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elastic massless beams. The periodic cell dynamics is governed by a monoatomic
structural model, conveniently reduced to the only active degrees-of-freedom.
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asymptotic approximation of the dispersion functions. The parametric conditions
for the existence of full band gaps in the low-frequency range are established.
Furthermore, the band gap amplitude is analytically assessed in the admissible
parameter range. In inertial tetrachiral metamaterials, stop bands can be opened
by the introduction of intra-ring resonators. Perturbation methods can efficiently
deal with the consequent enlargement of the mechanical parameter space. Indeed
high-accuracy parametric approximations are achieved for the band structure,
enriched by the new optical branches related to the resonator frequencies. In
particular, target stop bands in the metamaterial spectrum are analytically
designed through the asymptotic solution of inverse spectral problems.
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1. Introduction

Several theoretical and applied research fields are cur-
rently developing a renewed interest in the high me-
chanical performances of cellular and periodic mate-
rials. Consequently, their traditional role of efficient
structural elements is undergoing a rapid evolution.
This trend is also catalysed by virtuous synergies with
the recent extraordinary developments in paramet-
ric design, multi-scale modeling, computational tech-
niques and multi-disciplinary meta-analyses. Within
this scientific framework, advanced theoretical formu-
lations and revolutionary manufacturing technologies
contribute to offer solid prospects for the birth of new-
generation materials, with superior mechanical prop-
erties and smart multi-field functionalities.

Within the specific context of solid and structural
mechanics, a promising challenge focuses on exploiting
the periodic microstructure and the marked anisotropy
of some chiral or anti-chiral lattice materials to steer
or stop elastic waves along particular directions. One
of the simplest planar configuration realizing a chiral
honeycomb consists of a regular microstructure made
of stiff disks or rings, connected by a variable num-
ber of flexible ligaments [Prall and Lakes (1997); Sig-
mund et al. (1998); Alderson et al. (2010)]. The lead-
ing idea is that, within certain admissible ranges, the
microstructural parameters can be employed as design
variables to tailor the dispersion properties of the ma-
terial. Among the possible technological advances, an
appealing goal is the synthesis of highly-costumizable
elastic media, suited to serve as mechanical guides or
phononic filters for optical and acoustic signals.

Based on these motivations, considerable research
attention has been devoted over the last decade to an-
alyze and/or control the dispersion properties of differ-
ent periodic microstructures with chiral characteristics.
These analyses have been based on low-dimensional
Lagrangian models [Carta et al. (2014); Wang et al.
(2015); Bacigalupo and Lepidi (2016)], high-fidelity
computational formulations [Spadoni et al. (2009);
Shim et al. (2015); Zhao and Wang (2016)], equivalent
homogenized continua [Liu et al. (2012); Bacigalupo
and Gambarotta (2014); Bacigalupo and De Bellis
(2015); Rosi and Auffray (2016); Reda et al. (2017)]
and experimental prototypes [Tee et al. (2010)]. A de-
cisive boost to the research on this topic comes from
the discovery that stop bands can be opened in the
spectrum of a chiral solid through the introduction of
intra-ring inertial resonators. The resulting inertial
metamaterials have already attracted several studies
focused on both direct and inverse spectral problems
[Liuet al. (2011); Baravelli and Ruzzene (2013); Bigoni
et al. (2013); Bacigalupo and Gambarotta (2016)].

According to the simplest mathematical formula-
tion, the direct spectral problem consists in determin-
ing the dispersion function w(p, k) in the Brillouin do-
main B, spanned by the wavevector k, for a certain
periodic material, fully described by a given set p of
microstructural parameters. The spectral design, in-
stead, can be regarded as an inverse problem, consist-
ing in determining which parameter set p realizes an
unknown periodic material (if one exists), character-
ized by a desired dispersion function w(p, k). Clearly,
the solution of any direct or inverse spectral problem
can greatly benefit from the availability of an explicit
form for the dispersion relation w(p,k), as an ana-
lytical function of the (p,k)-variables. On the con-
trary, the eigenproblem governing the wave dispersion
returns an implicit dispersion relation F(w,p, k) = 0,
which is not explicitly invertible in the general case.
Therefore, the numerical routine for the direct problem
solution consists in the step-by-step construction of the
frequency loci over a sufficiently fine discretization of
the B-domain, fixed the parameter set p. Similarly, the
typical attack to inverse problems is based on highly-
demanding procedures of computational optimization
[Sigmund and Jensen (2003); Diaz et al. (2005); Baci-
galupo et al. (2016, 2017)].

Perturbation methods can represent an efficient
alternative tool, suited to determine explicit — though
asymptotically approximate — analytical expressions
of the dispersion relation for periodic structures
[Langley (1995); Vakakis and King (1995); Pierre et al.
(1996); Romeo and Luongo (2002)], as well as for
their equivalent homogeneized continua [Craster et al.
(2012)]. In Bacigalupo and Lepidi (2016), a multi-
parameter perturbation strategy has been outlined to
build up asymptotic approximations for the dispersion
functions of Lagrangian lattice models. The strategy
is based on including both the wavenumbers and
the mechanical parameters in the small amplitude
perturbation vector g’ = (p’,k’), spanning a small-
radius multi-dimensional hyper-sphere centered at a
suited reference point pu° of the multi-parameter space.
By virtue of a recursive formulation, the perturbation
equations governing the direct spectral problem up to
the desired approximation order have been derived for
a generic lattice, independently of the dimensions of
the Lagrangian model and the parameter space. The
equation solutions, consisting of the multi-parametric
sensitivities of the dispersion functions, have been
verified to well-approximate the spectrum of the anti-
tetrachiral material, along specific directions of the B-
domain. Furthermore, the same perturbation strategy
has been successfully applied to attack a basic inverse
spectral problem [Lepidi and Bacigalupo (2017b)].
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Figure 1. Tetrachiral metamaterial (a) repetitive planar pattern, (b) periodic cell, (¢c) beam lattice model.

The purpose of the present work is to upgrade the
perturbation strategy, in order to govern advanced di-
rect and inverse problems. The tetrachiral microstruc-
ture is chosen as benchmark material typology. The
first task concerns the systematic employment of the
multi-parameter perturbation technique for the asymp-
totic approximation of the dispersion surfaces over the
entire irreducible Brillouin zone. In this respect, a
complementary issue regards the search for full band
gaps in the material spectrum. Indeed, the availabil-
ity of parametric dispersion functions strongly facili-
tates the establishment of mechanical conditions for
the existence of stop bands, as well as for the assess-
ment of their amplitude. The second task regards the
novel application of the multi-parameter perturbation
technique to parametrically approximate the disper-
sion curves of the inertial metamaterial, whose cellular
microstructure is characterized by a higher model di-
mension and a larger parameter space. In particular,
the challenging point consists in preserving the accu-
racy of the asymptotic approximation in a denser spec-
trum, enriched by the resonator frequencies. The final
purpose is the parametric design of the resonator prop-
erties, in order to govern the opening of a stop band in
the material spectrum, by simply assigning the desired
bandwidth, centered around a frequency of interest.

The paper is organized as follows. First, a
Lagrangian structural model is formulated to describe
the free undamped dynamics of the periodic cell for
the tetrachiral material and metamaterial (Section 2).
Second, the Floquet-Bloch theory is followed to state
the wave propagation problem (Section 3), and the
multi-parameter perturbation strategy of solution is
presented, with some attention paid to the mnovel
algorithmic developments (Paragraph 3.1). Therefore,
the exact and asymptotically approximate dispersion
functions are presented for the tetrachiral material
(Section 4) and metamaterial (Section 5). Different
technical issues are analyzed, including the location of

the unperturbed points in the parameter space, the
dimension of the perturbation vector, the accuracy
and validity of the asymptotic approximation, the
suitability of a certain parameter ordering. In parallel,
several aspects of mechanical interest are discussed,
concerning the occurrence of multiple frequencies,
the conditions for the existence of low-frequency
stop bands, the parametric assessment of the stop
bandwidth, the evaluation and improvement of the
resonator effects (Paragraphs 4.1 and 5.1). In
particular, design procedures for the inertial resonator
parameters are sketched, in order to open a desired
stop band in the material spectrum (Paragraph 5.2).
Conclusive remarks are finally pointed out.

2. Beam lattice model

The two-dimensional geometric pattern of the tetrachi-
ral material is based on a regular, periodic tessellation
of the infinite Euclidean plane with square cells (Fig-
ure 1la). The mechanical behaviour of each elementary
cell is characterized by an internal structure, or mi-
crostructure, including a central circular ring connected
to four tangent ligaments organized according to a chi-
ral scheme (Figure 1b). By virtue of the chirality, the
linear ring-ligament coupling may activate the so-called
rolling up deformation mechanism, accountable for the
distinctive auxeticity connoting the elastic macroscopic
response of the material [Grima et al. (2008); Alderson
et al. (2010); Lorato et al. (2010); Chen et al. (2014);
Dirrenberger et al. (2012, 2013); Bacigalupo and Gam-
barotta (2014)].

