κi �= κj

A configuration is reachable if it can be derived using −→ from an initial configuration. That is, if

M0 is an initial configuration and M0 −→∗ M , then M is reachable.

The following lemma establishes a normal form for configurations:

Lemma 3.1 (Normal Form). For any configuration M we have that:

M ≡ νã.

⎛⎝ ∏
i∈I

〈
Ki

[
Pi

] · σi · ũi〉δ i
‖
∏
j∈J

sj�Hj · ẽj�
⎞⎠

Proof. By induction on the structure of configurations/processes.

We show that reachable configurations enjoy various structural properties, referred in the fol-

lowing to as well-formedness:

Definition 3.7 (Well-formed Configurations). We say that configuration

M ≡ νã.

⎛⎝ ∏
i∈I

〈
Ki

[
Pi

] · σi · ũi〉δ i
‖
∏
j∈J

sj�Hj · ẽj�
⎞⎠

is well-formed if

1. ∀i, j ∈ I , i �= j =⇒ δi ∩ δj = ∅;

2. ∀i, j ∈ J , i �= j =⇒ si �= sj ;

3. ∀i ∈ J , ∃ j ∈ J such that si = sj ;

4. ∀i ∈ I

(a) ∀s ∈ δi, ∃ j ∈ J such that s = sj

16

(b) ∀s1, s2 ∈ δi, s1 �= s2

A well-formed configuration enjoys four properties: (1) all the identifiers of running processes

are unique and do not share session names; (2) all monitors have a unique session endpoint; (3)

each monitor has a unique dual; (4) for each session endpoint contained into a running process

identifier there exists a unique corresponding monitor bearing the same name. Therefore, although

the syntax of Figure 1 allows to express configurations in which a session appears in more than one

running process, because of condition (1) above we decree such configurations as ill-formed.

Well-formedness is preserved through structural equivalence and reduction:

Proposition 3.1. If M is well formed and M ≡ N then N is well formed.

Proof. By induction on the derivation M ≡ N , with a case analysis on the last applied axiom. All

cases are easy.

Proposition 3.2. Any reachable configuration M is well formed.

Proof. By Definition 3.6, M is a reachable configuration if M0 −→∗ M , for some initial configu-

ration M0. The proof is then by induction the length of the reduction sequence M0 −→∗ M . See

Appendix A.1 for details.

We now prove the Loop Lemma, which shows that forward and backward reductions are the

inverse of each other. Then we have:

Lemma 3.2 (Loop Lemma). Let M and N be reachable configurations. Then: M � N ⇐⇒
N �M .

Proof. By induction on the derivation of M � N for the if direction, and on the derivation of

N �M for the converse. See Appendix A.2 for more details.

We may then show the following:

Corollary 3.1. For any reachable configuration M,N , if M −→∗ N then N −→∗ M .

Proof. The proof proceeds by induction on the length of the sequence of reductions M −→∗ N ,

using the Loop Lemma (Lemma 3.2).

4. Causal Consistency

Up to here, we have introduced and illustrated our process framework and established a basic

property of its forward and backward semantics. In this section we investigate causal consistency,

a property of sequences of reductions. Intuitively, causal consistency characterizes a space for

admissible rollbacks which are:

1. Consistent, in the sense that they do not lead to previously unreachable configurations; and

17

2. Flexible, so as to allow rearranging of reversed actions. This may enable us to obtain rollback

sequences more efficient than those decreeing the naive reversal of each performed step.

As a consequence of causal consistency, the set of states reached by a backward computation are

states that could have been reached by performing only forward computations.

While the Loop Lemma (Lemma 3.2) ensures local coherence for reductions (precisely, for-

ward reductions with respect to backward ones, and viceversa), causal consistency is a global
property, as it concerns sequences of reductions, or traces. It is formally expressed by Theorem 4.1

(Page 22). In its proof we adapt arguments from [13]. In particular, we instrument the reduction

semantics −→ with a reduction stamp, denoted η, which contains information useful to understand

when two reductions are concurrent, i.e., they may be executed in parallel. As we will see, working

in a session-based setting will enable us to have compact reduction stamps, simpler than in previous

works, therefore streamlining associated proofs. We will then have labeled reductions of the form

M
η−→ N , where M and N are reachable configurations, M −→ N , and η is a reduction stamp,

as defined next. We will find it convenient to use t, t′, . . . to identify labeled reductions: we shall

write t : M
η−→ N to this end.

Definition 4.1 (Reduction stamp). Let M,N be reachable configurations such that M −→ N . We

then write M
η−→ N , where the reduction stamp η is defined as:

• η = {κi : s ; κj : s}� �
M ≡ E

[〈
P · σi · ũi

〉
κ i:s̃ i

‖ 〈
Q · σj · ũj

〉
κ j :s̃j

]
N ≡ E

[〈
P ′ · σ′

i · ũi, u
〉
κ i:s̃ ′

i
‖ 〈

Q′ · σ′
j · ũj , u′

〉
κ j :s̃ ′

j

]
M � N σ′

i(u) = s σ′
j(u

′) = s

• η = {κi : s ; κj : s}� �
M ≡ E

[〈
P · σi · ũi, u

〉
κ i:s̃ i

‖ 〈
Q · σj · ũj , u′

〉
κ j :s̃ j

]
N ≡ E

[〈
P ′ · σ′

i · ũi
〉
κ i:s̃ ′

i
‖ 〈

Q′ · σ′
j · ũj

〉
κ j :s̃ ′

j

]
M � N σi(u) = s σj(u

′) = s

Thus, the stamp of a reduction contains the names of the named sequences and endpoints of the

running processes involved into the reduction; it also records the direction of the reduction. We let

λ (and its decorated variants) range over pairs of the form {κi : s ; κj : s}, which we sometimes

treat as a set. This way, a stamp η can be of the form λ� or λ�. By a slight abuse of notation, given

η = {κi : s ; κj : s}� or η = {κi : s ; κj : s}�, we write λ(η) to denote the pair {κi : s ; κj : s}.

The inverse of the stamp η = λ� is defined as η• = λ�, and viceversa.

Definition 4.2 (Notation and Terminology for Labeled Reductions). Let t : M
η−→ N be a reduc-

tion.

18

• We say M is the source of the reduction (denoted source(t)), N is its target (denoted

target(t)), and that the stamp η is the reduction label.

• Two reductions are said to be coinitial if they have the same source; cofinal if they have the

same target; and composable if the target of the first reduction is the source of the other.

• We say that t is forward if η = λ�, and that is backward if η = λ�.

• The inverse of t, denoted t•, is the reduction t• : N
η•−→ M , and viceversa.

• Given coinitial reductions t1 : M
η1−→ N1 and t2 : M

η2−→ N2, we define t2/t1 (read “t2 after

t1”) as N1
η2−→ N3, i.e., the reduction with stamp η2 that starts from the target of t1.

Example 4.1. We refer to the example of Section 3.3 in order to illustrate some of the above

notions.

• If we take the transition M0 � M given in (8) then we can derive the following labelled

reduction t : M0
{κ1:s ;κ2:s}�−−−−−−−−→ M , which is a forward reduction.

• Similarly, from transition M � M0 given in (9) we can derive r : M
{κ1:s ;κ2:s}�−−−−−−−−→ M0,

which is a backward reduction. Clearly, r = t• (and vice-versa).

• The reductions of (8) and (9) are composable, since the target of the first one is the origin of

the second one.

The following definition ensures a consistent use of fresh names throughout (labeled) reduc-

tions, important to correctly identify configurations and processes based on their stamps:

Definition 4.3 (Name-preserving labeled reductions). We say that a (labeled) reduction t is name-
preserving if:

• t is derived without using α-conversion;

• If t creates a pair of endpoints (cf. Rule OPEN) then these fresh names are chosen using a

fixed function from the names of the running processes involved in t.

Intuitively, the second item in the above definition ensures that, for any u1, u2, κ1, κ2, whenever

u1 and u2 synchronize to establish a session (connecting configurations identified by κ1 and κ2,

respectively) then the pair of fresh endpoints will always be the same. This is relevant when the

session is established more than once, e.g., when the reduction enabled by Rule OPEN is undone

and performed again. From now on we will just consider only name-preserving reductions.

Definition 4.4 (Intersection of Stamps). Let η1 and η2 be such that λ(η1) = {κ1 : s ; κ2 : s} and

λ(η2) = {κ3 : t ; κ4 : t}. We write λ(η1)∩ λ(η2) to denote the intersection of the underlying sets:

λ(η1) ∩ λ(η2) = {κ1, s, κ2, s} ∩ {κ3, t, κ4, t}

19

t1 t2

t2/t1 t1/t2

(a) Square Lemma

(Lemma 4.1)

t2

t1

t3

t4

t1

t3

t2

t4

(b) Rearranging Lemma

(Lemma 4.2)

t1•

t1

t2

t3

t3

t2

(c) Shortening Lemma

(Lemma 4.3)

Figure 5: Graphical intuitions for the ingredients of the proof of causal consistency (Theorem 4.1). Black, solid arrows

represent forward reductions; red, dashed arrows represent backward reductions. In (b), we assume that t1 �= t2•,

t3 �= t2•, and t3 �= t4•.

We are now ready to give the key notions of concurrent and conflicting reductions:

Definition 4.5 (Conflicting and Concurrent Reductions). Two coinitial reductions t1 : M
η1−→ N1

and t2 : M
η2−→ N2 are said to be in conflict if λ(η1) ∩ λ(η2) �= ∅. Two coinitial reductions are

concurrent if they are not in conflict.

Example 4.2. Consider the following configuration:

M =
〈
u1〈x : S〉.P · σ1 · ε

〉
κ1:ε

‖ 〈
u2(y : T).Q1 · σ2 · ε

〉
κ2:ε

‖ 〈
u3(y : T).Q2 · σ3 · ε

〉
κ3:ε

with dual(S, T) and σ1(u1) = σ2(u2) = σ3(u3). Clearly, there are two reductions from M ,

namely t1 : M
{κ1:ε ;κ2:ε}�−−−−−−−−→ M1 and t2 : M

{κ2:ε ;κ3:ε}�−−−−−−−−→ M2. Since the intersection of their

respective stamps is not empty, t1 and t2 are conflicting reductions.

A property that a reversible calculus should enjoy is the so-called Square Lemma, which may be

informally described as follows. Assume a configuration from which two reductions are possible:

if these reductions are concurrent then the order in which they are executed does not matter, and

the same configuration is reached. Formally we have the Square Lemma [13]:

Lemma 4.1 (Square Lemma). If t1 : M
η1−→ M1 and t2 : M

η2−→ M2 are coinitial and concurrent
reductions, then there exist cofinal reductions t2/t1 = M1

η2−→ N and t1/t2 = M2
η1−→ N .

Proof. By case analysis on the form of t1 and t2. See Appendix A.3 for more details.

In the above lemma, N is the configuration reached by executing both reductions t1 and t2.

Figure 5a gives an illustration of the Square Lemma; reductions t1 and t2 are both concurrent and

co-initial. Our goal is to show that our reversible semantics is causally consistent, as motivated

earlier. To this end, we shall be interested in traces—sequences of reductions between reachable

configurations.

20

Definition 4.6 (Traces). A sequence of pairwise composable reductions is called a trace. We let ρ
and its decorated variants range over traces.

Auxiliary notions defined for reductions extend naturally to traces:

Definition 4.7 (Notation and Terminology for Traces). We assume the following notations and

terminology:

• We write εM to denote the empty trace with source M .

• We write ρ1; ρ2 to denote the composition of two composable traces ρ1 and ρ2.

• The inverse of a trace ρ = t1; . . . ; tn is defined as ρ• = tn• ; . . . ; t1•.

• Given a trace t1; . . . ; tn, we say that reductions ti and ti+1 (1 ≤ i ≤ n− 1) are contiguous.

We say that they are opposing if ti+1 = t′• and both ti and t′ have the same direction.

• A trace is forward (resp. backward) if it is composed of forward (resp. backward) reductions.

Moreover, we will write len(ρ) to denote the length of ρ, defined as expected.

We are now in a position to show that our reversible semantics is causally consistent. Following

Lévy [28], we define a notion of causal equivalence between traces, noted �, which abstracts away

from the order in which concurrent reductions are executed.

Definition 4.8 (Causal Equivalence). We define � as the least equivalence relation between traces

that is closed under composition and that obeys the following rules:

t1; t2/t1 � t2; t1/t2 t; t• � εsource(t) t•; t � εtarget(t)

Intuitively, � says that that (i) if we have two concurrent reductions, then the traces obtained

by swapping their execution order are equivalent, and (ii) a trace consisting of opposing reductions

is equivalent to the empty trace (i.e., the two reductions cancel themselves out).

