PHYSICAL REVIEW E 94, 032312 (2016)
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Using bibliometric data artificially generated through a model of citation dynamics calibrated on empirical
data, we compare several indicators for the scientific impact of individual researchers. The use of such a controlled
setup has the advantage of avoiding the biases present in real databases, and it allows us to assess which aspects of
the model dynamics and which traits of individual researchers a particular indicator actually reflects. We find that
the simple average citation count of the authored papers performs well in capturing the intrinsic scientific ability
of researchers, regardless of the length of their career. On the other hand, when productivity complements ability
in the evaluation process, the notorious 4 and g indices reveal their potential, yet their normalized variants do
not always yield a fair comparison between researchers at different career stages. Notably, the use of logarithmic
units for citation counts allows us to build simple indicators with performance equal to that of 4 and g. Our
analysis may provide useful hints for a proper use of bibliometric indicators. Additionally, our framework can be
extended by including other aspects of the scientific production process and citation dynamics, with the potential
to become a standard tool for the assessment of impact metrics.
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I. INTRODUCTION

The quantitative study of the productive and communica-
tion aspects of science, known as Scientometrics, is nowadays
well established. This discipline focuses mainly on the analysis
of citation statistics of the academic literature in order to
identify suitable indicators for the impact of research [1].
Well-known and widely used examples of impact indicators
include the journal impact factor [2] and the /-index [3], but
several (more than 100 [4]) alternatives have been proposed—
see [5-7] for recent reviews of the field. Importantly, these
metrics are intended to measure scientific impact, not quality
or importance. At present, however, they play a central role
in the measurement and evaluation of research performance
(at the level of individual researchers, research groups, and
institutions), despite numerous warnings from the scientific
community [8—10]. The issue is critical, especially at the level
of individual researchers, as it can affect received funds and
grants—not to mention employment and career.

Wildgaard and colleagues [4] recently pointed out the
need to examine author-level indicators in relation to what
they are supposed to reflect and especially to their specific
limitations. By comparing the key concepts of several metrics,
they showed that no indicator alone can capture the overall
impact of a researcher, which is instead better characterized
by a combination of indexes. Such a combination is, however,
not unique, and it depends on the particular type of assessment
to be made. Evaluation of impact indicators is also complicated
by the availability and reliability of the bibliometric databases
(such as Web of Science, Scopus, Google Scholar, and
Microsoft Academic Search) [7]. In fact, these databases suffer
to various extents from the lack of quality control [11] and
partial coverage. The latter problem is particularly relevant in
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the fields of social sciences and humanities [12], which may
have a strong national or even regional orientation and thus
target local journals and books [13], and for computer science
and engineering—where conference proceedings play an
important role, but they are often not counted or counted twice
(as the work is published both as proceedings and as a regular
journal paper). All these facts cause the measured impact of a
researcher to depend on the specific data used in the calculation
[4]. In addition, these data are polluted by improper citation
practices used by researchers (such as boosting one’s own or
a friend’s citations, or satisfying referees) that are not related
at all to the acknowledgment of a paper’s importance [10].
On the theoretical side, the scientific community has
devoted much effort to unveiling the dynamics of the citation
process, the main focus being that of explaining the extremely
skewed distribution of the number of citations received by
scientific papers (see, for instance, [16]). Notably, Price [17]
was the first to tackle this issue by using a model based on
preferential attachment, a process for which some quantity as-
sociated with the entities of a system (the number of citations of
scientific publications, in our context) is distributed and grows
according to how much these entities already have. Since then,
this model has been much studied and generalized (see [18] for
a review of the field). Importantly, the original version of the
model predicts a strong relation between a paper’s age and its
citation count, but significant deviations from this behavior
are found in bibliometric data [19]. It has been recently
pointed out that to model citation dynamics well, preferential
attachment has to be combined with intrinsic paper relevance: a
heterogeneously distributed “quality” (fitness) that decays with
time [20-22]. These models are then capable of generating
artificial data that closely resemble real citation networks [23].
Building on this modeling framework, we aim to perform a
comparative evaluation of various scientific impact indicators,
in the same spirit of [4] but on a quantitative basis provided
by the use of an artificial setting. In particular, we extend
a previous model constrained on the citation dynamics of
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scientific papers [20] by assuming that researchers are en-
dowed with intrinsic productivity and ability levels—the latter
determining the fitness of their authored papers—that in turn
make connections to the existing body of literature according
to the modified preferential attachment mechanism described
above. The artificial bibliometric data generated by the model
then allow us to compute a variety of impact indicators, which
can be compared with the individual traits of researchers in
order to determine what these indicators actually capture. We
can thus identify the indicators that properly rank authors,
and those that fail in this task. Notably, our controlled and
simplified setup has the advantage to generate citation records
that are free from the biases present in real databases that can
hinder this kind of analyses.