A synthetic but accurate approach to formulate
a low-dimensional Lagrangian model of the tetrachiral
material can be based on a beam lattice formulation.
According to this idea, the circular ring is supposed
heavy and sufficiently stiff to be modeled as a massive
rigid body. The ring mass M and rotational inertia
J can be freely assigned, by independently setting
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the mean diameter D, the annular width and the
material density. The varied configuration of the rigid
body is described by the three planar displacements
(in-plane translations Up, Vi and rotation 6;) of the
configurational node (1) located at the ring centroid
(Figure 1c). The four identical ligaments are assumed
sufficiently light and flexible to be described by
linear, extensible, unshearable and massless beams,
with elastic and geometric properties defining the
extensional FA and flexural rigidity £I. The natural
length of the beams is L = Hcosf, where H is
the cell side length and S = arcsin(D/H) is the
ligament inclination angle with respect to the mesh
lines connecting the ring centres. Due to the geometric
periodicity, the cell boundary crosses the midspan of
each ligament. Consequently, the varied configuration
of the i-th beam is fully described by the rigid motion
of the ligament-ring connection, at the one end, and
the three planar displacements (U;, V;,0;) of the i-th
configurational node (i =@),...,6)) located at the cell
boundary, at the other end.

The inertial metamaterial can be obtained by
adding local resonators consisting in intra-ring circular
masses, which are co-centered and elastically coupled
with the hosting rings. Each resonator is modeled
as an undamped linear oscillator with mass M, and
rotational inertia Jy. The stiffness of the ring-resonator
coupling is ideally provided by a pair of translational
springs and a rotational spring with elastic constants
K, and Ky, respectively. Therefore, the three circular
frequencies of the free-standing oscillator are Q2 =
K, /M, (double frequency) and Qy = Kp/Jy. The
oscillator dynamics is described by the three planar
displacements (Us, Vs, ) of the configurational node
®. It is worth remarking that, in the reference
configuration, the configurational nodes @ and ()
share the same position at the ring centroid.

Denoting €. a known circular frequency serving
as auxiliary dimensional reference, the inertial, elastic
and geometric properties of the cell microstructure
are described by the minimal set p of independent
nondimensional parameters

where § expresses the spatial density of the rings, mea-
suring also the material mass density at the macro-
scopic scale. The inverse of the nondimensional radius
of gyration g accounts for the beam slenderness. The
X2-parameter describes the rotational-to-translational
mass ratio of the rings, while w, is a nondimensional
normalization frequency, which can be assumed to be
unitary in the following without loss of generality.
Additional mechanical parameters are necessary
to describe the inertial resonators of the metamaterial.
The resonator masses and frequencies are taken as

principal parameters, and the stiffnesses as dependent
quantities (according to the rule K, = QEMT and Ky =
Qng). Therefore, the minimal set of independent
parameters p describing the metamaterial cell must be
enriched by the nondimensional quantities
QO M, Qo Jo
- ; a2:_7“’ Yo = ) X?Z 2 (2)
M w8 M,.H

where, among the others, the nondimensional res-
onator frequency 7 and resonator-to-ring mass ratio

a? are the most relevant parameters.

= Wch

2.1. Equation of motion

According to the mechanical assumptions, the linear
dynamics of the periodic cell is governed by a multi-
degrees-of-freedom model, referred to six configuration
nodes. The actual configuration of the i-th node is
described by the nondimensional displacement vector
d; = (ug,v4,0;), where the variables
2 w=g Q
Consequently, the cell configuration is described by a
15-by-1 displacement vector q = (qi,...,qs) for the
tetrachiral material, or a 18-by-1 displacement vector
q = (qi,-..,qe) for the tetrachiral metamaterial.
Employing the direct stiffness method to govern
the dynamic equilibrium, the undamped free response
of the Lagrangian model is governed by the ordinary
differential equations of motion

M(p)q + K(p)q = f (4)
where the dot denotes differentiation with respect to
the nondimensional time 7 = ¢, while M(p) and
K(p) are the parameter-dependent mass and stiffness
matrices. Finally, the vector f collects the elastic forces
exerted by the adjacent cells to the boundary nodes.

The configuration vector can be partitioned in the
form q = (qq, qp) by properly distinguishing

U; =

e the active displacements q, of the massive central
nodes, where inertial forces may develop

e the passive displacements q, of the massless
boundary nodes, where only static forces may act.

To specify, the active displacement vector is q, =
(a1,96) for the metamaterial (but coincides with qy
in the absence of inertial resonators), while the passive
displacement vector is q, = (q2,...,q95). According
to the displacement partition and dropping the matrix
dependence on p, the equations of motion read

ol(i) e Rl(3)-() o

where O stands for empty matrices. The lower equa-
tion expresses the quasi-static equilibrium regulating
the passive displacements of the boundary nodes.



Multi-parametric sensitivity analysis of the band structure for tetrachiral inertial metamaterials 5

Therefore, the elastic wave propagation through
the cellular material can be analyzed by exploiting the
structural periodicity. In particular, the Floquet-Bloch
boundary conditions can be imposed on the displace-
ments and forces of the boundary nodes, in order to ac-
count for the planar waves propagating across adjacent
cells. Denoting k1 and ko the wavenumbers of the hori-
zontally and vertically propagating waves, respectively,
the nondimensional wavevector b = (1, f2) can be de-
fined, where 81 = k1H and 82 = koH. The b-vector
spans the first Brillouin zone B = [—7, 7] X [—7, 7].

Moreover, a suited reduction of the model
dimension can be achieved by applying a classic quasi-
static condensation to the passive displacements. This
procedure univocally relates the passive to the active
displacements according to a linear law, without any
further approximation. It may be worth remarking
that no algebraic adjustments are required to apply the
condensation procedure to the metamaterial, as long as
the resonators and the boundary nodes are uncoupled.
Finally, the free wave dynamics of the periodic material
is governed by the reduced equation

M, (p)dq + Ko(p,b)g, =0 (6)

where K,(p,b) is a b-dependent generalization
of the condensed stiffness matrix, with Hermitian
properties. The parametric matrices Mg (p), Ko (p, b)
are reported in the Appendix A for the tetrachiral
material and metamaterial.

3. Band structure

The wave equation (6) can be tackled by imposing the
harmonic mono-frequent solution q, = v, exp(iwT),
where w = Q/Q. and Q are the unknown nondimen-
sional and dimensional wave frequency, respectively.
Therefore, eliminating the dependence on time, a linear
eigenproblem can be obtained in the standard form
(H(pa b) - /\I)qba =0 (7)
where A = w? and H(p, b) = Q(p)~ 'K (p,b)Q(p) ',
with Q(p) following from the unique decomposition
of the diagonal matrix M(p) = Q(p)  Q(p). Denot-
ing F(\, p, b) the characteristic polynomial of the ma-
trix H(p, b), the eigenvalues A(p, b) are the real-valued
roots of the characteristic equation F'(\, p, b) = 0. The
corresponding complex-valued eigenvectors 1, (p, b) =
Q(p) !¢, (p, b) represent the polarization mode of the
w(p, b)-monofrequent propagating wave. Depending
on the different model dimension, the tetrachiral ma-
terial and metamaterial possess three and six eigen-
pairs (A, ¢,), respectively. The dispersion functions
w(b) over the first irreducible Brillouin zone By C B
fully characterize the Floquet-Bloch spectrum (or band
structure) of the material described by certain mechan-
ical parameters p [Brillouin (2003)].

The parametric analysis of the material band
structure is usually performed numerically, by carrying
out the dispersion surfaces (over the Bj-zone) or
the dispersion curves (along the closed boundary
0By of the Bj-zone). Indeed, in the absence of
closed-form eigensolutions, the typical computational
approach consists in a brute-force treatment of the
implicit dispersion relation F'(A,p,b) = 0. Basically,
the simplest procedure is based on the step-by-step
construction of the eigenvalue (or frequency) loci over
a sufficiently fine discretization of the b-space, fixed
a certain p-value. Therefore, the loci construction is
cycled until the whole parameter range of interest is
spanned by gradual p-updates.

3.1. Multi-parameter perturbation method

A proper alternative to the numerical description of the
band structure may consist in seeking for an explicit —
though approximate — analytic form of the dispersion
relation A = f(p,b). To this purpose, perturbation
methods turn out to be efficient mathematical tools,
suited to provide asymptotic approximations of the
dispersion functions with fine quantitative accuracy
and wide-range validity in the parameter space.