The proof of causal consistency proceeds along the same lines as in [13], but with simpler

arguments because of the simpler form of our reduction stamps. The following lemma says that,

up to causal equivalence, traces can be rearranged so as to reach the maximum freedom of choice,

first going only backwards, and then going only forward. Figure 5b illustrates this situation: the

trace depicted on the left-hand side (a combination of forward and backward reductions) is causally

equivalent to the trace depicted on the right-hand side (where backward reductions appear first).

Lemma 4.2 (Rearranging Lemma). Given a trace ρ, there exist forward traces ρ′ and ρ′′ such that
ρ � ρ′•; ρ′′.

Proof. By lexicographic induction on len(ρ) and on the distance between the beginning of ρ and

the earliest pair of opposing reductions in ρ. The analysis uses both the Loop Lemma (Lemma 3.2)

and the Square Lemma (Lemma 4.1). For more details see Appendix A.4.

21

The next lemma considers the following situation: if trace ρ1 and forward trace ρ2 start from

the same configuration and end up in the same configuration, then ρ1 may contain some “local”

computations, not present in ρ2, which must be undone at some later point in ρ1—otherwise such

computations would represent a difference with respect to the computations in ρ2. This means

that ρ1 could be shortened by removing local computations and their corresponding reverse steps.

Figure 5c exemplifies this situation: the trace on the left-hand side starts by doing and undoing a

reduction; it is causally equivalent to the (coinitial and cofinal) trace in the right-hand side, which

does simply not contain these forward and backward reductions.

Lemma 4.3 (Shortening Lemma). Let ρ1 and ρ2 be coinitial and cofinal traces, with ρ2 forward.
Then, there exists a forward trace ρ′1 such that ρ′1 � ρ1 and len(ρ′1) ≤ len(ρ1).

Proof (Sketch). The proof is by induction on len(ρ1), using Square and Rearranging Lemmas

(Lemmas 4.1 and 4.2). In the proof, the forward trace ρ2 is the main guideline for shortening

ρ1 into a forward trace. Indeed, the proof relies crucially on the fact that ρ1 and ρ2 share the same

source and target and that ρ2 is a forward trace. See Appendix A.5 for details.

We are now finally ready to state our main result:

Theorem 4.1 (Causal Consistency). Let ρ1 and ρ2 be traces. Then ρ1 � ρ2 if and only if ρ1 and

ρ2 are coinitial and cofinal.

Proof. The ‘if’ direction follows by definition of causal equivalence and trace composition. The

‘only if’ direction exploits Square, Rearranging, and Shortening Lemmas (Lemmas 4.1, 4.2, and

4.3). See Appendix A.6 for details.

As already discussed, the Loop Lemma (Lemma 3.2) and causal consistency (Theorem 4.1)

serve different purposes: while the former is a “local” property connecting forward and backward

steps, the latter is a property of sequences of reduction steps (traces). Therefore, in a way, the prop-

erties are independent from each other. The following example illustrates this point by exhibiting

a configuration for which the Loop Lemma holds but that it is not causally consistent.

Example 4.3. Consider the following processes and types:

P1 = z(x).z〈f(x)〉.0 P2 = z〈v1〉.z(x).0 Q1 = w(x).0 Q2 = w〈dummy〉.0
T =?int.!int.end S =!int.?int.end R =?int.end K =!int.end

Moreover we indicate with type T 1 (resp. S1) the type T (resp. S) after one step. Let M be the

following configuration:

M =
〈
P1 · {z, s} · ε

〉
κ1:s

‖ s� ˆT · ε� ‖ 〈
P2 · {z, s} · ε

〉
κ2:s

‖ s� ˆS · ε�
‖ 〈

Q1 · {w, s} · ε
〉
κ2:s

‖ s� ˆR · ε� ‖ 〈
Q2 · {w, s} · ε

〉
κ1:s

‖ s� ˆK · ε�

22

Observe that M is not reachable because the κi are not pairwise distinct (cf. Definition 3.6).

Consider now the following sequence of forward reductions from M :

M �
〈
z〈f(x)〉.0 · {z, s}, {x, v1} · z

〉
κ1:s

‖ s�T 1 · x� ‖ 〈
z(x).0 · {z, s} · z〉

κ2:s
‖ s�S1 · v1�

‖ 〈
Q1 · {w, s} · ε

〉
κ2:s

‖ s�R ˆ · ε� ‖ 〈
Q2 · {w, s} · ε

〉
κ1:s

‖ s� ˆK · ε� = M1

�
〈
0 · {z, s}, {x, v1} · z, z

〉
κ1:s

‖ s�T ˆ · x, f(x)� ‖ 〈
z(x).0 · {z, s} · z〉

κ2:s
‖ s�S1 · v1�

‖ 〈
0 · {w, s}, {x, f(v1)} · w

〉
κ2:s

‖ s�R ˆ · x� ‖ 〈
Q2 · {w, s} · ε

〉
κ1:s

‖ s� ˆK · ε� = M2

�
〈
0 · {z, s}, {x, v1} · z, z

〉
κ1:s

‖ s�T ˆ · x, f(x)� ‖ 〈
0 · {z, s} · z, z〉

κ2:s
‖ s�S ˆ · v1, x�

‖ 〈
0 · {w, s}, {x, f(v1)} · w

〉
κ2:s

‖ s�R ˆ · x� ‖ 〈
0 · {w, s} · w〉

κ1:s
‖ s�K ˆ · dummy� = M3

The Loop Lemma holds for each of the forward reductions above, for they can be undone: we have

M �M1 �M , M1 �M2 �M1, and M2 �M3 �M2. Let us now consider a backward step

M3 �M4 with

M4 =
〈
z〈f(x)〉.0 · {z, s}, {x, v1} · z

〉
κ1:s

‖ s�T 1 · x� ‖ 〈
z(x).0 · {z, s} · z〉

κ2:s
‖ s�S1 · v1�

‖ 〈
0 · {w, s}, {x, f(v1)} · w

〉
κ2:s

‖ s�R ˆ · x� ‖ 〈
0 · {w, s} · w〉

κ1:s
‖ s�K ˆ · dummy�

All the forward reductions above have the same stamp: η = {κ1 : s, κ2 : s}. Hence M
ρ−→ M2

η−→
M3 and M

ρ1−→ M4, with ρ = η; η and ρ1 = ρ; η; η•. Now, by definition of � (Definition 4.8) we

have that ρ � ρ1; thus, by Theorem 4.1 these two traces must be coinitial and cofinal. However, al-

though ρ and ρ1 are indeed coinitial, they are not cofinal—a contradiction to the causal consistency

theorem.

5. Controlled Reversibility

A natural issue when defining reversible semantics is how to control reversible actions. Indeed,

we are typically interested in processes in which some actions (but not all) are reversible, and/or

in which reversibility capabilities are limited. This observation is also relevant when considering

session-based protocols, in which communication actions are subject to conditions such as linearity

(i.e., each action must be performed exactly once) in order to ensure protocol correctness and avoid

mismatches. In operational frameworks such as the one in Section 3, however, reversibility is

uncontrolled: we could clearly perform and reverse communication steps ad infinitum, which may

be in contrast with the disciplined behavior expected of a session once it is established.

Here we explore an extension of the model in Section 3 intended to control reversible actions.

Following the same spirit than in Section 3, rather than modifying the process syntax in order to

limit reversibility via dedicated primitive constructs (as in, e.g., [29]), we enrich session types in

monitors with reversibility modes that describe the reversibility capabilities of the processes gov-

erned by such types. By controlling reversibility via monitors, we obtain a simple generalization

of the framework in Section 3. We describe this extension, and discuss how the main relevant

properties (namely, Loop Lemma and Causal Consistency) carry over to this extended framework.

23

(reversibility modes) r ::= 0 | 1 | ∞
(actions) α, β ::= !rU | ?rU

(session types) S, T ::= end | α.S | ⊕ {lr11 :S1 , l
r2
2 :S2} | &{lr11 :S1 , l

r2
2 :S2}

(history types) H,K ::= ˆS | S ˆ | α1. · · · .αn. ˆS | ⊕ {lrii :Si , l
rj
j :Hj} | &{lrii :Si , l

rj
j :Hj}

Figure 6: Session types with reversibility modes. All other elements (processes, configurations) are as in Figure 1.

5.1. Reversibility Modes

In order to control reversibility via types, we annotate session types with reversibility modes,

ranged over r, r′, Attached to individual communication actions described by types, reversibil-

ity modes describe reversibility capabilities:

• r = 0 is the reversibility mode of an action that cannot be reversed (an irreversible action);

• r = 1 is the reversibility mode of an action that can be reversed at most once;

• r = ∞ is the reversibility mode of an action which can be arbitrarily reversed.

Figure 6 describes required modifications in the syntax; all other elements are as in Figure 1. In

particular, we retain the syntax of processes given before: we stress that our interest is in controlling

reversibility in an orthogonal way, keeping the same language of processes.

The rules of the extended forward reduction semantics, denoted �r
m (where r is a reversibil-

ity mode), are given in Figure 7. The rules rely on the following (simple) extension of duality

(Definition 3.1) to session types with modes:

!U r.S =?U r.S ?U r.S =!U r.S end = end

⊕{lr11 : S1 , l
r2
2 : S2} = &{lr11 : S1 , l

r2
2 : S2}

&{lr11 : S1 , l
r2
2 : S2} = ⊕{lr11 : S1 , l

r2
2 : S2}

That is, we assume that dual actions in types should have the same reversibility mode; an alternative

formulation, with different modes in dual actions, is discussed below.

We also assume the expected extension of type and choice contexts (Definitions 3.3 and 3.4).

The rules in Figure 7 essentially enrich those in Figure 3 with reversibility modes. Notice that

the reversibility modes of the types involved in a forward synchronization action need to match;

this choice is for simplicity: we leave for future work the definition of more flexible forms of type

compatibility in which non identical reversibility modes are admitted.

Intuitively, by writing M �r
m N we express that the (forward) action from M that results into

N can be reversed depending on mode r, which is recorded together with its associated session type

24

with cursor. Observe that session establishment can always be reversed; its associated reversibility

mode is ∞. Indeed, we decree that the control of reversibility is enforced within a session, i.e.,

once the session is established. This decision is in line with the intrinsically non-deterministic

character of session establishment in session-based concurrency (as opposed to the linear behavior

that is to be enforced once the session is established).

The most interesting part of the extension is captured by the extended rules for backward re-

ductions, denoted�m, which are given in Figure 8. Following the previous discussion, a session

establishment can always be reversed: Rule (MOPEN)� is essentially as Rule (OPEN)� in Figure 4.

The purpose and effect of reversibility modes is captured by Rules (MCOM)� and (MCHOICE)�,

which are enabled only when the reversibility mode of the last action in the monitor is different

from 0: condition (r = ∞ ⇒ r′ = ∞ ∧ r = 1 ⇒ r′ = 0), present in both rules, enables to

“consume” the reversibility mode, and to obtain the new mode r′ that will hold after the action has

been reversed. And this condition is the only difference with respect rules of Figure 4. This is how

performing a reversible action may reduce the potential for future actions.

It is instructive to briefly discuss the possibility of more general definitions of duality in the

presence of reversibility modes. As a simple illustration, consider the session types:

S1 = !U1
r1 .?U2

r3 .end S2 = ?U1
r2 .!U2

r4 .end

As already discussed, our definition of duality relates S1 and S2 only when r1 = r2 and r3 = r4. A

more flexible definition would also validate cases in which r1 �= r2 and/or r3 �= r4; therefore, types

such as the following would be related by a more flexible duality:

S′
1 = !U1

0.?U2
∞.end S′

2 = ?U1
1.!U2

1.end

This additional flexibility should be implemented in the premises of the backward reduction rules,

which would need to account for the less permissive of the two reversibility modes. To see this,

consider the interaction of processes implementing S′
1 and S′

2: a forward reduction corresponding

to the exchange of the value of type U1 cannot be reversed, because the sending action in S′
1 cannot

be reversed (this is consistent with ?U1
1 in S′

2, because it can be reversed at most once). Similarly,

the forward reduction corresponding to the passing of value of type U2 can be reversed at most

once, even if the reversibility mode of the receiving action in S′
1 is ∞.