The paper is organized as follows. Section II describes the
model used to generate citation data, and Sec. III provides
the definitions of the impact indicators that we compare and
evaluate. Results of the analysis are reported in Sec. IV,
while Sec. V concludes the work and outlines the possibilities
for further improving the artificial framework by including
additional relevant aspects of the citation dynamics, such
as differences between scientific disciplines [24] and journal
reputation [25] (see [26,27] for recent progress in modeling
the various aspects of the research and citation process).

II. MODEL AND ARTIFICIAL DATA

In this work, we use a model that extends the one suggested
in [20]. The system is composed of researchers (or authors)
and papers, indicated by Latin and Greek letters, respectively.
Time runs in discrete time steps corresponding to months, and
the simulation spans over 7 months. There are A authors in the
system. For the sake of simplicity, we assume that their number
is fixed and that they are all active during the whole simulation,
but this assumption can be relaxed—see the Supplemental
Material (SM) [28]. Each author i is characterized by ability
a; and productivity k; (i.e., the total number of papers that
i will coauthor). In line with the exponential distribution
of total paper relevance presented in [20], author ability is
drawn from the exponential distribution F(a) = ay + e “.
The parameter ag, acting as the minimal author ability, is
motivated by the presence of some “entrance barriers” in
academia that guarantee that all authors have some minimal
ability value and thus their papers have some minimal level
of relevance to the community. Author productivity is drawn
from G(k) = 3.48/ exp[—(Ink + 3.5)>/5.9], which has been
obtained by fitting the real distribution of authored papers in
the Microsoft Academic Search (MAS) data; see Fig. 1(a) and
the description therein.

In each time step t =1,...,T, papers are gradually
introduced in the system. For each paper «, we build its set
of authors A, as follows. We first draw the number of authors
dy = |Ay| from the distribution H(d) = 19.7d /(100 + d*©),
which is again motivated by the MAS data—see Fig. 1(b).
We then choose the d, different authors, each with probability
proportional to the remaining number of papers that they still
have to author (for researcher i, this number is initially &;,
and then it decreases by 1 with each authored paper). The
fitness value f, of the paper is proportional to the highest
ability value among its authors: f, = n(max;eca, a;), where

©
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FIG. 1. Functional fits of the MAS data presented in the text:
(a) the number of publications for researchers, and (b) the number of
coauthors for papers. The fit functions are G(k) = 3.48/ exp[—(Ink +
3.5)2/5.9] and H(d) = 19.7d /(100 + d*®), respectively. In the log-
log scale, the coefficients of determination (R?) are 0.92 and 0.89,
respectively. For the coauthor distribution, the peak at d =50
coauthors is due to large-scale collaborations in particle physics and
astrophysics, whose members are only partially covered in our data.
The underlying Microsoft Academic Search (MAS) data that we
present here were collected using the API of the service to obtain
unique IDs for the authors of papers published by the American
Physical Society (APS) in the years 1893-2009; this was successful
for 71% of the APS papers. Excluding self-citations, the resulting
data comprise 2 427 367 citations among 326 586 papers authored
by 244 538 researchers. Thanks to having unique author IDs, the use
of MAS data avoids the common name disambiguation problem in
bibliometric data [14], which is vital for the analysis of coauthorship
patterns [15].

is a multiplicative noise term that is uniformly distributed in
[1 —n* 1+ n*] and introduces additional randomness to the
process of paper creation. Note that because of the extremal
metric choice, paper fitness is not directly proportional to the
number of authors. This assumption is motivated by recent
empirical evidence: while papers with more authors receive on
average more citations, this effect is apparently not related to
paper quality [29]. Nevertheless, results obtained upon varying
this and other assumptions are presented in the SI.