Following a multi-parameter perturbation method
(MPPM), suited for high-dimensional, multi-parame-
tric Lagrangian models of periodic materials with dense
spectra [Luongo (1995); Lepidi (2013); Bacigalupo and
Lepidi (2016)], the extended parameter vector g =
(p, b) can be introduced. Therefore, all the mechanical
parameters and the wavenumbers are simultaneously
scaled according to their smallness by assigning the
tentative ordering

ple) =p° +ep (8)
where the small nondimensional parameter ¢ < 1 has
a mere algorithmic role and must not be interpreted as
a physical variable, according to the well-established
literature of multi-parameter perturbation techniques
(e.g. the Multiple Scale Method). If necessary, higher
order terms (namely €" 1™ with n > 1) can be added.

The generic eigenvalue satisfying the characteristic
equation can be postulated to admit the asymptotic
expansion in integer e-power series

Me) =X+ eXN +EN 4+ A 4 (9)

where the (u°, p')-dependent coefficient A(™) can be
regarded as the n-th e-derivative (evaluated at € = 0
and divided by the factorial n!) of the exact but implicit
eigenvalue function F'(A, u(e)) = 0. In the parameter
space, (") represents the directional derivative in the
p/~direction (evaluated in p = p°), and is also known
as the n-th eigenvalue sensitivity, or eigensensitivity.
According to the classic perturbation theory,
the series expansion A(e) is expected to provide a
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good local approximation, that is, to well-match the
exact eigenvalue in the neighborhood of the reference
parameter set pu® = (p°,b°), for a generic (small)
multi-parametric perturbation p/ = (p’,b’). In the
absence of singularities, the approximation accuracy
can be improved and extended by adding terms to the
A(€)-series. Thus, performing a local multi-parameter
sensitivity analysis of the band structure consists in
analytically determining all the local eigensensitivities
A (u°, ') up to the desired n-th order.

Two brief remarks are worth being pointed out
to clarify the features of this perturbation scheme.
First, small perturbation of the mechanical parameters
or wavenumbers can be treated indifferently, since
both p’ and b’ represent particular directions in the
extended parameter space. Second, the reference
point p° = (p°,b°) in the parameter space plays a
mere algorithmic role as starting point for the local
sensitivity analysis. Consequently, the unperturbed
microstructure described to the parameters p° is
actually a mathematical abstraction, which may even
not correspond to a physical realization of the material.

Introducing the parameter ordering p(e) and the
eigenvalue expansion A(e), the characteristic function
G(e) = F(A(€), u(e)) can be expanded in e-series

1 n

—err e+ e WG

2! n!
where the n-th coefficient requires to determine the n-
th e-derivative of a multi-variable composite function
(in € = 0). After some manipulations to work with the
multi-variable case, the Scott-Faa di Bruno’s formula
(Scott (1861)) can be applied to deal with the inner
series functions A(e), p(¢), yielding

1 (hslpl)
G — n [n]
So%:k) g:k h+k)! [ h”]w:wllv:m

G(e)

+.. (10)

(11)

where the (h, k)-index set S(h, k) = (h,k € [0,h+k =
n]) and So(h,k) = S(h,k) — (0,0). The instruction
of mutual exclusion pu® = 0]|A\° = 0 requires zeroing
either p° or \° after formal e-differentiation.

Defining ¢ the dimension of the parameter vector
w = (t1,..., pre) and ajppn = j(h + |p| + 1) — n, the
partial derivatives for generic h, k read
o WL, ., ...
N Oltp, -

) /'I’Pk)

Flpl) —
Oy,

(12)

while the multi-parametric recursion r[}z_} defines the
non-differential, polynomial function

n , () LI E)) .
[n] _ Wjhpn) (A Hi [n—3]
= 3 (M) (S + o)
j=1

i=1 g

(13)

with initialization r,[LL] (A°)*(u°)P. The improve-
ment with respect to classmal formulas is that the equa-
tion (11) holds for a generic ¢-number of perturbation

parameters, without limitations in the n-order of the
approximation. The generic high-order parameter per-
turbation p(e) = p° + ep’ + ... 4+ € u(™ is also taken
into account. Furthermore, a major mathematical ad-
vantage is that this formulation leverages analytical
e-derivatives to by-pass the applicative efforts of dif-
ferentiating the composite function F'(A(€), pu(€)) with
respect to the inner variable.

The perturbation method requires the character-
istic equation to be asymptotically satisfied. Thus, an
ordered chain of n perturbation equations is stated by
zeroing each e(™-order coefficient G(™). The solution
algorithm depends on the individual algebraic multi-
plicity m® of the eigenvalues \° satisfying the zeroth-
order equation G° = F(A°, u°) = 0. The theoretical
background is fully illustrated in Bacigalupo and Le-
pidi (2016), where two fundamental algorithmic cases
(m° =1 and m® = 2) are sketched, with focus on the
mathematical treatment of the low-order indetermina-
cies which rise up for m® > 1.

As original development with respect to this
background, the analytical formula for the unique
solution of the n-th order perturbation equation has
been determined (exactly). Indeed, in the simplest
case of a single generating eigenvalue (m° = 1, which
also implies F(19) =£ 0), the explicit multi-parametric
formula for the n-th order eigensensitivity A reads

Fhlpl)
(n) — _
A F(l 0) Z Z (14)

i) (o= k (h+Ek)! [ L °=0|[|A°=0

[n]

where n > 1 and the multi-parametric recursion Shp
defines the polynomial function

L
S = (b + [pl) (z ; >A°
n-1 ) ¢, @

A jhpn A M [n—3]
P () (S )
j=1

i—1 M

ne)P + (15)

which has to be initialized with sg = (\°)(uo)r.
After all the calculations, the e-parameter concludes
its auxiliary role and can be completely re-absorbed to
obtain the eigenvalue approximation (9) in the form
A = f(p). In the practice, the parameter ordering (8)
must be inverted (so that the relation g’ = e~ (pu—p°)
is obtained) and substituted in each sensitivity.

In summary, the equation (14) allows to analyti-
cally build up the asymptotic multi-parameter approx-
imation of the dispersion functions A = f(p,b) up to
the desired n-th order, by simply evaluating the par-
tial (A, p, b)-derivatives of the characteristic function
F()\, p,b). Apart pathological situations, the asymp-
totic approximation is expected to be locally accurate,
that is, to well-match the exact solution within a small
region (typically, the sphere with e-radius) centered in
the (p°, b°)-point of the extended parameter space.



Multi-parametric sensitivity analysis of the band structure for tetrachiral inertial metamaterials 7

(a)

By By B3 By By By Bs B
5 5
F Exact
w 00000 WL HO000  MPPM
4 4+
3 3
L L ws
E BG L
2r B B 2r
¥ Py Pr3 r
L wWa - wo
T w T
L L w
pp: !
0 I A B [ 0 f A B A B L
0 m 2m 3m 13 0 g 2m 3 i3

Figure 2. Floquet-Bloch spectrum of the tetrachiral material. Comparison between the exact and MPPM-approximate dispersion
curves for (a) high-density, stiff material (4, o, x) = (1/10,1/10,1/9); (b) low-density, flexible material (4, ¢, x) = (1/15,1/15,1/9).

4. Tetrachiral material

The tetrachiral material is described by the mechanical
parameters p = (g, 9, x). The Floquet-Bloch spectrum
is characterized by three dispersion functions w(p, b).
Figure 2 shows the dispersion curves along the
entire boundary of the triangular Bj-zone (spanned
counterclockwise by the curvilinear abscissa & €
[0, (2 + v/2)7]), for two different p-values. A standard
numerical solver has been used to determine the exact
curves (continuous red lines). As interesting remark,
Figure 2a shows that the material spectrum can exhibit
a full band gap BG between the low-frequency acoustic
branches (curves w 2) and the high-frequency optical
branch (curve ws). Analyzing the polarization modes
allows the clear recognition of a shear wave (eigenvector
1, corresponding to the frequency w; ), a compression
wave (15) and a rotational wave (13) in the proximity
of the point b = 0 (limit case of long waves).