5.2. Example

One advantage of using types for controlling reversibility is that the same process specification

can exhibit different behaviors by programming its reversibility modes in a different way. To

illustrate this aspect, we revisit the example of Section 3.3, now enriched with a second seller,

dubbed SellerB. Processes SellerB and Seller below have the same specification as the one in

Section 3.3, but their type Ra differs in its reversibility modes. To lighten up notations, we omit

25

(MOPEN)

dual(S, T) s �∈ δ s �∈ δ′ σ1(u) = σ2(u
′)〈

K[u〈x : S〉.P] · σ1 · ũ1
〉
δ
‖ 〈

H[u′(y : T).Q] · σ2 · ũ2
〉
δ′ �∞

m

(νs, s).
(〈
K[P] · σ1[x �→ s] · ũ1, u

〉
δ, s

‖ s� ˆS · x� ‖ 〈
H[Q] · σ2[y �→ s] · ũ2, u′

〉
δ′, s ‖ s� ˆT · y�)

(MCOM)

σ1(k) = s s ∈ δ σ2(k
′) = s s ∈ δ′ σ2(e) = v〈

K[k(x).P] · σ1 · ñ
〉
δ
‖ 〈

H[k′〈e〉.Q] · σ2 · m̃
〉
δ′ ‖ s�T[ˆ ?rU.S] · ẽ1� ‖ s�S[ˆ !rU.T] · ẽ2�

�r
m〈

K[P] · σ1[x �→ v] · ñ, k〉
δ
‖ 〈

H[Q] · σ2 · m̃, k′
〉
δ′ ‖ s�T[?rU. ˆS] · ẽ1, x� ‖ s�S[!rU. ˆT] · ẽ2, e�

(MCHOICE)

σ1(k) = s s ∈ δ σ2(k
′) = s s ∈ δ′ H

′[•] = H[k′ � {lrjj : 〈Qj〉 , lrii : •}]〈
K[k � li.P] · σ1 · ñ

〉
δ
‖ 〈

H[k′ � {lj : Qj , li : Qi}] · σ2 · m̃
〉
δ′ ‖

s�T[ˆ ⊕ {lrjj :Sj , l
ri
i :Si}] · ẽ1� ‖ s�S[ˆ&{lrjj :Tj , l

ri
i :Ti}] · ẽ2� �ri

m〈
K[P] · σ1 · ñ, k

〉
δ
‖ 〈

H
′[Qi] · σ2 · m̃, k′

〉
δ′ ‖

s�T[⊕{lrjj :Sj , l
ri
i : ˆSi}] · ẽ1, li� ‖ s�S[&{lrjj :Tj , l

ri
i : ˆTi}] · ẽ2�

Figure 7: Operational Semantics: Forward Reduction Semantics with Modalities (�r
m).

the mode decorations when r = ∞:

Ra : ?str.!int.&{ok0:?str.?int.!cal.end , quit:end}
SELLERB � a(z : Ra).z(title).z〈quote(title)〉.

z � {ok:z(addr).z(payment).z〈date(addr)〉.0 , quit:0}

In this example, we assume Buyer is a service with type T ′
a, where:

T ′
a :!str.?int.⊕ {ok0:!str.!int.?cal.end , quit:end}

That is, T ′
a is as Ta in Section 3.3 except for the reversibility mode, which is adjusted to be dual to

Ra. Therefore, the difference with the protocol in Section 3.3 is that now Buyer, once he decides

he is fine with the provided price he can no longer revert his choice. That is, choosing ok can be

seen as a commitment between Buyer and Seller (or SellerB). If Buyer does not like the price and

chooses the “quit” branch, then he can always go back to the state prior to the choice and ask for a

better quote from another seller. More formally, we extend the system specification with a process

named SellerB, with both Seller and SellerB having type Ra:

SYSTEM1 �
〈
BUYER ·ε ·ε〉

κ1:ε
‖ 〈

SELLER ·ε ·ε〉
κ2:ε

‖ 〈
FRIEND ·ε ·ε〉

κ3:ε
‖ 〈

SELLERB ·ε ·ε〉
κ4:ε

26

(MOPEN
�)

dual(S, T) σ1(x) = s σ2(y) = s σ1(u) = σ2(u
′)

(νs, s).
(〈
K1[P] · σ1 · ũ1, u

〉
δ, s

‖ s� ˆS · x� ‖ 〈
K2[Q] · σ2 · ũ2, u′

〉
δ′, s ‖ s� ˆT · y�) �m〈

K1[u〈x : S〉.P] · σ1 \ x · ũ1
〉
δ
‖ 〈

K2[u
′(y : T).Q] · σ2 \ y · ũ2

〉
δ′

(MCOM
�)

σ1(k) = s s ∈ δ σ2(k
′) = s s ∈ δ′

r > 0 (r = ∞ ⇒ r′ = ∞∧ r = 1 ⇒ r′ = 0)〈
K1[P] · σ1 · ñ, k

〉
δ
‖ 〈

K2[Q] · σ2 · m̃, k′
〉
δ′ ‖ s�T1[?

rU. ˆS1] · ẽ1, x� ‖ s�T2[!
rU. ˆS2] · ẽ2, e�

�m〈
K1[k(x).P] · σ1 \ x · ñ〉

δ
‖ 〈

K2[k〈e〉.Q] · σ2 · m̃
〉
δ′ ‖ s�T1[ˆ ?r

′
U.S1] · ẽ1� ‖ s�T2[ˆ !r

′
U.S2] · ẽ2�

(MCHOICE
�)

σ1(k) = s s ∈ δ σ2(k
′) = s s ∈ δ′ H

′[•] = H[k′ � {lrjj : 〈Qj〉 , lrii : •}]
ri > 0 (ri = ∞ ⇒ r′i = ∞∧ ri = 1 ⇒ r′i = 0)〈

K[P] · σ1 · ñ, k
〉
δ
‖ 〈

H
′[Qi] · σ2 · m̃

〉
δ′ ‖

s�T[⊕{lrjj :Sj , l
ri
i : ˆSi}] · ẽ1, li� ‖ s�S[&{lrjj :Tj , l

ri
i : ˆTi}] · ẽ2� �m〈

K[k � li.P] · σ1 · ñ
〉
δ
‖ 〈

H[k′ � {lj : Qj , li : Qi}] · σ2 · m̃
〉
δ′ ‖

s�T[ˆ ⊕ {lrjj :Sj , l
r′i
i :Si}] · ẽ1� ‖ s�S[ˆ&{lrjj :Tj , l

r′i
i :Ti}] · ẽ2�

Figure 8: Operational Semantics: Backward Reduction Semantics with modalities (�m).

where Seller, Buyer, and Friend are as in Section 3.3. We now illustrate the behavior that results

from SYSTEM1: as before, we indicate with Ta the dual types of Tb. Moreover, we have that Ra

and Ta are dual.

After having established the session with Seller, Buyer receives the quote for the requested

book:

SYSTEM1 �∞∗
m (νs, s).

(〈
BUYER3 · ({z, s}, {prc, 10}) · a, z, z

〉
κ1:s

‖

s�?int ˆT ′
a2 · z, “dune”, prc� ‖〈

SELLER3 · ({z, s}, {title, “dune”}) · a, z, z
〉
κ2:s

‖
s�?str ˆRa2 · z, title, quote(title)� ‖

〈
FRIEND · ε · ε〉

κ3:ε
‖〈

SELLERB · ε · ε〉
κ4:ε

)
= M (12)

Buyer now can revert the entire session (e.g., if he wants a better quote for the book) and get back

27

to the initial configuration. From there he can now interact with SellerB hoping for a better price:

M �∗
m�∞∗

m (νt, t).

(〈
BUYER3 · ({z, t}, {prc, 8}) · a, z, z

〉
κ1:t

‖

t�?int ˆT ′
a2 · z, “dune”, prc� ‖〈

SELLERB3 · ({z, t}, {title, “dune”}) · a, z, z
〉
κ4:t

‖
t�?str ˆRa2 · z, title, quote(title)� ‖

〈
FRIEND · ε · ε〉

κ3:ε
‖〈

SELLER · ε · ε〉
κ2:ε

)
= M1 (13)

From M1, the system can always reach M (cf. (12)), and vice versa. At this point, Buyer may de-

cide that the price is fair and then proceed along the ok branch, therefore performing an irreversible

action:

M �0
m(νt, t).

(〈
H[BUYERok] · ({z, t}, {prc, 8}) · a, z, z, z

〉
κ1:t

‖

t�T[⊕{ok0: ˆT ′ok
a , quit:end}] · z, “dune”, prc, ok� ‖〈

K[SELLERBok] · ({z, t}, {title, “dune”}) · a, z, z
〉
κ4:t

‖
t�S[&{ok0: ˆRok

a , quit:end}] · z, title, quote(title)� ‖〈
FRIEND · ε · ε〉

κ3:ε
‖ 〈

SELLER · ε · ε〉
κ2:ε

)
= M2 (14)

where BUYERok, SELLERBok, T ′ok
a and Rok

a are respectively the Buyer and the SellerB processes

after choosing ok and their corresponding types. Moreover:

H[•] = if(decide(prc)) then • else 〈z � quit〉 T[•] =!str.?int.•
K[•] = z � {ok:• , quit:〈0〉} S[•] =?str.!int.•

Because of the involved reversibility mode, starting from M2 Buyer cannot revert his decision of

accepting the price offered by Seller.

5.3. Properties
We now revisit the main properties (Loop Lemma and Causal Consistency) in the light of the

extended semantics with controlled reversibility. Recall that while the Loop Lemma is a local

property of single reductions (forward and backward), causal consistency is a global property that

pertains to sequences of reductions. Consequently, the main effect of controlling reversibility via

modes is in the Loop Lemma. To formally state these effects, we require the following auxiliary

definition, that erases reversibility modes from configurations:

Definition 5.1 (Erasure). Let (·)† be the mapping on configurations and types defined as in Fig-

ure 9.

28

(0)† = 0 (!rU)† =!U (⊕{lr11 :S1 , l
r2
2 :S2})† = ⊕{l1:(S1)

† , l2:(S2)
†}

(
〈
P · σ · ũ〉

δ
)† =

〈
P · σ · ũ〉

δ
(?rU)† =?U (&{lr11 :S1 , l

r2
2 :S2})† = &{l1:(S1)

† , l2:(S2)
†}

(s�H · ẽ�)† = s�(H)† · ẽ� (end)† = end (α1. · · · .αn. ˆS)† = (α1)
†. · · · .(αn)

†. ˆ (S)†

(νn.M)† = νn.(M)† (α.S)† = (α)†.(S)† (⊕{lrii :Si , l
rj
j :Hj})† = ⊕{li:(Si)

† , lj :(Hj)
†}

(M ‖ N)† = (M)† ‖ (N)† (ˆS)† = ˆ (S)† (&{lrii :Si , l
rj
j :Hj})† = &{li:(Si)

† , lj :(Hj)
†}

(S ˆ)† = (S)† ˆ

Figure 9: Erasure on configurations and types.

We now have a more detailed presentation of the Loop Lemma, as now we have irreversible

actions as well as actions that may become irreversible. We assume expected extensions of notions

related to configurations (initial and reachable configurations, normal forms for configurations,

well-formedness conditions).

Lemma 5.1 (Controlled Loop Lemma). For any reachable configuration with reversibility modes
M,N , we have:

1. If M �r
m N and r > 0 then N �m M ′ and (M)† = (M ′)†.

2. If N �m M and M �r
m N ′ then (N)† = (N ′)†.

The Controlled Loop Lemma allows us to observe that the extended framework indeed gener-

alizes that in Section 3, as two particular instances arise naturally:

• When all reversibility modes in all session types in a configuration are ∞, then we recover

the framework of Section 3 (uncontrolled reversibility)

• When all reversibility modes in all session types in a configuration are 0, then we recover a

monitor-based semantics for ordinary session types (without reversibility)

We further notice that causal consistency and its associated properties (Square, Rearranging,

and Shortening Lemmas) hold also in the framework with reversibility modes. This is because

causal consistency is a property of traces, i.e., already executed sequences of reductions. Clearly,

causal consistency in the extended framework developed here considers a reduced space for pro-

cesses with (controlled) reversible actions. This is a pleasant and concrete advantage of exercising

reversibility control using a monitored semantics, and of keeping process implementations un-

touched.

29

6. Extensions

We briefly discuss some extensions to the framework introduced here. Rather than describing

them in full detail, we informally explain how our basic framework would need to be adapted to

account for each of them.