Newly introduced papers make links to previously pub-
lished papers. The probability that paper « cites paper 8 at
time ¢ is
[ep() + 11 fpD(t — 1p)

Q1)

where cg(t) is the current number of citations of paper 8, and
Tg is its appearance time in the system, whereas D(-) is the
aging term and €2(¢) is the normalization term,

Qt) =Y ey, () + 11 £, D(t — 1,).
Y

Pa—)ﬂ(t) =

, ey

(@)

Here, cg(t) needs to be increased by 1 to give a nonzero initial
attractiveness to papers, as cg(tg) = 0. In Eq. (1), we use
exponential aging D(t) = exp(—t/6), where 0 characterizes
the lifetime of a paper. An alternative choice would be to use
a log-normal shape for the aging term [22].

Every new paper makes g references to existing papers.
Note that when a growing network with preferential attach-
ment grows from a small initial configuration, papers that are
present at early stages have an advantage with respect to later
papers and can thus achieve a significantly higher citation
count [19,30]. Early papers enjoy the undue advantage during
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the initial period when €2(¢) is substantially smaller than its
long-term stationary value €2.,. To overcome this problem, we
assume that when Q(r) < Q, each of the g links created
by a newly added paper points to an existing paper with
probability Q(#)/ Q.. In the complementary case, the link
points out from the system and none of the existing papers
receives it. This situation resembles a young scientific field
that is growing yet still partially reliant on papers from other
fields. The stationary value €2, is obtained by simulating the
system for a sufficiently long time period and averaging the
final ©2(¢) over independent model realizations. The complete
simulation code can be found in Ref. [31].

Simulation parameters and dynamics

We simulate systems with A = 1000 authors over a time
period of T = 120 months. Paper lifetime is 6 = 48 months,
and qg is set to 1 (the stationary value for the normalization
constant Q4 is 1.33 x 10* in such a setting). Each paper
cites ¢ = 20 other papers, and fitness values are obtained
with n* = 0.2. For our choice of the productivity distribution,
the average author produces five papers and the most active
author produces around 200 papers in total. In each month,
several papers are introduced in the system so that, until
the end of simulation, every author eventually produces the
originally assigned number of papers. To achieve this, we
endow each researcher with an activity counter v;(¢), initially
set to k;. At step ¢ (when there are T — ¢ + 1 time steps left
until the end of the simulation; t =1, ...,T), we introduce
new papers until the researcher activity counters decrease
by >, vi(t)/(T —t + 1) in total. Due to the varying number
of coauthors, the number of papers introduced at each step
fluctuates but remains relatively stable during the whole
simulation. The total number of papers produced in a single
realization of the system is around 1500. Note that the modeled
systems have 240 times fewer authors than the MAS data, and,
accordingly, they also have 220 times fewer papers than the
MAS data. Such good agreement is a direct consequence of
using an empirical distribution of author activity.

Figure 2 reports basic calibration results for the model.
In particular, panel (c) shows that the emergent citation
distribution closely resembles the one observed for MAS data
(see Fig. 3 for how the shape of this distribution changes
when aop and 6 are varied). Further, panel (d) shows that
allowing some links to point out from the system indeed
weakens the dependence of the paper citation count on its
appearance time (see Fig. S1 in the Supplemental Material
[28] for a comparison with real data). For the present choice
of parameters, correlation between paper citation count and
fitness is around 0.5. In agreement with empirical studies of
popularity in real systems [32], we see that while papers with
high fitness on average attract more citations than papers with
low fitness, there is still a substantial level of randomness in
this relationship.

We conclude this section by remarking that we use
empirical data from MAS only to calibrate the model: to
measure the distributions of author productivity and of the
number of coauthors per paper, and finally to fit the paper
citation distribution. Since the shape of these distributions is
rather general, using a different bibliometric dataset is not
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FIG. 2. Comparison of statistical features in the MAS data and in
the artificial model: (a) distribution of researcher productivity &, (b)
distribution of paper number of coauthors d, and (c) distribution
of paper citation count c. In the log-log scale, the coefficients
of determination (R?) are 0.92, 0.85, and 0.85, respectively. The
shaded areas visualize the variable’s standard deviation observed
in 100 model realizations. The dependence of paper citation count
on paper appearance time with and without applying the stationary
normalization value €2, is shown in panel (d).

likely to qualitatively change the results of our analysis: the
model is naturally flexible to adapt to other real datasets.