In order to apply the multi-parameter perturba-
tion method, the mechanical parameters have been or-
dered according to the e-dependent law

o=¢€d, §=ed, x=ex (16)
whereas the wavenumbers obey to the law

B =B +€p, o= 5 + € (17)
which is equivalent to assign p° = (0,0,0), p’ =

(@,d,x"), b° = (67,65), b = (B}, 5%). The e-order
smallness attributed to all the mechanical parameters

is driven by physical considerations, specifically
related to the microstructured chiral materials under
investigation. Indeed, the ordering (16) is intended
to account for the typical low-density distribution of
the rings (small §), which usually possess a limited
rotational-to-translational mass ratio (small x) and are
interconnected by highly-slender ligaments (small p).
The vertices By, By, B3 of the triangular B;-zone
have been selected as reference points in the B-space.
Therefore, three different sensitivity analyses have
been performed, one for each of the corresponding b°-
values (namely b{, b3, b3). The sensitivities )\2(-”) have
been determined for all the eigenvalues (that is for
i = 1,2,3) up the fourth order (n = 4). It may be
worth remarking that the generating eigensolution is
characterized by multiple eigenvalues (m° = 2) for the
vertices By and Bs. The consequent indeterminacies
at the lowest orders have required the solution of the
perturbation equations up to the sixth-order to assess
the fourth order eigensensitivities. The approximate
dispersion functions are reported in the Appendix B
(after reabsorption of the e-parameter and up to the
second approximation order for the sake of shortness).
The approximate dispersion functions are marked
by the black circles in Figure 2. For the material
microstructures described by the particular p-values,
the fourth-order approximation shows a satisfying ac-
curacy over large b-ranges. To quantify, a cautious
estimate of the approximation accuracy range for the
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Table 1. Fourth-order approximation of the eigenvalues at the vertices of the B;-zone.

Vertex | B (81 =0,82 =0) | Bz (81 =7, B2 = 0) | By (B1=m,B2=m)
2 2
M 0 24¢° (2 +56%) 442407 (24 53%) + 20800
2 2 2 2
Ao 0 4+% 4+2492(2+552)+5 (4;36 )
52(8+62(4+35%)) | 30%(8+38%(4+56%)) 52(8+62(4438%)) | 20%(8+38°%(4+56%)) 0% (8+36%(4+552))
A3 %2 + X2 8x2 + X2 X2

wavevector perturbation is |b’| < 1 (white windows
centered in the vertices Bj, Ba, Bs3). The amplitude
| /| of the full multi-parameter perturbation is cer-
tainly larger. By virtue of the specific treatment re-
served to multiple eigenvalues, the asymptotic approx-
imation well-performs also in the spectral regions with
internal resonance (coincident frequencies) or nearly-
resonance (close frequencies), where a stronger param-
eter sensitivity is expected. Of course, better results
could be achieved by extending the approximation to
higher orders or — in alternative — by adding and prop-
erly matching new local solutions starting from addi-
tional b°-points along the B;-boundary.

4.1. Pass and stop band

The typical band structure of the tetrachiral material
has been illustrated for two distinct parameter sets p,
corresponding to different microstructures. Depending
on the nondimensional ring diameter and ligament
slenderness (parameters § and g, respectively), the first
set physically identifies a high-density, stiff material
(higher (4, 0)-values in Figure 2a). The second set
corresponds instead to a low-density, flexible material
(lower (4, o)-values in Figure 2b). A rapid comparison
indicates that reducing the material density and
stiffness tends to close the full band gap BG separating
the low-frequency acoustic branches from the high-
frequency optical branch. This systematic trend can
be confirmed also by wider parametric analyses carried
out according to numerical optimization strategies (see
for instance Bacigalupo et al. (2017)).

Moving from these qualitative observations, a
challenging low-level task is to provide the parametric
conditions for the existence of full band-gaps. There-
fore, a higher-level task is to assess the amplitude of a
certain band gap, if it exists, as an analytic function of
the mechanical parameters. The analytic description
of all the pass and stop bands may represent a matter
of wider interest. For instance, the parametric tuning
of the material spectrum could pave the way for the
custom design of mechanical filters for elastic waves.

The multi-parameter perturbation solutions can
be exploited to tackle these tasks, provided that all
the hypotheses of parameter smallness are respected
(that is, if §, o, x do not exceed O(e), as postulated by
the ordering (16)). Only the vertices By, Ba, Bs of the

Bi-zone are assumed as check points to determine the
limits of the pass and stop bands. This simplification
fits with the general idea that minor approximations
can be accepted to preserve the analytical description
of the material band structure. The fourth-order
asymptotic approximations of the eigenvalues /\?j (i=
1,2,3) at each vertex B; (j = 1,2,3) are reported in
Table 1. The red diamonds in Figure 2a mark the
corresponding points PiBj in the (&, w)-space.

Recalling that all the mechanical parameters ad-
mit only positive small values (with smallness coherent
with the ordering (16)), the eigenvalue approximations
in Table 1 allow to draw the following remarks

. /\ﬁ 5 and /\3 % are double eigenvalues in the whole
p-domain. Indeed, they can split into couples of
close eigenvalues only when b’-perturbations are
introduced to span the By-region (as in Figure 2).

o \P2 > AP2 since A2 = O(e0) while A2 = O(e2).
Therefore, considering the previous remark, the
first acoustic branch does not exceed the second
acoustic branch (in the check points).

o AP < A2 < AD5 since AP =0 and AJ® — \Z? is
a positive quantity. Consequently, the maximum
of the second acoustic branch (restrained to
the check points) is located at Bs, even if the
difference A\J* — AP2 is small (namely O(e?))

e M0 > P2 > AP since AP — AP is a positive
quantity and \5? = %()\f L4+ APs). Consequently,
the minimum of the optical branch (restrained to
the check points) is located at Bs.

As minor remarks, )\f ! identifies the upper bound of
the band structure, according to the Lagrangian model
adopted for the tetrachiral material.

Recalling the relation A = w?, the above remarks
highlight that the material spectrum can be essentially
characterized by three frequency bands

e the pass band ranging from the lower (null) bound
wP" to the upper bound ws?

e the stop band ranging from the lower bound w2B 8
to the upper bound wf“‘

e the pass band ranging from the lower bound wf 3
to the upper bound wfl

where the stop band actually exists only if wf 5> wZB 5.
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Figure 3. Parameter region A collecting all the p-points satisfying the existence condition for the stop band.

As interesting result, the existence condition of the
stop band can be expressed as a simple mathematical
inequality among the mechanical parameters

2 8 +35%(4 + 552)

202 " 8+ 0%(4+ 36%) + 480% (2 + 542)

by virtue of the fourth-order asymptotic approxima-
tions of the eigenvalues. From the physical viewpoint,
the mathematical condition requires the rotational in-
ertia of the ring to be a sufficiently small fraction of its
mass. The required smallness depends on the elastic
and geometric properties of the cellular microstucture.

The parameter region A, which collects all the p-
points satisfying the condition (18), is shown in Figure
3 (blue filled volume). From a qualitative perspective,
it can be noticed that the .A-boundary is minimally
affected by the J-parameter, while it strongly depends
on the p-parameter. To specify, increasing the ligament
slenderness (lower p-values) requires smaller x-values
to keep open the band gap. From a quantitative
standpoint, it is worth noting that reducing the
mass ratio y below a certain smallness tends to
conflict with geometric constraints. Nonetheless, these
geometric constraints can be relaxed by adopting
suited constructional solutions, such as filling the ring
with heavy material or using tapered cross-section.

Within the A-region, the multi-parametric pertur-
bation method provides also a fourth-order analytical
approximation for the band gap amplitude

Ag = AL+ A+ AL
where the coefficients
AL =2(0s — 1)

(18)

(19)

(20)

Al =30 (30, — 1) — 12¢? (21)

A" = §- 6% (2105 — 5) + 90% (40° — 36?) (22)
where the O(e®)-order combination parameter o2 =

20%/x? plays a key role. Indeed, it can be verified that
the condition (18) is asymptotically equivalent to

02 > 1+ (120% — §%) + 120%5° (23)
Neglecting higher orders, the equation (23) requires
02 > 1, that is, the condition sufficient to let the band
gap amplitude A? attain positive values.

The band gap amplitude is illustrated in Figure 4
for different sections of the A-region, obtained by fixing
one of the three parameters in the formula (18). Gray
zones are outside of the A-region and do not admit the
existence of band gap.

Figure 4 shows that the lowest-order asymptotic
approximation can be sufficient to capture the essential
behaviour of the band gap amplitude. Indeed, the
amplitude strongly varies with the two parameters
0® (with almost linear direct g-proportionality) and
x? (with almost linear inverse x-proportionality),
coherently with the ps-dependence of the dominant,
zeroth-order term A? in the equation (20). On the
contrary, the amplitude weakly depends on the third
parameter §, consistently with the d-dependence of
the second-order term A’ in the equation (21). From
the physical viewpoint, this remarks state that larger
band gaps can be obtained either by reducing the
ligament slenderness (higher g-values), or by reducing
the rotational inertia of the rings (lower y-values).
Differently, the band gap amplitude is less sensitive
to variations of the ring diameter (different J-values).
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Figure 4. Band gap amplitude versus the mechanical parameters p = (p,d, x). Note that gray regions are outside of the A-region,
while null values of the (g, x)-parameters are physically inadmissible.

5. Tetrachiral metamaterial

Due to the introduction of the inertial resonator, the
metamaterial microstructure is described by a larger
set of mechanical parameters p = (g, 9, X, 7, &, Yo, Xr)-
Furthermore, the increment of the active degrees-of-
freedom enriches the Floquet-Bloch spectrum, which
is characterized by six dispersion functions w(p, b).