Delegation. Our framework does not support delegation, i.e., the exchange of session names as

communicated messages. This to simplify the presentation and to highlight the merits of our novel

approach to reversible semantics using a core model. Nevertheless, delegation can be added with-

out technical difficulties, at the price of additional forward and backward rules in the reduction

semantics. We sketch the required additional rules below, omitting choice and type contexts:

(DEL)

σ1(k) = s s ∈ δ σ2(k
′) = s s ∈ δ′ σ2(e) = s1〈

k(x).P · σ1 · ũ1
〉
δ
‖ 〈

k′〈e〉.Q · σ2 · ũ2
〉
δ′ ‖ s�T[ˆ ?T.S1] · ẽ1� ‖ s� ˆ !T.S2 · ẽ2� �〈

P · σ1[x �→ s1] · ũ1, k
〉
δ, s1

‖ 〈
Q · σ2 · ũ2, k′

〉
δ′ \s1 ‖ s�?T. ˆS1 · ẽ1, x� ‖ s�!T. ˆS2 · ẽ2, e�

(DEL
�)

σ1(k) = s s ∈ δ σ2(k
′) = s s ∈ δ′〈

P · σ1 · ũ1, k
〉
δ
‖ 〈

Q · σ2 · ũ2, k′
〉
δ′ ‖ s�?T. ˆS1 · ẽ1, x� ‖ s�!T. ˆS2 · ẽ2, e� �〈

k(x).P · σ1 \ x · ũ1
〉
δ \s1 ‖ 〈

k〈e〉.Q · σ2 · ũ2
〉
δ′, s1

‖ s� ˆ ?T.S1 · ẽ1� ‖ s� ˆ !T.S2 · ẽ2�

While similar to Rules COM and COM� (cf. Figures 3 and 4), the key difference in the rules for

delegation is that sequences δ and δ′ should be modified to reflect that a session name contained in

them (s1 in the rules) is being transferred between their respective running processes. The session

types involved are also different: rather than U the communicated value is of type T .

Asynchronous Communication. Although our process model includes queues, our model considers

a synchronous communication mechanism, i.e., sender and receiver should synchronize in order to

communicate. In session types, asynchronous communication is usually handled using queues: the

sender adds a message to the receiver’s queue; later on, the receiver consumes the first message un

its queue. Our semantics can be modified in order to have monitors with message queues, using

uncoordinated session types with cursors: sender and receiver monitor types do not need to move

at the same time. As a result, forward and backward communications become more fine-grained.

Notice that both message ordering within a queue and the use of the subject list of a process would

guarantee that the order of messages is preserved while reversing actions.

Increased Parallelism Within Configurations. Without loss of expressiveness, our model admits

the parallel interaction of configurations (which include running processes) rather than that of

processes themselves, i.e., individual configurations contain sequential processes. This decision

simplifies the reduction semantics and the reduction stamps required to prove causal consistency.

An extension with parallelism at the level of processes within configurations is certainly possible,

but it would entail notational burden, and would not add expressiveness to the model.

30

Infinite Behavior. Our framework considers finite processes and types. Adding recursion or pa-

rameterized definitions is straightforward; we have refrained from adding infinite constructs to our

model, for it obscures the required notations and essential approach. To consider recursive behav-

iors, we need to admit processes μX.P and process variables X in the syntax of processes (Fig-

ure 1). Accordingly, the syntax of session types T would include recursive types μY.T and type

variables Y . As customary, we would also require that all process and type variables are guarded by

an interaction construct, and that all variables are bound. Following the approach in [30], recursive

behavior can be treated at the semantic level via structural congruences at the level of processes and

monitors/configurations, so as to identify a recursive definition with its unfolding (equi-recursive

types). Precisely, we would need to extend ≡ (Figure 2) with the following axioms:

(E.RECP) μX.P ≡ P{μX.P /X} (E.RECT) s�T[ˆμY.T] · ẽ� ≡ s�T[ˆT{μY.T /Y }] · ẽ�
Notice that in (E.RECT) unfolding is guided by the cursor ˆ : it is the cursor (and consequently the

computation) that indicates what is the next recursive definition to unfold. Indeed, by identifying a

recursive definition with its unfolding, the syntax of history types can be kept unchanged.

7. Related Work

Our work integrates concepts and formalisms from two seemingly unrelated areas: reversibil-
ity in concurrency and models of behavioral types and contracts. Accordingly, we compare our

approach and results with respect to previous works in these two research strands.

Reversibility in Concurrency. One simple but central idea in our approach is to use session types

with a “cursor” (here denoted ˆ) to record the current state of the protocol by “marking” its asso-

ciated session type. To our knowledge, the idea of using a cursor/marking was first proposed by

Boudol and Castellani [31] when defining event transition systems for CCS. In the context of re-

versible calculi, Phillips and Ulidowski [32] use a cursor to mark the past actions of CCS processes;

this marking avoids resorting to extra memory information, as in the approach to reversibility ad-

vocated by Danos and Krivine in RCCS [13]. Medic and Mezzina [33] have recently shown that

the approach used in RCCS is at least as expressive as the one of Phillips and Ulidowski. Cardelli

and Laneve also use a cursor to formalize their reversible structures [34].

In [14] Phillips and Ulidowski develop a general approach to reverse a process calculus given

in a particular SOS format (the path format); two of the main ideas of [14] are to uniquely identify

each event that occurs in the system, and to make all the operators in the calculus static. An

operator is static if it is preserved in the process term after an associated reduction/transition. In

contrast, the operator is said to be dynamic if it disappears after the reduction/transition (a similar

terminology is used in [31]). This way, e.g., in CCS, parallel composition is a static operator, while

prefix and choice are dynamic operators. Hence, dynamic operators are more “forgetful” than static

operators. Our treatment of labeled choices is inspired by [14]: we consider labelled choice as a

static operator by using contexts for processes and types. One limitation of the approach in [14]

is that it supports CCS-like calculi, and so there is no handling of binders. Lanese et al. [15, 35]

31

overcome this limitation by using memories, extending the approach of Danos and Krivine [13]

in their development of the first reversible variant of the (higher-order) π-calculus. This approach

has been used to give reversible semantics for programming languages [26] and more complex

calculi [36]. Cristescu et al. [27] develop a reversible semantics for the π-calculus based on a

labeled transition system rather than as a reduction semantics (as in [15]).

One key insight of our work is that by addressing session-based concurrency, the formal

machinery required to support reversibility is simpler than in previous (untyped) reversible cal-

culi [13, 15, 14, 27, 35] and reversible programming languages [26, 36]. This simplicity is par-

ticularly evident (and convenient) in proofs of causal consistency; it emerges clearly in the kind

of memory stamps that we rely on. Indeed, since we need to keep less information on the nature

and actions of session processes, our stamps are rather compact, certainly lighter than in previous

approaches (for instance [15]). This simplicity is due to the fact that session linearity ensures the

existence of exactly one process per endpoint; this relieves us from the need of splitting an identifier

(or memory) among parallel processes, as done in several previous works. This also implies that

events in the system (e.g., communications / choices / session establishments) need not be tagged

with fresh identifiers. Another source of simplicity is the kind of (labeled) choice used in session-

based concurrency. Rather than non deterministic choice, session processes rely on deterministic,

labeled choices; divided into constructs for external and internal choice (representing selection and

branching, using pairwise distinct labels), the branches of a labeled choice are in conflict by def-

inition: two running processes cannot perform the same selection, and a given running process

cannot select more than one option of a complementary offer. As a result, we are able to prove

causal consistency with rather simple reduction stamps; we only need to univocally identify all the

processes in the system as well as the session on which they perform their communication actions.

Controlled reversibility has been first studied by Danos and Krivine in [37], who introduce

irreversible actions in RCCS to model transactions. Lanese et al. [29] control reversibility in the

higher-order π-calculus via an explicit rollback operator that reverts the computation up to a par-

ticular point. Other approaches to controlled reversibility have been developed by Bacci et al. [38],

using energy parameters to drive the evolution of the process; by Phillips et al. [39] who use a non-

reversible controller to guide the execution of a reversible process; and, more recently, by Kuhn

and Ulidowski [40], who address controlled reversibility that is local to a prefix action (as opposed

to mechanisms defined externally to the process).

Models of Behavioral Types and Contracts. The interplay between reversibility and models of

behavioral types and contracts has been studied in [12, 41, 42].

As already mentioned, Tiezzi and Yoshida [10, 12] were the first to investigate a reversible

semantics for session-based concurrency, by adapting the approach of [15] into ReSπ, a π-calculus

with binary sessions. The calculus ReSπ is equipped with three different kinds of memories (action,

choice, fork); its semantics is given in terms of a reduction relation. The key properties of this

semantics (Loop lemma and causal consistency) are established in this untyped setting. Then, a
posteriori, it is shown that a standard type system for binary sessions can be reused for ReSπ,

and associated subject reduction and type safety results are established. An extension of ReSπ

32

with committable sessions, expressed by a dedicated construct at the level of processes, is also

developed. The main difference between our work and [12] is that we critically rely on session

type information to enact reversibility. While untyped, processes in our setting are governed by

session types included in the monitor associated to each session endpoint; our monitors can thus

be seen as a uniform kind of memory. Since session types directly guide the forward and backward

semantics of processes in our model, our analysis of reversibility properties (most notably, causal

consistency) in explicitly accounts for the protocols specified by session types. We further show

that forms of controlled reversibility can be programmed by equipping the session types in monitors

with reversibility modes attached to individual communication actions.

The recent work [42] complements [12] by analyzing the cost of enforcing different forms of

reversibility in single (sequential) sessions; the study covers calculi for both binary and multiparty

sessions. As in [12], the analysis carried out in [42] is operational and does not consider session

type information guiding the behavior of processes. It should be interesting to assess the merits of

our monitor-based approach to session reversibility following the systematic study detailed in [42].

In another recent work, Dezani-Ciancaglini and Giannini develop a model of multiparty sessions

with checkpoints, named points specified in a global protocol (before internal and external choices)

to which computation may return [43]. This reversibility mechanism is different from ours, for

rollback operations should specify the name of the checkpoint to which computation should revert.

Although intuitively similar, theories of behavioral types (such as session types) and contracts

differ in aspects such as the treatment of choices and subtyping [44] (see also the survey [4]).

Barbanera et al. have studied reversible/retractable contracts from different perspectives [11, 41,

45]. In [11], they study the impact of a disciplined form of backtracking in the compliance relation

for language of contracts with checkpoints, and obtain alternative characterizations for it. In [41]

the interplay between contracts and rollback is studied, and a decidable compliance relation is

obtained. The key idea is to store the discarded branches of a choice in a log, which is used when

a process is stuck and willing to rollback to its last decision point. In this way, if a branch of a

choice fails, execution may continue by following one of the stored branches. Disciplining contract

rollback is simpler than in [29], since contracts (as session types) describe sequential interactions.

Controlling backward actions using reversibility modes is somewhat similar to the rollbacks in [41],

although our framework cannot disable a branch once it has been reverted: rather than narrowing

forward actions, the reversibility modes considered here concern reversible actions—they say how

many times an action can be reverted. We plan to explore alternative formulations for (reversibility)

modes, so as to control also forward actions and encode rollbacks as in [41]. The recent work [45]

gives a game-theoretical interpretation of compliance in retractable contracts via three-party games

involving a client, a server, and an orchestrator.

Our reduction semantics for session-based concurrency bears similarities with the operational

semantics usually given to session calculi with asynchronous, monitored behavior. Indeed, our

model builds upon a style of process semantics in which monitors (which include session types)

enable and guide process behavior, formally expressed via reduction steps. To our knowledge, the

first formulation of this kind was introduced by Kouzapas [16]; it has been later used for different

purposes/motivations, including eventful sessions [17], asynchronous session semantics [18], and

33

adaptation [19, 20]. To our knowledge this is the first time that this formulation is used to support

reversibility. Our semantics is also similar to that present in session frameworks with run-time

verification capabilities, such as those presented in, e.g., [23, 6]. Since these works do not support

reversibility, our approach may suggest enhancements for their dynamic verification capabilities.

Finally, as already hinted at in the introduction, reversible semantics for session-based con-

currency can be seen as loosely related to existing process models with specific constructs for

exceptions, compensations, adaptation, and transactions (see, e.g., [46, 47, 48, 8]). In a way, such

constructs implement particular strategies for reversing the behavior of a process/program, usu-

ally exploiting the granularity and information given by some explicit delimiter (such as try/catch

blocks or adaptation scopes). A main difference between reversible semantics and constructs such

as compensation handlers is that the latter define ad-hoc pieces of code that lead the system back

to a consistent state, possibly different from the ones that the process/program has already gone

through; in contrast, reversible steps correspond to previously executed actions. Also, while con-

structs such as exceptions typically act triggered by some external stimulus (e.g., a raised exception

or an adaptation request), reversibility steps are embedded in (and automatically enacted by) a pro-

gram’s operational semantics. Despite these conceptual differences, Lanese et al. have shown that

forms of compensations and (controlled) reversibility can be fruitfully combined [49, 50].