Figure 5a shows the metamaterial spectrum along
the boundary of the Bi-zone for a selected p-set. The
six dispersion curves (blue lines) can be compared
with the three curves of the corresponding tetrachiral
material (red dashed lines). The comparison shows
how the new spectrum branches generated by the
inertial resonators significantly modify the material
band structure. The principal effect is the opening
of the new full band-gaps BG; and BG9, which are
approximately centered at the two frequencies pointed
by the tuning parameters « and g, respectively.

The multi-parameter perturbation method can

straightforwardly be extended to tackle the eigenprob-
lem governing the metamaterial spectrum. Indeed,
the mathematical formulation presented in Section 3.1
does not require any formal adjustment to deal with the
higher dimension of the configuration vector q and the
enlarged parameter set p. However, to simplify the dis-
cussion, the parameter set can suitably be decomposed
in the form p = (ps, pr) by distinguishing the subset
ps = (0,0, x) collecting the mechanical parameters of
the cell microstructure from the p,. = (v, @, ¥s, x») col-
lecting the mechanical parameters of the resonator.

Recalling that the ordering (16) has been already
adopted for the microstructural parameters ps, the
following ordering can be introduced for the resonator
parameters p,

a=cd, Xr = GX;, Yo =175 (24)

which is equivalent to assign the reference set p°® =
(0,0,0,7°,0,7) and the multi-parameter perturbation
p' = (¢,¢,x,&,0,x,,0). The additional condition

o}

75 —7° = O(€°) is assumed for the sake of simplicity.

7 =9"+e€o,
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Figure 5. Floquet-Bloch spectrum of the meta-tetrachiral materials with microstructural parameters (4, g, x) = (1/10,1/10,1/12)
and resonator parameters (o, 7, xr,v9) = (2/10,19/20,1/11,4): (a) comparison with the spectrum of the tetrachiral material, (b)
local comparison of the exact versus MPPM-approximate dispersion curves in the R-region for different resonator masses.

From the physical viewpoint, the smallness of the
parameter « is intended to account for light resonators,
whose mass is not greater than that of the hosting ring.
The ordering of the parameter v replicates instead the
typical spectral design of the inertial resonator, which
is primarily tuned to the target frequency °, with o
playing the role of internal detuning.

From a mechanical perspective, it may be worth
recalling that the resonator stiffness is a dependent
parameter. In particular, the parameter ordering (24)
implicitly requires that the resonator stiffness has the
same e-order of the resonator mass. Otherwise, their
ratio — i.e. the resonator frequency — could not remain
finite-valued when the resonator mass tends to vanish
(or, mathematically, 7 could not be O(e°) for € — 0).

In order to severely check the effectiveness of the
multi-parameter perturbation method, a parameter
region corresponding to a high spectral density is
preferable. To this aim, a local sensitivity analysis has
been focused on the R-zone of the material spectrum,
which is centered at the Bs-vertex and featured by a
cluster of four dispersion curves (Figure 5a).

Therefore, the reference points p° and b° have
been fully assigned by setting 7° = 2, v = 4 and fixing
By = B3 = m, respectively. Physically, this selection of
the zeroth-order parameters corresponds to tune the
inertial resonator with the double frequency wf’ 5 of
the tetrachiral material spectrum (see Figure 2a and
Table 1). Mathematically, in the tuned metamaterial
the solution algorithm for the perturbation equations

is complicated by the occurrence of a high eigenvalue
multiplicity (m® = 4) in the zeroth-order solution. To
specify, the eight-order of perturbation equations must
be solved to clear all the indeterminacies and carry out
the fourth-order approximation of the eigenvalues.

Figure 5b shows the exact dispersion curves of the
metamaterial in the R-zone for two different values of
the resonator mass. The corresponding fourth-order
approximation of the dispersion functions is marked
by the black circles. A satisfying agreement between
the exact and approximate curves can be appreciated
over a large b’-range (say for 2r — 1 < ¢ < 27w + 1,
corresponding to |b’| < 1, or even more). Therefore, it
can be remarked that neither the enlargement of the
multi-parameter perturbation vector p’ nor the higher
density of the metamaterial spectrum compromise the
performance of the asymptotic technique.

Fixing the wavevector and the cell microstruc-
ture, the multi-parametric approximate solution can
be exploited to explore the metamaterial band struc-
ture in the («,o)-subspace of the resonator parame-
ters. The fourth-order approximation of the double
eigenvalues A1 o and Az 4 in the Bs-vertex is reported
in the Appendix B.5. Figure 6 shows the correspond-
ing frequency loci wy 2 and w34 in the plane spanned
by the (o, o)-parameters. The asymptotically approx-
imate loci (blue surfaces in Figure 6b) are found to
well-match the exact loci (yellow surfaces in Figure 6a)
over the full range of investigation, bounded by small
(ar, 0)-values for the sake of consistency.
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Figure 6. Frequency loci vs the resonator parameters for the meta-tetrachiral material with (4, o, x) = (1/10,1/15,1/12): (a) exact,
(b) MPPM-approximation for light resonators, (¢) MPPM-approximation for extra-light resonators.

It is worth remarking that the asymptotic solution
may be not uniformly valid in the whole («a, o)-plane.
Indeed, the asymptotic approximation turns out to
break down for very small mass ratios, corresponding
to extra-light resonators (approximately for a? < 4 x
107%). The validity loss is determined by vertical
asymptotes in the approximation function and reflects
in the spurious narrow peak featuring the approximate
frequency loci, close to the origin of the (a2, 0)-
plane (Figure 6b). This mathematical singularity
is not a fault in the multi-parameter perturbation
approach. Actually, it can be regarded as a sort
of boundary layer issue, inherent to the particular
parameter ordering postulated in the equation (24)
to build up the asymptotic solution (say the outer
solution). Consequently, the parameter ordering must
be partially modified (by setting o = €2’ and
v = 74° + €20), in order to determine a distinct
asymptotic solution (inner solution), suited to well
approximate the exact solution within the boundary
layer. This specific issue has been examined in more
depth in Lepidi and Bacigalupo (2017a), whereas some
additional notes on the matter are reported in the
Appendix B.5. Here it can be sufficient to highlight
how the inner solution is valid in the neighborhood of
the origin, although its approximation is less accurate
than the outer solution in the rest of the (a2, 0)-
plane (green surfaces in Figure 6b). As common in
perturbation methods, a proper matching of the two
asymptotic solutions could combine the validity of the
inner solution with the approximation accuracy of the
outer solution, if necessary.

5.1. Stop band amplitude

Estimating the stop bandwidths in the low-frequency
range is a key point to analyze the potential of periodic
metamaterials as mechanical filters. According to

the multiparameter perturbation method, the problem
can be synthesized as follows. For a certain cellular
microstructure fixed by the parameters ps, determine
how the amplitude A, of the stop band located across
the resonator frequency 7° depends on the resonator
mass o and detuning o.

Focusing on the band structure of the tetrachiral
metamaterial, the lowest frequency stop band located
across the resonator frequency 7° = 2 (band gap BG1
in Figure 5) is considered. The band gap lies between
the second and third dispersion curves. In the general
case the band gap is bounded by the frequencies wQB 8
(lower bound) and ws* (upper bound). Therefore, the
vertices B and Bs of the Bi-zone are assumed as
check points to first verify the existence of the band
gap, and then assess its amplitude. The fourth-order
asymptotic approximations of the eigenvalues )\33 ! and
)\f 3 are reported in the Appendix B.5.

According to the selection of the check points,
the band gap amplitude A, admits the fourth-order
asymptotic approximation

Ay 2 AL+ A+ A+ A (25)

with the n-th order coefficient A!™ reading

A;ﬂ = %(O’ + 51) (26)

A =14 (302~ d3) + fo (4a® — d3) 57! @7)

AV = F(0%0) + a? (0% +d3) 5;° (28)

A= (0 (7 1502) 1 2B (2 )+ )
— &0%0 (1607 (50 +20%) + 7o) §7% +

2 5 5

(Zcijojj + S

Jj=0 Jj=

+ ahod3 (d3 (202 + 02) — o? (1202 + 70?)) S7° +
«

N
S|
iy

6
x 2j—1
o)
i=0 1
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where 51 = (402 + 02)1/2 is a characteristic quantity

of the resonator, while the auxiliary coefficients
Cij, Ci;: d2 depend only on the mechanical parameters
of the cell microstructure (see the Appendix B.5).
Finally, the denominator D; depends on both the
microstructural and the resonator parameters.