8. Concluding Remarks and Future Work

We have proposed a fresh approach to reversible semantics for session-based concurrency. Our

approach builds upon a style of process semantics in which run-time monitors include session

types and enable process reductions. Even if this style of process semantics is not new—it was

introduced in [16] and later used in [17, 18, 19, 20]—to our knowledge this is the first time that

this formulation is used to support a reversible semantics that is causally consistent.

We rely on monitors which contain session types enhanced with descriptions of past and future

structured interactions; these types offer a uniform form of memories for supporting forward and

backward semantics. We motivated our approach by introducing a simple process framework with

session establishment, input-output communication, and labeled choices; extensions with other

usual session constructs, such as recursion, are straightforward. To highlight the simplicity of our

approach, we considered binary session types [1]. Our approach should scale to account also for

multiparty structured communications [2]; in such a setting, monitors would be generated after

multiparty session establishment, and would be equipped with local projections of global types,

as in [23, 51]. A multiparty, asynchronous semantics may need to consider forms of coordinated
reversibility among different partners; we plan to address these challenges in future work.

Most models of reversible processes (cf. [13]) do not consider (behavioral) types, and so their

reversible semantics must account for arbitrarily complex forms of concurrent behavior. In re-

versing the untyped π-calculus, substitutions and scope extrusion are known to be challenging

issues [27, 35]. Reversing session processes is a seemingly simpler problem, as behavior is disci-

plined by types: once a session is established, concurrency interactions proceed in a deterministic,

confluent manner. Also, in session π-calculi scope extrusion is limited. Our developments show

34

that explicitly considering types in the reduction semantics for session processes leads to signifi-

cant simplifications in proofs of key correctness properties, such as causal consistency. Intuitively,

these simplifications are due to the less amount of information related to configurations that needs

to be recorded in order to establish auxiliary technical properties.

As already discussed, the work [12] is the first to address reversibility for a synchronous π-

calculus with binary session types. A key difference between our work and [12] is the role that

session types play in the reversible semantics. While we used session types to define forward and

backward semantics, the reversible semantics in [12] establishes key results for reversibility (most

notably, causal consistency) using an untyped reduction semantics. Hence, the influence of types

on the reversible semantics of [12] is indirect at best.

As further topics for future work, inspired by [42] we plan to establish the precise savings in-

volved from moving from (i) an untyped reversible semantics to (ii) a monitored reversible seman-

tics with types, as proposed here. We also plan to compare the (untyped) reversible higher-order

processes in [15] and the core higher-order session calculus in [52], which may precisely encode

the first-order session π-calculus. Moreover, it should be useful to develop alternative formulations

of controlled reversibility via type annotations. We believe that type annotations, in the form of

advanced reversibility modes (cf. Section 5), could encode the rollback facility of [41].

Acknowledgments. We are grateful to Ilaria Castellani, Ivan Lanese, and Dimitris Kouzapas for

useful exchanges and constructive criticism. We would also like to thank the anonymous reviewers

and attendees of PLACES 2016 for their suggestions and feedback. Furthermore, we are grateful

to Mariangiola Dezani-Ciancaglini and to the anonymous reviewers of the present paper for their

useful remarks and suggestions, which led to substantial improvements.

This work was partially supported by COST Actions IC1201 (Behavioral Types for Reliable

Large-Scale Software Systems), IC1402 (Runtime Verification beyond Monitoring), and IC1405

(Reversible Computation - Extending Horizons of Computing). Pérez has been partially supported

by CNRS PICS project 07313 (SuCCeSS); he is also affiliated to the NOVA Laboratory for Com-

puter Science and Informatics (NOVA LINCS - PEst/UID/CEC/04516/2013), Universidade Nova

de Lisboa, Portugal.

References

[1] K. Honda, V. T. Vasconcelos, M. Kubo, Language primitives and type discipline for structured

communication-based programming, in: C. Hankin (Ed.), ESOP’98, Vol. 1381 of Lecture

Notes in Computer Science, Springer, 1998, pp. 122–138. doi:10.1007/BFb0053567.

[2] K. Honda, N. Yoshida, M. Carbone, Multiparty asynchronous session types, in: G. C. Nec-

ula, P. Wadler (Eds.), POPL 2008, ACM, 2008, pp. 273–284. doi:10.1145/1328438.
1328472.

[3] L. Caires, H. T. Vieira, Conversation types, Theor. Comput. Sci. 411 (51-52) (2010) 4399–

4440. doi:10.1016/j.tcs.2010.09.010.

35

[4] H. Hüttel, I. Lanese, V. T. Vasconcelos, L. Caires, M. Carbone, P.-M. Deniélou, D. Mostrous,

L. Padovani, A. Ravara, E. Tuosto, H. T. Vieira, G. Zavattaro, Foundations of session types

and behavioural contracts, ACM Comput. Surv. 49 (1) (2016) 3:1–3:36. doi:10.1145/
2873052.

URL http://doi.acm.org/10.1145/2873052

[5] L. Caires, C. Ferreira, H. T. Vieira, A process calculus analysis of compensations, in: C. Kak-

lamanis, F. Nielson (Eds.), TGC 2008, Vol. 5474 of Lecture Notes in Computer Science,

Springer, 2009, pp. 87–103. doi:10.1007/978-3-642-00945-7_6.

[6] R. Demangeon, K. Honda, R. Hu, R. Neykova, N. Yoshida, Practical interrupt-

ible conversations: distributed dynamic verification with multiparty session types and

python, Formal Methods in System Design 46 (3) (2015) 197–225. doi:10.1007/
s10703-014-0218-8.

[7] S. Capecchi, E. Giachino, N. Yoshida, Global escape in multiparty sessions, Math-

ematical Structures in Computer Science 26 (2) (2016) 156–205. doi:10.1017/
S0960129514000164.

[8] C. D. Giusto, J. A. Pérez, Disciplined structured communications with disciplined runtime

adaptation, Sci. Comput. Program. 97 (2015) 235–265. doi:10.1016/j.scico.2014.
04.017.

[9] L. Jia, H. Gommerstadt, F. Pfenning, Monitors and blame assignment for higher-order session

types, in: POPL 2016, ACM, 2016, pp. 582–594. doi:10.1145/2837614.2837662.

[10] F. Tiezzi, N. Yoshida, Towards reversible sessions, in: A. F. Donaldson, V. T. Vasconcelos

(Eds.), Proceedings 7th Workshop on Programming Language Approaches to Concurrency

and Communication-cEntric Software, PLACES 2014, Grenoble, France, 12 April 2014.,

Vol. 155 of EPTCS, 2014, pp. 17–24. doi:10.4204/EPTCS.155.3.

URL http://dx.doi.org/10.4204/EPTCS.155.3

[11] F. Barbanera, M. Dezani-Ciancaglini, U. de’Liguoro, Compliance for reversible client/server

interactions, in: M. Carbone (Ed.), Proceedings Third Workshop on Behavioural Types,

BEAT 2014, Rome, Italy, 1st September 2014., Vol. 162 of EPTCS, 2014, pp. 35–42.

doi:10.4204/EPTCS.162.5.

URL http://dx.doi.org/10.4204/EPTCS.162.5

[12] F. Tiezzi, N. Yoshida, Reversible session-based pi-calculus, J. Log. Algebr. Meth. Program.

84 (5) (2015) 684–707. doi:10.1016/j.jlamp.2015.03.004.

[13] V. Danos, J. Krivine, Reversible communicating systems, in: P. Gardner, N. Yoshida (Eds.),

Proc. of CONCUR 2004, Lecture Notes in Computer Science, Springer, 2004, pp. 292–307.

doi:10.1007/978-3-540-28644-8_19.

36

[14] I. C. C. Phillips, I. Ulidowski, Reversing algebraic process calculi, J. Log. Algebr. Program.

73 (1-2) (2007) 70–96. doi:10.1016/j.jlap.2006.11.002.

URL http://dx.doi.org/10.1016/j.jlap.2006.11.002

[15] I. Lanese, C. A. Mezzina, J.-B. Stefani, Reversing higher-order pi, in: P. Gastin, F. Laroussinie

(Eds.), Proc. of CONCUR 2010, Lecture Notes in Computer Science, Springer, 2010, pp.

478–493. doi:10.1007/978-3-642-15375-4_33.

[16] D. Kouzapas, A Session Type Discipline for Event Driven Programming Models, Master’s

thesis, Imperial College London (September 2009).

URL http://www.doc.ic.ac.uk/teaching/distinguished-projects/
2009/d.kouzapas.pdf

[17] R. Hu, D. Kouzapas, O. Pernet, N. Yoshida, K. Honda, Type-safe eventful sessions in java, in:

T. D’Hondt (Ed.), Proc. of ECOOP 2010, Vol. 6183 of Lecture Notes in Computer Science,

Springer, 2010, pp. 329–353. doi:10.1007/978-3-642-14107-2_16.

[18] D. Kouzapas, N. Yoshida, K. Honda, On asynchronous session semantics, in: Proc. of

FMOODS 2011 and FORTE 2011, Vol. 6722 of Lecture Notes in Computer Science, Springer,

2011, pp. 228–243. doi:10.1007/978-3-642-21461-5_15.

[19] C. D. Giusto, J. A. Pérez, An event-based approach to runtime adaptation in communication-

centric systems, in: T. T. Hildebrandt, A. Ravara, J. M. van der Werf, M. Weidlich (Eds.),

Web Services, Formal Methods, and Behavioral Types - 11th International Workshop, WS-

FM 2014 and 12th International Workshop, WS-FM/BEAT 2015. Revised Selected Papers,

Vol. 9421 of Lecture Notes in Computer Science, Springer, 2015, pp. 67–85. doi:10.
1007/978-3-319-33612-1_5.

URL http://dx.doi.org/10.1007/978-3-319-33612-1_5

[20] M. Coppo, M. Dezani-Ciancaglini, B. Venneri, Self-adaptive multiparty sessions, Ser-

vice Oriented Computing and Applications 9 (3-4) (2015) 249–268. doi:10.1007/
s11761-014-0171-9.

[21] S. Capecchi, I. Castellani, M. Dezani-Ciancaglini, Information flow safety in multiparty ses-

sions, in: B. Luttik, F. Valencia (Eds.), Proc. of EXPRESS 2011, Vol. 64 of EPTCS, 2011,

pp. 16–30. doi:10.4204/EPTCS.64.2.

[22] I. Castellani, M. Dezani-Ciancaglini, J. A. Pérez, Self-adaptation and secure information flow

in multiparty communications, Formal Aspects of Computing 28 (4) (2016) 669–696. doi:
10.1007/s00165-016-0381-3.

URL http://dx.doi.org/10.1007/s00165-016-0381-3

[23] L. Bocchi, T. Chen, R. Demangeon, K. Honda, N. Yoshida, Monitoring networks through

multiparty session types, in: D. Beyer, M. Boreale (Eds.), Proc. of FMOODS/FORTE 2013,

37

Vol. 7892 of Lecture Notes in Computer Science, Springer, 2013, pp. 50–65. doi:10.
1007/978-3-642-38592-6_5.

[24] C. A. Mezzina, J. A. Pérez, Reversible sessions using monitors, in: D. A. Orchard, N. Yoshida

(Eds.), Proceedings of the Ninth workshop on Programming Language Approaches to

Concurrency- and Communication-cEntric Software, PLACES 2016, Vol. 211 of EPTCS,

2016, pp. 56–64. doi:10.4204/EPTCS.211.6.

URL http://dx.doi.org/10.4204/EPTCS.211.6

[25] C. A. Mezzina, J. A. Pérez, Reversible semantics in session-based concurrency, in: V. Bilò,

A. Caruso (Eds.), Proceedings of the 17th Italian Conference on Theoretical Computer Sci-

ence, Lecce, Italy, September 7-9, 2016., Vol. 1720 of CEUR Workshop Proceedings, CEUR-

WS.org, 2016, pp. 221–226.

URL http://ceur-ws.org/Vol-1720

[26] M. Lienhardt, I. Lanese, C. A. Mezzina, J.-B. Stefani, A reversible abstract machine

and its space overhead, in: H. Giese, G. Rosu (Eds.), Proc. of FMOODS/FORTE

2012, Lecture Notes in Computer Science, Springer, 2012, pp. 1–17. doi:10.1007/
978-3-642-30793-5_1.

[27] I. Cristescu, J. Krivine, D. Varacca, A compositional semantics for the reversible p-calculus,

in: Proc. of LICS2013, IEEE Computer Society, 2013, pp. 388–397. doi:10.1109/
LICS.2013.45.

[28] J. Lévy, An algebraic interpretation of the lambda beta k-calculus; and an application of

a labelled lambda -calculus, Theor. Comput. Sci. 2 (1) (1976) 97–114. doi:10.1016/
0304-3975(76)90009-8.

URL http://dx.doi.org/10.1016/0304-3975(76)90009-8

[29] I. Lanese, C. A. Mezzina, A. Schmitt, J.-B. Stefani, Controlling reversibility in higher-order

pi, in: J. Katoen, B. König (Eds.), Proc. of CONCUR 2011, Lecture Notes in Computer

Science, Springer, 2011, pp. 297–311. doi:10.1007/978-3-642-23217-6_20.

[30] D. Kouzapas, N. Yoshida, R. Hu, K. Honda, On asynchronous eventful session semantics,

Mathematical Structures in Computer Science 26 (2) (2016) 303–364. doi:10.1017/
S096012951400019X.

URL http://dx.doi.org/10.1017/S096012951400019X

[31] G. Boudol, I. Castellani, Flow models of distributed computations: Three equivalent seman-

tics for CCS, Inf. Comput. 114 (2) (1994) 247–314. doi:10.1006/inco.1994.1088.

URL http://dx.doi.org/10.1006/inco.1994.1088

[32] I. C. C. Phillips, I. Ulidowski, Operational semantics of reversibility in process algebra, Electr.

Notes Theor. Comput. Sci. 162 (2006) 281–286. doi:10.1016/j.entcs.2005.12.

38

095.

URL http://dx.doi.org/10.1016/j.entcs.2005.12.095

[33] D. Medic, C. A. Mezzina, Static VS dynamic reversibility in CCS, in: S. J. Devitt,

I. Lanese (Eds.), Reversible Computation - 8th International Conference, RC 2016, Vol.

9720 of Lecture Notes in Computer Science, Springer, 2016, pp. 36–51. doi:10.1007/
978-3-319-40578-0_3.

[34] L. Cardelli, C. Laneve, Reversible structures, in: F. Fages (Ed.), Proc. of CMSB 2011, ACM,

2011, pp. 131–140. doi:10.1145/2037509.2037529.

[35] I. Lanese, C. A. Mezzina, J. Stefani, Reversibility in the higher-order π-calculus, Theor. Com-

put. Sci. 625 (2016) 25–84. doi:10.1016/j.tcs.2016.02.019.

URL http://dx.doi.org/10.1016/j.tcs.2016.02.019

[36] E. Giachino, I. Lanese, C. A. Mezzina, F. Tiezzi, Causal-consistent rollback in a tuple-

based language, Journal of Logical and Algebraic Methods in Programming (2016)

1–22doi:http://dx.doi.org/10.1016/j.jlamp.2016.09.003.

URL http://www.sciencedirect.com/science/article/pii/
S2352220816301109

[37] V. Danos, J. Krivine, Transactions in RCCS, in: M. Abadi, L. de Alfaro (Eds.), Proc of

CONCUR 2005, 2005, pp. 398–412. doi:10.1007/11539452_31.

URL http://dx.doi.org/10.1007/11539452_31

[38] G. Bacci, V. Danos, O. Kammar, On the statistical thermodynamics of reversible com-

municating processes, in: A. Corradini, B. Klin, C. Cı̂rstea (Eds.), Algebra and Coalge-

bra in Computer Science - 4th International Conference, CALCO 2011, 2011, pp. 1–18.

doi:10.1007/978-3-642-22944-2_1.

URL http://dx.doi.org/10.1007/978-3-642-22944-2_1

[39] I. Phillips, I. Ulidowski, S. Yuen, A reversible process calculus and the modelling of the

ERK signalling pathway, in: R. Glück, T. Yokoyama (Eds.), Reversible Computation, 4th

International Workshop, RC 2012. Revised Papers, 2012, pp. 218–232. doi:10.1007/
978-3-642-36315-3_18.

URL http://dx.doi.org/10.1007/978-3-642-36315-3_18

[40] S. Kuhn, I. Ulidowski, A calculus for local reversibility, in: S. J. Devitt, I. Lanese (Eds.),

Reversible Computation - 8th International Conference, RC 2016,, Vol. 9720 of Lecture Notes

in Computer Science, Springer, 2016, pp. 20–35.

[41] F. Barbanera, M. Dezani-Ciancaglini, I. Lanese, U. de’Liguoro, Retractable contracts, in:

S. Gay, J. Alglave (Eds.), PLACES 2015, Vol. 203 of Electronic Proceedings in Theoreti-

cal Computer Science, Open Publishing Association, 2016, pp. 61–72. doi:10.4204/
EPTCS.203.5.

39

[42] F. Tiezzi, N. Yoshida, Reversing single sessions, in: S. J. Devitt, I. Lanese (Eds.), Reversible

Computation - 8th International Conference, RC 2016, Vol. 9720 of Lecture Notes in Com-

puter Science, Springer, 2016, pp. 52–69.

[43] M. Dezani-Ciancaglini, P. Giannini, Reversible multiparty sessions with checkpoints, in:

D. Gebler, K. Peters (Eds.), Proceedings Combined 23rd International Workshop on Ex-

pressiveness in Concurrency and 13th Workshop on Structural Operational Semantics, EX-

PRESS/SOS 2016, Québec City, Canada, 22nd August 2016., Vol. 222 of EPTCS, 2016, pp.

60–74. doi:10.4204/EPTCS.222.5.

URL http://dx.doi.org/10.4204/EPTCS.222.5

[44] C. Laneve, L. Padovani, The pairing of contracts and session types, in: P. Degano, R. D.

Nicola, J. Meseguer (Eds.), Concurrency, Graphs and Models, Essays Dedicated to Ugo Mon-

tanari on the Occasion of His 65th Birthday, Vol. 5065 of Lecture Notes in Computer Science,

Springer, 2008, pp. 681–700. doi:10.1007/978-3-540-68679-8_42.

URL http://dx.doi.org/10.1007/978-3-540-68679-8_42

[45] F. Barbanera, U. de’Liguoro, A game interpretation of retractable contracts, in: A. Lluch-

Lafuente, J. Proença (Eds.), Coordination Models and Languages - COORDINATION 2016,

Vol. 9686 of Lecture Notes in Computer Science, Springer, 2016, pp. 18–34. doi:10.
1007/978-3-319-39519-7_2.

URL http://dx.doi.org/10.1007/978-3-319-39519-7_2

[46] M. Carbone, K. Honda, N. Yoshida, Structured interactional exceptions in session types, in:

F. van Breugel, M. Chechik (Eds.), Proc of CONCUR 2008, 2008, pp. 402–417. doi:
10.1007/978-3-540-85361-9_32.

URL http://dx.doi.org/10.1007/978-3-540-85361-9_32

[47] E. de Vries, V. Koutavas, M. Hennessy, Communicating transactions - (extended abstract),

in: P. Gastin, F. Laroussinie (Eds.), Proc. of CONCUR 2010, 2010, pp. 569–583. doi:
10.1007/978-3-642-15375-4_39.

URL http://dx.doi.org/10.1007/978-3-642-15375-4_39

[48] C. Ferreira, I. Lanese, A. Ravara, H. T. Vieira, G. Zavattaro, Advanced mechanisms for ser-

vice combination and transactions, in: M. Wirsing, M. M. Hölzl (Eds.), Rigorous Software

Engineering for Service-Oriented Systems - Results of the SENSORIA Project on Software

Engineering for Service-Oriented Computing, Vol. 6582 of Lecture Notes in Computer Sci-

ence, Springer, 2011, pp. 302–325. doi:10.1007/978-3-642-20401-2_14.

URL http://dx.doi.org/10.1007/978-3-642-20401-2_14

[49] I. Lanese, C. A. Mezzina, J.-B. Stefani, Controlled reversibility and compensations, in:

R. Glück, T. Yokoyama (Eds.), Reversible Computation, 4th International Workshop, RC

2012. Revised Papers, Vol. 7581 of Lecture Notes in Computer Science, Springer, 2013, pp.

233–240.

40

[50] I. Lanese, M. Lienhardt, C. A. Mezzina, A. Schmitt, J.-B. Stefani, Concurrent flexible re-

versibility, in: M. Felleisen, P. Gardner (Eds.), Programming Languages and Systems - 22nd

European Symposium on Programming, ESOP 2013, Vol. 7792 of Lecture Notes in Computer

Science, Springer, 2013, pp. 370–390. doi:10.1007/978-3-642-37036-6.

[51] I. Castellani, M. Dezani-Ciancaglini, J. A. Pérez, Self-adaptation and secure information flow

in multiparty structured communications: A unified perspective, in: BEAT 2014, Vol. 162 of

EPTCS, 2014, pp. 9–18. doi:10.4204/EPTCS.162.2.

[52] D. Kouzapas, J. A. Pérez, N. Yoshida, On the relative expressiveness of higher-order ses-

sion processes, in: P. Thiemann (Ed.), Programming Languages and Systems - 25th Eu-

ropean Symposium on Programming, ESOP 2016, 2016, pp. 446–475. doi:10.1007/
978-3-662-49498-1_18.

URL http://dx.doi.org/10.1007/978-3-662-49498-1_18

41

Appendix A. Omitted Proofs

Appendix A.1. Proof of Proposition 3.2
Proposition 3.2. Any reachable configuration M is well formed.

Proof. By Definition 3.6, M is a reachable configuration if M0 −→∗ M , for some initial configu-

ration M0. The proof is then by induction on n, the length of the reduction sequence M0 −→∗ M .

In the base case (n = 0) we have to show that initial configurations are well formed. We pro-

ceed to check the conditions of Definition 3.7: Condition (1) holds since in an initial configuration

all running process identifiers are unique. Conditions (2), (3), (4a) and (4b) trivially hold since an

initial configuration contains no monitors.

In the inductive case (n > 0) we have that M0 −→∗ Mn −→ M . The proof then proceeds by

case analysis on the reduction Mn −→ M . Let us note that all the conditions in Definition 3.7 are

on the running process identifiers and on the monitor (session) names. Moreover, the only rules

that modify these identifiers/names are OPEN and its inverse OPEN
�, so we detail the analysis for

these two rules. For the remaining rules all the properties trivially hold by inductive hypothesis.

OPEN By Lemma 3.1 we have that:

Mn ≡ νã.

⎛⎝ ∏
i∈I

〈
Ki[Pi] · σi · ũi

〉
δ i

‖
∏
j∈J

sj�Hj · ẽj�
⎞⎠

Since Mn −→ M via Rule OPEN, this implies that there exist z, w ∈ I such that

Pw = u〈x : S〉.Pw Pz = u′(y : T).Pz σw(u) = σz(u
′) dual(S, T)

s �∈ δw s �∈ δz

Moreover thanks to Barendregt’s Variable Convention, we can assume also

s, s �∈ fn(Kw) ∪ fn(Kz)

Let N stand for
∏

i∈I\{z,w}
〈
Ki[Pi] · σi · ũi

〉
δ i

‖ ∏
j∈J sj�Hj · ẽj�. We then have:

Mn ≡ νã.

(
N ‖ 〈

Kw[u〈x : S〉.Pw] · σw · ũw
〉
δw

‖ 〈
Kz[u

′(y : T).Pz] · σz · ũz
〉
δz

)
� ν(s, s).νã.

(
N ‖ 〈

Kw[Pw] · σw[x �→ s] · ũw, u
〉
δw, s

‖ s� ˆS · x�

‖ 〈
Kz[Pz] · σz[y �→ s] · ũz, u′

〉
δz , s

‖ s� ˆT · y�
)

≡ M

By inductive hypothesis Condition (1) holds for all the running processes indexed by I \
{z, w} and for δz and δw. Moreover, since s and s are fresh, this condition also holds for δz, s

42

and δw, s. By inductive hypothesis Conditions (2) and (3) hold for all the monitors whose

session endpoint index is in J . Since s and s are fresh then these conditions also hold for

the newly created monitors. Similarly, by inductive hypothesis we have that Conditions (4a)

and (4b) hold for all the monitored processes whose identifier is indexed by I \ {z, w} and

for δz and δw. Since two new monitors identified by endpoints s and s are created, then

Condition (4a) is satisfied by running process identifiers δz, s and δw, s, and since the two

endpoints are fresh there is no clash with other existing ones. Hence, Condition (4b) holds.

OPEN� This case is similar to the previous one. The difference is that two endpoints (and related

monitors) of a session are removed by the reduction.

Appendix A.2. Proof of Lemma 3.2

Lemma 3.2. Let M and N be reachable configurations. Then: M � N ⇐⇒ N �M .

Proof. By induction on the derivation of M � N for the if direction, and on the derivation of

N �M for the converse. We examine a few cases in both directions; the rest is similar.