Within the limits established by the smallness hy-
potheses postulated for the parameters, the asymptotic
approximation (25) allows to point out a few charac-
teristic properties of the microstructure-resonator in-
teraction governing the band gap amplitude

e the amplitude A, does not possess any dominant
term belonging to O(eY). Recalling that ~° is
O(€%), this asymptotic result means that light
resonators cannot physically realize a frequency
stop bandwidth larger than their own frequency,

e the positiveness of the lowest-order amplitude
term A! is ensured by strictly positive a2-values.
This mathematical result states that the inertial
resonator is always able to open a small-amplitude
band gap, independently of its lightness,

e the lowest order term A! depends only on the
resonator parameters. This asymptotic result
states that the essential O(e€)-contribution to the
stop bandwidth is practically independent of the
mechanical parameters of the cell microstructure.

The last remark, in particular, strongly indicates that
the cellular microstructure and the light resonators
may possess a quasi-independent dynamics. Indeed,
the asymptotic eigensolutions reported in the Ap-
pendix B.5 reveal how the eigenvalues )\QB 3 and )\3B ! are
ps-independent up to O(e) and correspond to wave-
forms strongly localized in the resonators. It can be
remarked how a similar behavior has been recurrently
highlighted in the perturbation-based eigensensitivity
analysis of different structural systems equipped by
small resonant masses, like tuned mass dampers [Fu-
jino and Abe (1993); Gattulli et al. (2001)] or light
substructural elements [Wei and Pierre (1988); Lepidi
and Gattulli (2014)].

Figure 7 shows the amplitude A, of the band gap
BG in the (a2, 0)-space of the resonator parameters
for a fixed cellular microstructure. The effects of
an increasing mass o2 for both undertuned (detuning
o < 0) and overtuned (o > 0) resonators can be
appreciated in Figure 7a. On the one hand, overtuned
resonators open larger band gaps than undertuned
resonators with the same mass. This systematic trend
can be clearly observed in the (A,,o)-section plane
Z3 in Figure 7b, where the amplitude monotonically
grows up for increasing detunings, fixed a certain a?-
value. On the other hand, larger masses lead to higher
amplitudes, no matter the resonator detuning. This
behaviour is shown in the (A, a?)-section planes Z;

and Z, where the amplitude increment versus the
mass is illustrated for an undertuned and an overtuned
resonators (Figures 7c,d). The highest amplitudes can
be achieved for highly massive and strongly overtuned
resonators. However, is must be noted that amplitude
values greater than unity tend to lie in the exclusion
region (gray zones in Figures 7b,d), in which the check
points do not correspond to the limits of the stop band.

Figure 7 shows also the minor differences between
the third-order and the fourth-order approximation of
the band gap amplitude. As general remark, the third-
order approximation tends to slightly overestimate the
amplitude. Nonetheless, the quantitative comparison
between the exact and the approximate amplitudes
shows a satisfying agreement up to large parameter
values, apart the exclusion regions (Figures 7b,c,d).

As minor remark, the two curves C; in Figure
7a describe the (a2, 0)-loci in which the fourth order
approximation breaks down. Indeed, all the C;-points
determine a singularity in the parametric function
expressing the fourth sensitivity of the eigenvalue )\g 3,
Consequently, the fourth order approximation can be
observed to diverge over a narrow range of the varying
parameters, centered around the Ci-points (see the
windows in Figures 7b,d). The regions D;, bounded
by the white dashed lines and enclosing the C;-curves,
collect the (a2, o)-points in which the fourth order
approximation is expected to fail, because the fourth
sensitivity of the eigenvalue exceeds the order of the
lower sensitivities. A deeper discussion about this issue
is reported in the Appendix B.5.

5.2. Inertial resonator design

According to the multiparameter perturbation method,
the inverse problem related to design a mechanical fil-
ter by equipping the tetrachiral material with inertial
resonators could be synthesized as follows. For a cer-
tain cellular microstructure fixed by the parameters
Ps, determine the resonator parameters (frequency ~°,
mass o and detuning o) which modify the material
spectrum by opening a stop band with given band-
width A, around the assigned center frequency 7.
The problem solution is not trivial because — in
the absence of detuning — the resonator frequency ~°
turns out to be close but not identical to the center
frequency of the stop band. Therefore, the detuning
o must be intended as the free parameter required to
compensate this tuning defect. The solution can be
found by exploiting the perturbation method, under
the assumption that the tuning defect 4 —v° = O(e).
From the mathematical (asymptotic) viewpoint,
the design problem is governed by a nonlinear system of
algebraic equations. Selected the proper checkpoints,
the first equation imposes their frequency difference
A, to match the assigned stop bandwidth. The second
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Figure 7. Amplitude of the band gap BG] in the (a?,c)-space of the resonator parameters for fixed (6, 0, x) = (1/10,1/10,1/12)
and (vg, Xr) = (4,1/10): (a) third-order (continuous lines) vs fourth-order approximation (dashed lines). Comparison of the exact
vs approximate amplitude in (b) section Z3 for o = 24/100, (c) section Z; for 0 = —1/10, (d) section Z5 for o = 1/10.

equation forces the frequency half-sum %Er to be equal
to the assigned center frequency. At the fourth order
of approximation, the equations read

AL+ A+ A+ A = A, (30)
1@+ +D+ 2 =5 (31)

For the specific metamaterial under investigation (with
~v° = 2) the two equations allow to determine the
unknown detuning ¢ and o2. Of course, the solution

exists if the data of the inverse problem are consistent
with the solution of the direct problem (for instance,
the assigned amplitude A, cannot exceed O(e)).

The search for the (a2, o)-solution is graphically
represented in Figure 8. The curve D, is the locus of
(a?, o)-points satisfying the equation (30). Actually, it
can be recognized as one of the contour lines (selected
according the assigned amplitude level A, = 6/10) of
the amplitude contour map in Figure 7a. The curve
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Table 2. Design parameters (a2, o) of the resonator for given stop bandwidth A, and center frequency 4.

=19 =2 =21

Third Fourth Third  Fourth Third  Fourth

A, =05 a2 0.1941 0.1958 0.1454  0.1456 | 0.1013  0.1011
o —0.04017 —0.03302 | 0.09755 0.1022 | 0.2367  0.2394

A, =06 a2 0.2544 0.2581 0.1946  0.1955 | 0.1408  0.1407
o —0.04822 —0.03671 | 0.09608  0.1039 | 0.2422  0.2468

A, =07 o2 0.3226 0.3296 0.2509  0.2529 | 0.1867 0.1869
o —0.06255 —0.04502 | 0.08808  0.1004 | 0.2408  0.2486

A, =08 a2 0.3996 0.4116 0.3147  0.3187 | 0.2393  0.2401
o —0.08303 —0.05745 | 0.07366  0.0920 | 0.2329  0.2449

Gi is instead the locus of (a2, o)-points satisfying the
equation (31) for a certain assigned center frequency
(&% = 19/10). The unique intersection point identifies
the solution. It can be noted that the solution point
P} returned by the third order equations is slightly
different from the solution point P}’ returned by the
fourth order equations. In particular, the third order
solution tends to slightly underestimate the parameter
values. The same considerations can be extended to
the crossing points Py’ and P4 between the curves
@T and C;g, which refers to a different assignment of
the center frequency (¥ = 21/10).

Table 2 collects the design problem solutions for

a few case-studies related to different bandwidths A,..
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Figure 8. Design of the band gap BG; in the (a?, o)-space of
the resonator parameters for fixed (4, 0, x) = (1/10,1/10,1/12)
and (79, xr) = (4,1/10), based on the third-order (continuous
lines) or the fourth-order approximation (dashed lines).

It must be remarked that greater masses are required
to center stop bands with the same amplitude at lower
frequencies. In the particular case 4 = 2, the desired
center frequency 4 of the stop band is equal to the
resonator frequency v°. The solution highlights that
a small overtuning (¢ > 0) of the inertial resonator is
always required to satisfy the design target. Otherwise,
in the absence of detuning (¢ = 0) the stop bandwidth
would be located at a lower center frequency.

In summary, this perturbation-based methodology
is sufficiently flexible to treat similar inverse spectral
problems, connected to the pass and stop band design
in periodic materials and metamaterials. On the other
hand, it must be stressed that — as natural for local
eigensensitivity analyses — some solutions and results
are inevitably case-specific, or strictly related to the
smallness hypotheses assumed in the ordering of the
governing parameters.

6. Conclusions

The elastic wave propagation in tetrachiral materials
and metamaterials has been studied, according to the
Floquet-Bloch theory for planar periodic systems. The
periodic microstructure of the tetrachiral material is
characterized by a square elementary cell, in which a
central stiff ring is connected to four flexible ligaments.
A parametric mechanical model has been formulated,
by adopting a low-dimensional Lagrangian description
of the microstructure as a square lattice of rigid annular
bodies, connected by elastic unshearable beams.

The eigenproblem governing the spectral proper-
ties of the material has been solved through perturba-
tion methods, suited to perform local sensitivity anal-
yses of the dispersion functions. The local sensitivi-
ties to multi-parameter perturbations — in particular
— have been assessed by applying a general algebraic
formulation for the series expansion of a multivariable
composite function up to a generic order. Therefore,
as significant novelty with respect to other asymptotic



Multi-parametric sensitivity analysis of the band structure for tetrachiral inertial metamaterials 16

approaches, a high-dimensional perturbation has been
considered. Indeed, both the wavenumbers and the me-
chanical parameters are considered independent com-
ponents of the same perturbation vector, spanning a
small but multi-dimensional region of the parameter
space. Moreover, as substantial result, the disper-
sion functions have been asymptotically determined
up to the fourth-order eigensensitivity. A satisfying
approximation accuracy has been obtained over large
ranges along the different directions spanned by the
perturbation vector in the parameter space. Among
the other directions, the highly-accurate performance
of the asymptotic approximation along the triangular
boundary of the first Brilloin zone (fixed the cellular
microstructure) has been remarked.

Focusing on the tetrachiral material, the asymp-
totic approximations of the dispersion functions have
been exploited to accomplish a twofold achievement.
First, the existence conditions of a low-frequency stop
band, ranging between the acoustic and the optical
branches of the spectrum, have been analytically de-
termined. From the physical viewpoint, the existence
condition requires the rotational inertia of the rigid
body to be sufficiently smaller than its mass, where
the required smallness essentially depends on the beam
slenderness. Second, a fourth-order parametric approx-
imation of the stop bandwidth (if it exists) has been
obtained. The parametric formulas clearly highlights
how the stop bandwidth can be enlarged either by re-
ducing the ligament slenderness or by decreasing the
rotational inertia of the rings, whereas it is rather in-
dependent of the ring diameter.

Focusing on the tetrachiral metamaterial, it has
been verified how the multi-parameter perturbation
technique does not require any methodological adjust-
ment to deal with the higher dimension of the per-
turbation vector. Indeed, if the inertial resonators
are modeled as simple linear oscillators, their mechan-
ical properties (mass and frequency) can be treated
as new components of the perturbating vector, open-
ing new directions in the enlarged parameter space.
Furthermore, the dispersion functions has been ap-
proximated with satisfying accuracy, even in the low-
frequency range of the metamaterial, which is featured
by a high spectral density. In this respect, the paradig-
matic case in which the resonator is tuned with the
double acoustic frequency of the microstructure has
been analyzed, due to its technical relevance in con-
nection with the employment of metamaterials as me-
chanical filters. A fourth-order analytical approxima-
tion of the band gap amplitude opened by the inertial
resonator has been achieved. The lowest order terms,
consisting of simple explicit functions of the resonator
parameters, have clearly highlighted the key-role of the
resonator mass in enlarging the band gap amplitude.

Moreover, the effects of a small detuning in the res-
onator frequency have been analyzed. In particular,
overtuned resonators have been found to open larger
band gaps than undertuned resonators.

Finally, the fourth order analytical approxima-
tions of the dispersion curves has been employed to
state the inverse problem related the resonator design.
The resonator mass and detuning required to open a
target stop band in the metamaterial spectrum (with
assigned bandwidth and center frequency), have been
determined by solving a couple of nonlinear algebraic
equations. The solution have highlighted that a small
overtuning of the resonator frequency is required to
center the stop band around the target frequency.
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Appendix A. Physical matrices

Appendiz A.1. Tetrachiral material

The non-null coefficients M;; and K;; (i,j = 1,2,3)
of the 3-by-3 matrices M, (p) and K, (p, b) governing
the wave equation for the tetrachiral material read

My = My =1, M3z = x? (A1)
K11 =c¢1 —cocos By — c3cos B

Koo =1 — c3c08 1 — co cos o

K33 = ¢4 + c5(cos 1 + cos f2)

K13 = 2cg(cos 81 — cos fBa)

K13 = —i(cgsinB1 + ¢y sin fBa)

Ko3 =i(c7sin 1 — cgsin fa)

where the mass coefficients must be divided by w? if
the normalization frequency w, is not unitary and

o =2((1-8)° +120%) (1627 (A.2)
o =2((1-0%)" +126%?) (1 - 62) "
cs = 2(6% (1 6%) +12¢%) (1 —62)~*?
cx= (82 (1—0%) +160%) (1— %) ""
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are fully geometrical auxiliary parameters. It may be
worth recalling that Kj; is the complex conjugate of
K;; by virtue of the Hermitian property.

Appendix A.2. Tetrachiral metamaterial

The 6-by-6 matrices M, (p) and K,(p,b) governing
the wave equation for the tetrachiral metamaterial read
M, O 1 Ks + K, —K,

O M7‘:| bl Ka - |: _Kr KT :| (A.S)
where the 3-by-3 submatrices My and K account for
the cell microstructure and coincide with the matrices
governing the tetrachiral material (with the coefficients
(A.1)). The 3-by-3 submatrices M, and K, refer to the
local resonators and read

M, = diag (¢, o, a’x?2)
K, = diag (aQ’y2, 062’727 0é2V3X3)

M, - |

(A4)

where, again, the mass coefficients must be divided by
w? if the normalization frequency w, is not unitary.

Appendix B. Eigenvalue approximation

According to the MPPM, the characteristic equation
governing the free wave propagation in the tetrachiral
material has the approximate solution in e-power series

Me) =X+ eN + N + 4 A 4 (B.1)

The lowest eigenvalue sensitivities A(™ up to n = 2 are
reported in the following for selected reference points
p° = (p°, b°) of the parameter space, corresponding
to the b°-vertices By, Bo, B3 of the Bi-zone. It can be
verified that the odd eigensensitivities (n = 1,3, ...) at
these p°-points are either null or b-independent. In
the asymptotic approximations this result is required
to preserve the mathematical symmetry of the exact
dispersion functions, which are even functions with
respect to the b°-vertices By, B, B3 of the Bj-zone.
All the eigensensitivities must be multiplied by w? if
the normalization frequency w, is not unitary.

Appendiz B.1. Tetrachiral material in By

The vertex By of the Bj-zone is pointed by the
wavevector by = (0,0). The corresponding point p°
of the parameter space determines a double eigenvalue

12 (m® = 2) and a single eigenvalue A3 (m° = 1).
After the reabsorption of the bookkeeping parameter
€, the expansion coefficients read

di
(] /\(1)’2 = 0, )\?} = 2; (B2)
d3x? — R d3y? + R}
" 271 1 " 271 1
=271 " 27l T (B.3)
! 4d3 2 4d3
8252 4436 — dI%2

)\// —
37 2a2 4x2

with first-order eigensensitivities A} 53 = 0, and the
auxiliary geometrical parameters

d3 = (6% +120%), d} = (6 +240?), (B.4)
d2 = (6% +360%), d? = (6% +80%)
and the radical quantity
9 1/2
R = [(522’;’ +240°A2)% — 96g252ﬁ§A§] (B.5)

have been introduced, with the squared wavenumber
sum ¥2 = (82 + 42) and difference A? = (87 — 52).

Appendixz B.2. Tetrachiral material in Bo

The vertex Bs of the Bj-zone is pointed by the
wavevector by = (m,0). The corresponding point
u® of the parameter space determines three single
eigenvalues AJ, A, A3 (m® = 1). After the reabsorption

of the bookkeeping parameter e, the expansion
coefficients read
d?
e AN =0, A=4, A3=— (B.6)
X
52
o N\ =160 (3 + d%) : (B.7)
5

62
_ 2 2
ot o (14 )

g B P | BAY 2
d? d? — 4x? 42 ’

with first-order eigensensitivities A} , 3 = 0, and the

auxiliary geometrical parameters

d2 = (8% +160%), dg = (5% +480%) (B.8)

have been introduced, with the squared wavenumber

difference A3 = ((B1 — )% — 53).

Appendixz B.3. Tetrachiral material in Bs

The vertex B; of the Bj-zone corresponds to the
wavevector b§ = (m, 7). The corresponding point p°
of the parameter space determines a double eigenvalue
A5 (m° = 2) and a single eigenvalue A3 (m° = 1).
After the reabsorption of the bookkeeping parameter

€, the expansion coefficients read
2

o o 4
* Mo=4, A= 8? (B.9)
6222 4
o )\ =242 - %JQFR?, (B.10)
2
bi¥2 — R4
Ay =2d5 — T
' 252 272
1"
N = 50 (b3 + 2456°b3)

with first-order eigensensitivities A} 3 = 0, and the
auxiliary mechanical parameters

by = (6% +80” —4x?), b3 =(20°—X?),
b3 = (6% + 40> — 2x?),

(B.11)



Multi-parametric sensitivity analysis of the band structure for tetrachiral inertial metamaterials 18

and the radical quantity

& (B.12)

1
Ry = [(453)" - 3230313
have been introduced, with the squared wavenumber
sum Y2 = (81 — 7)% + (B2 — 7)? and product 11§ =
(B1 —m)?(B2 — m)2.