• Rule OPEN. By Lemma 3.1 we have that:

M ≡ νã.

⎛⎝ ∏
i∈I

〈
Ki[Pi] · σi · ũi

〉
δ i

‖
∏
j∈J

sj�Hj · ẽj�
⎞⎠

and since Rule OPEN is applied, then there exist indexes w, z ∈ I such that

Pw = u〈x : S〉.Pw Pz = u′(y : T).Pz σw(u) = σz(u
′) dual(S, T)

s �∈ δw s �∈ δz s, s �∈ fn(Kw) ∪ fn(Kz)

Let M1 stand for
∏

i∈I\{w,z}
〈
Ki[Pi] · σi · ũi

〉
δ i

‖ ∏
j∈J sj�Hj · ẽj�. We then have:

M � νã, s, s.
(
M1 ‖

〈
Kw[Pw] · σw[x �→ s] · ũw, u

〉
δw, s

‖ 〈
Kz[Pz] · σz[y �→ s] · ũz, u′

〉
δz , s

‖ sw� ˆT · x� ‖ sz� ˆS · y�) = M ′

It is easy to see that by applying Rule OPEN� from M ′ we get back to M , as desired.

• Rule CHOICE. By Lemma 3.1 we have that:

M ≡ νã.

⎛⎝ ∏
i∈I

〈
Ki[Pi] · σi · ũi

〉
δ i

‖
∏
j∈J

sj�Hj · ẽj�
⎞⎠

43

and since Rule CHOICE is applied, then there exist indexes w, z ∈ I and m,n ∈ J such that

Pw = k � lb.P Pz = k′ � {la : Qa , lb : Qb}
Hm = T[ˆ ⊕ {la:Sa, lb:Sb}] Hn = S[ˆ&{la:Ta, lb:Tb}]

with σw(k) = s, s ∈ δw, σz(k
′) = s and s ∈ δz . Let

M1 =
∏

i∈I\{z,w}

〈
Ki[Pi] · σi · ũi

〉
δ i

‖
∏

j∈J\{m,n}
sj�Hj · ẽj�

H
′[•] = H[k′ � {la : 〈Qa〉 , lb : •}]

Then we have:

M � νã.

(
M1 ‖

〈
K[P] · σw · ũw, k

〉
δw

‖ 〈
H

′[Qb] · σz · ũz
〉
δz

‖

s�T[⊕{la:Sa, lb: ˆSb}] · ẽ1, lb� ‖ s�S[&{la:Ta, lb: ˆTb}] · ẽ2�
)

= M ′

It is easy to see that by applying Rule CHOICE� from M ′ we get back to M , as desired.

• Rule COM
�. By Lemma 3.1 we have that:

M ≡ νã.

⎛⎝ ∏
i∈I

〈
Ki[Pi] · σi · ũi

〉
δ i

‖
∏
j∈J

sj�Hj · ẽj�
⎞⎠

and since Rule COM
� is applied, then there exist indexes w, z ∈ I and m,n ∈ J such that

σw(kw) = s s ∈ δw ũw = ũ′w, kw ũz = ũ′z, kz σz(kz) = s s ∈ δz

Hm = T1[?U. ˆSh] Hn = T2[!U. ˆSk]

Let

M1 =
∏

i∈I\{w,z}

〈
Ki[Pi] · σi · ũi

〉
δ i

‖
∏

j∈J\{m,n}
sj�Hj · ẽj�

Then we have:

M ≡ νã.

(
M1 ‖

〈
Kw[Pw] · σw · ũ′w, kw

〉
δw

‖ 〈
Kz[Pz] · σz · ũ′z, kz

〉
δz

‖

s�T1[?U. ˆSm] · ẽm, x� ‖ s�T2[!U. ˆSn] · ẽn, e�
)

By applying Rule COM� we have that:

M � νã.

(
M1 ‖

〈
Kw[kw(x).Pw] · σw \ x · ũ′w

〉
δw

‖ 〈
Kz[kz〈e〉.Pz] · σz · ũ′z

〉
δz

‖

s�T1[?U. ˆSm] · ẽm� ‖ s�T2[!U. ˆSn] · ẽn�
)

= M ′

It is easy to see that by applying Rule COM from M ′ we get back to M , as desired.

44

Appendix A.3. Proof of Lemma 4.1
Lemma 4.1 (Square Lemma). If t1 : M

η1−→ M1 and t2 : M
η2−→ M2 are two coinitial concurrent

reductions, then there exist two cofinal reductions t2/t1 = M1
η2−→ N and t1/t2 = M2

η1−→ N .

Proof. By case analysis on the form of reductions t1 and t2. Our analysis considers different cases:

both t1 and t2 are forward reductions; t1 is a forward reduction and t2 is a backward reduction; and

both t1 and t2 are backward reductions.

t1 and t2 forward: We have then 9 sub-cases, corresponding to combinations of Rules (OPEN)

and (OPEN), (OPEN) and (COM), (OPEN) and (CHOICE), (COM) and (OPEN), (COM) and

(COM), (COM) and (CHOICE), (CHOICE) and (OPEN), (CHOICE) and (COM), (CHOICE)

and (CHOICE). All the cases are similar, we will just detail the one of Rules (OPEN) and

(CHOICE). We have that:

M ≡ νã.

(〈
K1[u(x : S).P] · σ1 · ũ1

〉
δ 1

‖ 〈
K2[u

′〈y : R〉.Q] · σ2 · ũ2
〉
δ 2〈

K3[k � li.Pi] · σ3 · ũ3
〉
δ 3

‖ 〈
K4[k

′ � {lj : Qj , li : Qi}] · σ4 · ũ4
〉
δ 4

‖

s�T[ˆ ⊕ {lj :Sj , li:Si}] · ẽ3� ‖ s�S[ˆ&{lj :Tj , li:Ti}] · ẽ4� ‖ M0

)
with:

σ1(u) = σ2(u
′) dual(S,R) σ3(k) = s σ4(k

′) = s

Since M is well formed, we have that all the δi (1 ≤ i ≤ 4) are pairwise disjoint. We have

then M �M1 by using Rule OPEN with:

M1 ≡ νã, r, r.

(〈
K1[P] · σ1 · ũ1, u

〉
δ 1,r

‖ 〈
K2[Q] · σ2[y �→ r] · ũ2, u′

〉
δ 2,r

‖

r� ˆS · x� ‖ r� ˆR · y� ‖ 〈
K3[k � li.Pi] · σ3 · ũ3

〉
δ 3

‖〈
K4[k

′ � {lj : Qj , li : Qi}] · σ4 · ũ4
〉
δ 4

‖

s�T[ˆ ⊕ {lj :Sj , li:Si}] · ẽ3� ‖ s�S[ˆ&{lj :Tj , li:Ti}] · ẽ4� ‖ M0

)
and M �M2 by using Rule CHOICE with:

M2 ≡ νã.

(〈
K1[u(x : S).P] · σ1 · ũ1

〉
δ 1

‖ 〈
K2[u

′〈y : R〉.Q] · σ2 · ũ2
〉
δ 2〈

K3[P] · σ3 · ũ3, k
〉
δ 3

‖ 〈
K4[k

′ � {lj : 〈Qj〉 , li : Qi}] · σ4 · ũ4, k′
〉
δ 4

‖

s�T[⊕{lj :Sj , li: ˆSi}] · ẽ3, li� ‖ s�S[&{lj :Tj , li: ˆTi}] · ẽ4� ‖ M0

)

45

Now both M1 and M2 reduce to:

N ≡ νã, r, r.

(〈
K1[P] · σ1 · ũ1, u

〉
δ 1,r

‖ 〈
K2[Q] · σ2[y �→ r] · ũ2, u′

〉
δ 2,r

‖

r� ˆS · x� ‖ r� ˆR · y� ‖ 〈
K3[P] · σ3 · ũ3, k

〉
δ 3

‖〈
K4[k

′ � {lj : 〈Qj〉 , li : Qi}] · σ4 · ũ4, k′
〉
δ 4

‖

s�T[⊕{lj :Sj , li: ˆSi}] · ẽ3, li� ‖ s� ˆ S[&{lj :Tj , li: ˆTi}] · ẽ4� ‖ M0

)
which concludes the sub-case.

t1 forward and t2 backward: We have then 9 sub-cases, corresponding to combinations of Rules

(OPEN) and (OPEN�), (OPEN) and (COM�), (OPEN) and (CHOICE�), (COM) and (OPEN�),

(COM) and (COM�), (COM) and (CHOICE�), (CHOICE) and (OPEN�), (CHOICE) and (COM�),

(CHOICE) and (CHOICE�). All the cases are similar, we just detail the case involving

Rules (OPEN�) and (CHOICE). We have:

M ≡ νã, r, r.

(〈
K1[P] · σ1[x �→ r] · ũ1, u

〉
δ 1,r

‖ 〈
K2[Q] · σ2[y �→ r] · ũ2, u′

〉
δ 2,r

‖

r� ˆS · x� ‖ r� ˆR · y� ‖ 〈
K3[k � li.Pi] · σ3 · ũ3

〉
δ 3

‖〈
K4[k

′ � {lj : Qj , li : Qi}] · σ4 · ũ4
〉
δ 4

‖

s�T[ˆ ⊕ {lj :Sj , li:Si}] · ẽ3� ‖ s�S[ˆ&{lj :Tj , li:Ti}] · ẽ4� ‖ M0

)
with:

σ1[x �→ r](u) = σ2[y �→ r](u′) σ3(k) = s σ4(k
′) = s

We have that M �M1 by using Rule OPEN�

M1 ≡ νã.

(〈
K1[u(x : S).P] · σ1 · ũ1

〉
δ 1

‖ 〈
K2[u

′〈y : R〉.Q] · σ2 · ũ2
〉
δ 2〈

K3[k � li.Pi] · σ3 · ũ3
〉
δ 3

‖ 〈
K4[k

′ � {lj : Qj , li : Qi}] · σ4 · ũ4
〉
δ 4

‖

s�T[ˆ ⊕ {lj :Sj , li:Si}] · ẽ3� ‖ s�S[ˆ&{lj :Tj , li:Ti}] · ẽ4� ‖ M0

)
and M �M2 by using Rule CHOICE with:

M2 ≡ νã, r, r.

(〈
K1[P] · σ1 · ũ1, u

〉
δ 1,r

‖ 〈
K2[Q] · σ2[y �→ r] · ũ2, u′

〉
δ 2,r

‖

r� ˆS · x� ‖ r� ˆR · y� ‖ 〈
K3[P] · σ3 · ũ3, k

〉
δ 3

‖〈
K4[k

′ � {lj : 〈Qj〉 , li : Qi}] · σ4 · ũ4, k′
〉
δ 4

‖

s�T[⊕{lj :Sj , li: ˆSi}] · ẽ3, li� ‖ s� ˆ S[&{lj :Tj , li: ˆTi}] · ẽ4� ‖ M0

)

46

Now both M1 and M2 reduce to:

N ≡ νã.

(〈
K1[u(x : S).P] · σ1 · ũ1

〉
δ 1

‖ 〈
K2[u

′〈y : R〉.Q] · σ2 · ũ2
〉
δ 2〈

K3[P] · σ3 · ũ3, k
〉
δ 3

‖ 〈
K4[k

′ � {lj : 〈Qj〉 , li : Qi}] · σ4 · ũ4, k′
〉
δ 4

‖

s�T[⊕{lj :Sj , li: ˆSi}] · ẽ3, li� ‖ s�S[&{lj :Tj , li: ˆTi}] · ẽ4� ‖ M0

)
which concludes the sub-case.

t1 and t2 backward: We then have 9 sub-cases, corresponding to combinations of Rules (OPEN�)

and (OPEN�), (OPEN�) and (COM�), (OPEN�) and (CHOICE�), (COM�) and (OPEN�), (COM�)

and (COM�), (COM�) and (CHOICE�), (CHOICE�) and (OPEN�), (CHOICE�) and (COM�),

(CHOICE�) and (CHOICE�). All the cases are similar to their forward version by just consid-

ering the arrival configuration N as the initial one and viceversa.

Appendix A.4. Proof of Lemma 4.2
Lemma 4.2 (Rearranging Lemma). Given a trace ρ, there exist forward traces ρ′ and ρ′′ such that

ρ � ρ′•; ρ′′.

Proof. By lexicographic induction on len(ρ) and on the distance between the first reduction in ρ
and the earliest pair t, t′• of opposing reductions in ρ with t and t′ being forward reductions. If

there is no such a pair then either ρ′ or ρ′′ are empty and we are done. If there is at least one pair

then the analysis considers whether t and t′ (with stamps η1 and η2, respectively) are concurrent or

in conflict:

t and t′ are concurrent. Then λ(η1) ∩ λ(η2) = ∅. By the Square Lemma (Lemma 4.1), we know

that the execution order between the two reductions is unimportant; we can therefore swap

them, which results in an earliest contradicting pair occurring later in ρ. The thesis then

follows by induction, since the swapping of reductions keeps len(ρ) unchanged.

t and t′ are in conflict. Then λ(η1) ∩ λ(η2) �= ∅ and we consider two possibilities: either the two

stamps are equal (a “total” conflict) or not (a “partial” conflict). In the following, we let

λ(η1) = {κ1 : s1 ; κ2 : s1} and λ(η2) = {κ3 : s2 ; κ4 : s2}.

Sub-case λ(η1) = λ(η2): Then t = t′, i.e., t′• undoes t. By applying Loop Lemma

(Lemma 3.2) we can remove t; t′• from ρ. As a result, len(ρ) decreases and we can con-

clude by induction on a shorter trace.

Sub-case λ(η1) �= λ(η2): Then there is a κi or a session name (si or si) present in both

stamps. We have several possibilities:

• (κ1 ∈ {κ3, κ4}) ∨ (κ2 ∈ {κ3, κ4})

47

• (κ3 ∈ {κ1, κ2}) ∨ (κ4 ∈ {κ1, κ2})
• (s1 ∈ {s2, s2}) ∨ (s1 ∈ {s2, s2})
• (s2 ∈ {s1, s1}) ∨ (s2 ∈ {s1, s1})

None of this possibilities can occur, due to well-formedness conditions on configurations (cf.

Definition 3.7). To show this, we content ourselves with detailing two main possibilities: in

the first we have a clash on the names of the named sequence; in the second we have a clash

on session endpoints. The analysis for the remaining cases is similar.

Sub-case κ1 = κ3. Condition (1) of Definition 3.7 stipulates that running processes do not

share identifiers κi. Therefore, exactly one monitored process bears name κ1, which in

turn implies that this monitored process first performs reduction t (on names s1, s1) and

subsequently performs a reduction (on names s2, s2, different from s1, s1) that undoes

t′. But this is impossible, because sessions are linear and monitored processes do not

contain parallel processes: this has to do with the fact that the subject used by t is put

on the top of the subject list, and should be used by t′ to revert the action. We thus

conclude that this case never occurs.

Sub-case s1 = s2. Conditions (2), (3), and (4) of Definition 3.7 together ensure that for each

session (along endpoints si, si) there exist exactly two monitors, and that each endpoint

belongs exactly to one running process identifier. This excludes the possibility that a

reduction such as t′• (involving monitored processes identified by κ3, κ4) can revert

a reduction such as t, which originated in different monitored processes identified by

κ1, κ2 (which are different from κ3, κ4). Hence, this case cannot occur either.

Appendix A.5. Proof of Lemma 4.3

Lemma 4.3 (Shortening Lemma). Let ρ1 and ρ2 be coinitial and cofinal traces, with ρ2 forward.

Then, there exists a forward trace ρ′1 such that ρ′1 � ρ1 and len(ρ′1) ≤ len(ρ1).

Proof. By induction on len(ρ1). If ρ1 is a forward trace then ρ′1 = ρ1 and we are done.

Otherwise, by Rearranging Lemma (Lemma 4.2) we can write ρ1 as ρ•; ρ′ (with both ρ and ρ′

forward). Let t•; t′ be the only two opposing reductions in ρ1, with t• being the last reduction of

ρ•, and t′ being the first reduction of ρ′. Since ρ1 and ρ2 are coinitial and cofinal, the reduction

reversed by t• has to be redone by another forward reduction in ρ′, otherwise this difference will

remain visible since ρ2 is forward.

Let η be the stamp of t, and let t1 be the earliest reduction in ρ′ with stamp η1 such that

λ(η) = λ(η1). By linearity of the session, and since there are no parallel processes inside a

session, we know that t1 redoes the action deleted by t•. That is to say, t = t1.

When t• and t1 are already contiguous (i.e., t1 = t) we can remove them using �. The

resulting trace is shorter, thus the thesis follows by inductive hypothesis. Otherwise, if t• and t1

48

are not contiguous, we can use the Square Lemma (Lemma 4.1) to swap t1 with all of its preceding

reductions, and obtain a trace in which t• and t1 are contiguous: we use the fact that all reductions in

between are concurrent to t1. To prove this latter claim, suppose that λ(η1) = {κ1 : s1, κ2 : s1} and

assume that there exists a forward reduction t2 with stamp η2 such that λ(η2) = {κ3 : s2, κ4 : s2}
and λ(η1) ∩ λ(η2) �= ∅. Since t1 �= t2, we have several possibilities:

• (κ1 ∈ {κ3, κ4}) ∨ (κ2 ∈ {κ3, κ4})
• (κ3 ∈ {κ1, κ2}) ∨ (κ4 ∈ {κ1, κ2})
• (s1 ∈ {s2, s2}) ∨ (s1 ∈ {s2, s2})
• (s2 ∈ {s1, s1}) ∨ (s2 ∈ {s1, s1})

None of this possibilities can occur, due to well-formedness conditions on configurations (cf. Def-

inition 3.7). We will consider just two cases, the others are similar.

κ1 = κ3. By well-formedness there exists only one monitored process bearing this name. This

implies that the monitored process identified by κ1 does a forward action in t2 different from

the one undone by t•. But this is impossible by linearity and by the fact that if in t2 there

cannot be a point of decision (e.g. a choice) since t1 can still do the action undone by t•. So

this case can never happen.

s1 = s2. By well formedness conditions, we have that for each session (s, s) there exist exactly

two monitors, and that each session endpoint belongs exactly to one running process identi-

fier. Then it is not the case that reduction t′ reverts an action on session (s, s) different from

the one of t (unless t = t′).

We then conclude that all (forward) reductions between t• and t1 (such as t2) are concurrent to t1
and therefore they can be swapped as described earlier.

Appendix A.6. Proof of Theorem 4.1
Theorem 4.1 (Causal Consistency). Let ρ1 and ρ2 be two traces. ρ1 � ρ2 if and only if ρ1 and ρ2
are coinitial and cofinal.

Proof. We first prove the ‘if’ direction, i.e., if ρ1 � ρ2 then ρ1 and ρ2 are coinitial and cofinal.

First, notice that if ρ1 � ρ2 then it must be the case that ρ1 can be transformed into ρ2 (and vice

versa) through n ≥ 0 applications of the rules in Definition 4.8. We then proceed by induction

on n. In the base case, n = 0, we have that ρ1 � ρ2 by applying 0 times the rules of �. Since �
is an equivalence, this means that ρ1 = ρ2 which in turn implies that the traces are coinitial and

cofinal. In the inductive case, we have that there exist n traces ρk (with 0 ≤ k ≤ n) obtained as a

result of applying the rules of � to ρ1 exactly k times; hence, ρ0 = ρ1 and ρn = ρ2. We then have

that ρn−1 � ρ2, i.e., traces ρn−1 and ρ2 differ in one axiom application; this means that we can

decompose both traces as follows:

ρn−1 = ρa; ρ
′; ρb ρ2 = ρa; ρ

′′; ρb

49

with ρ′ and ρ′′ differing just by one application of �. We have then three cases, informed by

Definition 4.8:

1. ρ′ = t1; t2/t1 and ρ′′ = t2; t1/t2

2. ρ′ = t; t• and ρ′′ = εsource(t)

3. ρ′ = t•; t and ρ′′ = εtarget(t)

In all cases it is easy to see that ρn−1 and ρ2 are both coinitial and cofinal. By inductive hypothesis,

ρ1 � ρn−1 implies that ρ1 and ρn−1 are coinitial and cofinal; since ρn−1 � ρ2 implies that they

are coinitial and cofinal, we can conclude that also ρ1 and ρ2 are coinitial and coifinal if ρ1 � ρ2.

We now prove the ‘only if’ direction, i.e., if ρ1 and ρ2 are coinitial and cofinal then ρ1 � ρ2.

The proof is by induction on len(ρ1) + len(ρ2), and on the distance between the end of ρ1 and the

earliest pair of differing reductions t1 : M1
η1−→ N1 and t2 : M2

η2−→ N2, with t1 ∈ ρ1 and t2 ∈ ρ2.

If there is no such a pair, then ρ1 and ρ2 are equal and the theorem trivially holds. Otherwise,

we consider four cases depending on the direction of t1 and t2. We use the Rearranging Lemma

(Lemma 4.2), which ensures that any trace can be written as a composition of a backward sub-trace

followed by a forward sub-trace.

t1 forward and t2 backward: We then infer that ρ1 = ρ•; t1; ρ′1 and ρ2 = ρ•; t2; ρ′2, where ρ• is

the common backward sub-trace and t1; ρ
′
1 is a forward trace. Since by hypothesis ρ1 and

ρ2 are coinitial and cofinal, also t1; ρ
′
1 and t2; ρ

′
2 are coinitial and cofinal. By applying the

Shortening Lemma (Lemma 4.3) on the sub-traces t1; ρ
′
1 and t2; ρ

′
2, we obtain that t2; ρ

′
2 has

a shorter causally equivalent forward trace and therefore ρ2 has a shorter causally equivalent

forward trace. We can then conclude by induction.

t2 forward and t1 backward: This case is similar to the previous one.

t1 and t2 forward: By assumption t1 �= t2. We first establish whether t1 and t2 are in conflict or

not (i.e., they are concurrent). Let λ(η1) = {κ1 : s1, κ2 : s1} and λ(η2) = {κ3 : s2, κ4 : s2}.

Suppose that t1 and t2 are in conflict; this means that λ(η1)∩λ(η2) �= ∅, together with several

possibilities:

• (κ1 ∈ {κ3, κ4}) ∨ (κ2 ∈ {κ3, κ4})
• (κ3 ∈ {κ1, κ2}) ∨ (κ4 ∈ {κ1, κ2})
• (s1 ∈ {s2, s2}) ∨ (s1 ∈ {s2, s2})
• (s2 ∈ {s1, s1}) ∨ (s2 ∈ {s1, s1})

We consider two representative cases, the others are similar:

κ1 = κ3. By well-formedness conditions only one running process bears this name. This im-

plies that the running process identified by κ1 contributes in parallel to both reductions,

t1 and t2, using different names (s1 and s2). But this is impossible by sequentiality of

processes, which forces t1 and t2 to occur in sequence, but not in parallel.

50

s1 = s2. By well formedness conditions, for each session (si, si) there exist exactly two

monitors, and each endpoint belongs exactly to one running process. But this contra-

dicts the assumption that reductions t1 and t2 are different.

We therefore conclude that t1 and t2 are not in conflict—they are concurrent. Moreover,

since ρ1 and ρ2 are coinitial and cofinal there must exist a reduction t′2 ∈ ρ1 equal to t2.

We have to show that t′2 is concurrent with respect to all previous reductions in ρ1. Since all

of them are forward reductions, none of them reverses the state of the monitors used by t′2.

Moreover, by well formedness conditions, we have that for each session (si, si) there exist

exactly two monitors, and that each endpoint belongs exactly to one running process. Since

all the reductions that precede t′2 are concurrent with respect to it, we can repeatedly apply

the Square Lemma (Lemma 4.1) to derive a trace causally equivalent to ρ1 in which t1 and t′2
are consecutive. By applying the Square Lemma one more time, we obtain a trace causally

equivalent to ρ1, with the same length, but in which the difference with ρ2 appears later on.

We can then conclude by induction.

t1 and t2 backward: t1 and t2 cannot undo the same action. Since ρ1 and ρ2 are coinitial and

cofinal, then either (i) there is a later forward reduction in ρ1 that cancels out t1 (i.e., the

reverse step by t1 is “local” to ρ1, and does not appear in ρ2), or (ii) there is a backward

reduction in ρ2 that corresponds to t1, for the two traces are coinitial and cofinal. We examine

these two cases separately:

(i) We have that t1 is concurrent to all the subsequent backward reductions, excepting to

those operating on the same session. Each of these backward reductions of this kind has

a corresponding forward reduction that deletes its effects; otherwise, its effect would

be visible in ρ2, contradicting the assumption that t1 is eventually undone. We take the

last of such backward reductions, and by using the Square Lemma, we make it the last

backward one. Now, the forward reduction that reverses such a reduction is concurrent

with all the preceding forward reductions. We use the Square Lemma to make it the

first forward reduction. At this point, we may apply axiom t; t• � εsource(t) to obtain a

causally equivalent, but shorter, trace. The thesis then follows by induction.

(ii) The analysis for this case is similar to the one in which both t1 and t2 are forward.

51