Appendix B.4. Tetrachiral metamaterial in By

The vertex B; of the Bj-zone is pointed by the
wavevector by = (0,0). If the resonator is tuned by
setting v° = 2, the corresponding point pu° of the
parameter space determines two double eigenvalue A7 5
and A3 4, (m® = 2) and two single eigenvalues Ag and A\§
(m° = 1). Focus is made on the double eigenvalue A3 45
which defines the upper limit of the band gap BG;.
As long as the vertices of the Bi-zone are selected as
check points for the sensitivity analyses related to band
gaps, a null b’-perturbation can be assumed. After
the reabsorption of the bookkeeping parameter e, the
expansion coefficients read

e N3, =4 (B.13)
e Ny =40 (B.14)
o \j, =40+ 0" (B.15)
o N\, =4d’0 (B.16)

3 =a’o” (B.17)

where it can be highlighted that the assumption b’ =
limits the small perturbation to the b-space, where the
eigenvalue preserves its double multiplicity at all the
approximation orders. On the contrary, removing this
assumption lets the double eigenvalues split into two
close single eigenvalues at the fourth order.

Appendiz B.5. Tetrachiral metamaterial in Bs

The vertex Bs of the Bj-zone is pointed by the
wavevector by = (m, 7). If the resonator is tuned
by setting 7° = 2, the corresponding point p° of
the parameter space determines a quadruple eigenvalue
A 2 3.4 and two single eigenvalues A3 and A§ (m° = 1).
Focus is made on the quadruple eigenvalue A7, 4,
which defines the lower limit of the band gap BG,.
As long as the vertices of the B;i-zone are selected as
check points for the sensitivity analyses related to band
gaps, a null b’-perturbation can be assumed. After
the reabsorption of the bookkeeping parameter €, the
expansion coefficients read

® Mosza=*4 (B.18)
e N,=2(c—%) (B.19)
)\SA =2 (O’ + Sl)
2d2 — (1202 + o2
o N/y=di+ 15+ o (2d5 — (12a° + 7)) (B.20)

251

o (2d3 — (1202 + 0?))

"o 42 1Q2
34=dy+ 3557 —

251
o? (d2 + 402 + 302)°
o \/, =2a’%0 — ( 2+453 +30°) (B.21)
il
a? (d2 + 402 + 302 2
Ag’/4 = 2&20 =+ ( 2 453 )
1
6 21,5 5
" __ 27 * _25—1
1,2 —Z—(ZC”O’ + 5 Zcija ) (B.22)
par S j=1
6 2, O 5
n _ a™ 0% — 8 C:_02j71>
5 ; D (;) j ; ;

where, if the the second nondimensional frequency of
the resonator is fixed (v = 4) for the sake of simplicity,
the denominators are

o (4b3g0% + bio? — 18b3d3)
B.2
o (4b3ga% + bEo? — 18b3d3)
57

Dy = 645% (41)3 +

D3 = 645 (41)3 -
. 1/2
where the relevant quantity S; = (4a2 + 02)
depends only on the resonator parameters, while the
coefficients ¢;;, ¢; and b3,b3,b35 depend only on the
mechanical parameters of the cell microstructure.

A complementary issue, inherent to perturbation
techniques, is the discussion about the validity regions
of the asymptotic approximation. Coarsely, the appro-
ximate eigensolution is not uniformly valid if certain
small multi-parameter perturbations let the ratio be-
tween two consecutive terms of the approximation se-

-0.4

-0.5
0.00

0.06 0.12 0.18 0.24

Figure B1. Validity map of the asymptotic approximation of
the eigenvalues in the (a2, o)-space of the resonator parameters
for fixed (6, 0,x) = (1/10,1/10,1/12) and (9, xr) = (4,1/10).
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ries become O(e°), or higher. Specifically, the asymp-
totic approximation can be expected to break down
for the parameter combinations which let the higher
eigensensitivity A increase up to quantitatively ap-
proach or overcome the lower eigensensitivity A(®=1),

Figure B1 shows a validity map of the approximate
eigensolution provided by the formulas (B.18)-(B.22)
in the (a2, 0)-space of the resonator parameters. The
two pink regions D; collect all the (a?, o)-points which
do not satisfy the validity condition A{’; < %)\’1’7’2.
Of course, the one-third ratio is largely conservative,
but useful to graphically appreciate the D;-regions.
Indeed, if the eigensensitivity ratio approaches unity,
the D;-regions become narrower and narrower. In
particular, the Di-boundaries become closer and closer
to the red Cy-curves, marking the (a2, o)-combinations
zeroing the denominator Dy in the formula (B.23). The
region Z; preserves the approximation validity, since
the Zi-points satisfies the inequality by virtue of very
small or null \{’s-values. A similar discussion can be
drawn for the gray Ds-regions and the black Cs-curves,
which are related to the condition AJ’j < MY/,

The non null coefficients of the sums in (B.23),
depending only on the mechanical parameters of the
cell microstructure, read

ce0 = 307203

cs0 = 6144b3d3

cao = —1536 (b390* + 0® (b3,6% — 1728b30%))
c30 = —1536b3d5 (116" + 480°d3)

o0 = 192b2d5

(B.24)

610:0
coo =0
061:0

cs1 = —1024b3

ca1 = —1536b3d3

c31 = 256 (b7s6" + 480 (b3,0° + 120%b3;))

co1 = —128d3 (b3,6* + 480” (b340” + 120°b35))
c11 = 384b2d5

601:()
ce2 =0
C52=0

cap = —128b%,

39 = 128b3,d3

coo = 32 (5b306" + 4807 (b350° — 120°b3y))

cr2 = —128d3 (b356" + 480% (b3,0° — 120°b3;))
co2 =0

cg3 =0

cs3 =0

643:()

ca3 = —64b%

Co3 = —32b3,d5

c13 = 64 (b3,0" + 4807 (b356” + 120%b3)))
co3 = —864b362d3d3

cqa =0

c54 =0

cqq4 =0

c34 =0

Coq = —4b3,
c14 = —32b3:d5
cos = 432036%d2
ce5 =0

cs5 =0

c45 =0

c35 =0

Co5 — 0

c15 = —72b3,
co5 =0

g =0

ci, = —20480b3

iy = —6144b3d3

chy = 1024 (3,0 + 480° (b356° + 12b30%))
by = —512d3 (b3,6" + 480° (b390° + 12b30%))
;=0

Cgo =0

iy =0

iy = 2048b2

Chy = —5120b%,d3

5y = 256 (07,0 + 480% (b346° — 48b30%))

iy = —128d3 (b356" + 480% (b3,0° + 12b30%))
cgs =0

cis =0

ci3 =0

43 = 51203,

Chs = —128D3,d2

¢ty = 320 (3,0 — 576b70* + 48b7,5°0°)

Coa =0

=0

¢y =0

¢35, =0

3y = 128b%4
ciy = —32b35d3
cgs =0

cis =10
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€15 =0
* o
cz5 =0
c55 =10

ci5 = 48b3,
where the following auxiliary mechanical parameters
have been introduced

bi = (&> +X°), by =
b = (140° — 13x?), b2 =
b2 = (2540% — 205x?),

(100> — 11x?),
(5500% — 683x?),
by = (410° — 40x),

(B.26)

bm = (100% — 53x?), b11 = (145407 — 1327)?),
= (104¢% — 85x%), bl = (410> —13x?),
= (860% — 13x?), 515 = (1630* — 80x*),
b16 = (55407 — 67x?), 17 = (3740% — 193x?),
18 = (710% — 64x?), = (127407 — 1741x?),
= (4420% — 125x° ) 21 = (850" — 23x%),
= (550" — 26x%), = (2660° — 211x?),
= (38607 — 199x?), 625 = (130% — 23x?),
b26 = (1130% — 58x?), 27 = (130% — 5x?),
28 = (479 - 7X )s 29 = (792 - 11X2)7
b2, = (530% — 28x?), b31 (40* — 7x?),
b2, = (25107 — 100x?), b3; = (62607 — 319x?),
b3y = (940° — 95x7), 635 (1090* — 53x?),
b2 = (500° — 31x?), b3, = (9920° — 4336x?),
384271@ —134x?%), b3y = (910° —44x2>,
b40— (842 0° —67x° ), b41 (181 0° — 89x* ),
= (890% — 46x?), b43 = (37460% — 1105x?),
b44 = (1970% — 100x?), b5 = (4030% — 164x?),
b2, = (62607 — 319x?), b2, = (1220 — 67x?),
b48 = (260" — 19x°),  bje = (940° — 95x%),
oo = (230° — 4x?),
= (62 +800%), d3 = (196% — 120%)
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