III. IMPACT INDICATORS

We now introduce the indicators that we use to quantify the
scientific impact of authors. In the following definitions, we
will use quantities obtained at the end of simulations, but we
omit the time label T'. For instance, ¢, denotes the number of
citations paper « accrued at t = 7. We define the following:
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FIG. 3. The effect of parameter variations on the paper citation
distribution: (a) baseline author ability ay (when 6 = 4), and (b) paper
lifetime 8 (when ay = 1). The left panel shows that introducing a value
ap > 0 helps to make the distribution more concave: while the use of
ap is not essential, ay > 0 actually improves the agreement between
empirical and model citation distribution. The right panel shows that
tuning paper lifetime can be used to calibrate the simulated citation
distribution against the real one: in the log-log scale, the coefficient
of determination (R?) increases from 0.60 for § = 2 years to 0.85 for
0 = 4 years. The stationary value for the normalization constant 2.,
is 1.33 x 10* in the basic setting ay = 1 and @ = 4. For the variations
considered here, Q. values are 1.06 x 10* and 1.62 x 10*foray = 0
and 2, respectively, and 6.30 x 10° and 2.17 x 10* for 6 =2 and 8,
respectively.
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(i) Total number of citations,C; = ) ;. A, Ca- The simplest
possible choice, naturally favoring researchers with many
papers and those who have long been active.

(i) Average number of citations, E; = C;/k;. This ap-
proach is widely used in the literature, the underlying idea
being that whenever a researcher receives a larger credit
compared to the number of papers published, she is producing
science having a greater impact. Note that here we are
considering only a single scientific field, and thus we do
not need to worry about field-specific normalization [24]. In
this way, average citations are equivalent to both the well-
known CPP/FCSm (citations per publication over mean-field
citation score) and MNCS (mean normalized citation score)
indicators [33].

(iii) Citation count of the most cited paper, M; =
MaXg:ieA, Co- This is an extremal metric that is influenced by
the heavy-tailed distribution of the paper citation count, and
thus it should be used with caution.

(iv) x-index [34,35], the number of papers published by
an author that are in the top 1% most cited papers. This
approach explicitly takes into account the extreme skewness
of the citation distribution, which may cause average-based
indicators to fail because of their sensitivity to the presence of
one or a few very highly cited publications [36]. Percentile-
based indicators like x are instead less sensitive to these
outliers [37].

(v) h-index [3]. Given the set IT; = {oy, ..., 00, ..., 0, } of
papers authored by i ordered by citation count in decreasing
order (i.e., such that ¢,, > cq,,,, k € [1,k; — 1]), the h-index
is the last position in which ¢,, is greater than or equal to the
position «:

h; = max { min [caK,K]}.
K a,€ll;

(vi) Contemporary h-index (hc) [38], obtained by giving
more weight to recent papers. In particular, citations to papers
published t years ago are weighted with 4/(t 4 1). The hc-
index is then computed as the i-index on the weighted citation
counts.

(vii) g-index [39]. Given the ordering I1;, the g-index is the
(unique) largest number such that the top g articles received,
together, at least g citations:

g12< Z Coy -

K< 8i
a, € I1;

(viii) o-index [40]. Geometric mean of M and h: o, =
~M;h;. The idea is that M accounts for the researchers’
greatest results and i for their diligence. Thus, differently
from the A-index, the o-index does not ignore the tail of the
citation record.

(ix) Normalized h-index (n, or m-quotient) [3], obtained
as m; = h;/t;, where 1; is the time since the first publication
of researcher i. This indicator is mainly aiming to identify
young and promising scientists, as usually citation-based
metrics favor senior researchers who had enough time to attract
citations to their work [41].

Note that, apart from the x-index, all the metrics listed here
can be computed for an individual researcher using solely her
own citation records, i.e., without knowledge of citation statis-
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tics for the whole scientific community. This feature makes
these indices apt for practical applications, as usually the whole
dataset is inaccessible or very hard to handle (especially by
individual researchers). In this respect, the inclusion of the
x-index in our analysis is mainly for completeness—actually,
x is used mostly to compare not single researchers, but research
institutions or communities at larger scales.

We remark that various metrics of scientific impact are
not considered here for several reasons. For instance, in our
simplified framework we model only one scientific area and
one general publication venue, and thus it makes no sense
to test metrics accounting for the research field [42] nor
those based on comparing the total number of citations of
a paper to those of other publications in the same journal
[43,44]. Additionally, in our setting all coauthors are assumed
to contribute to a paper equally, their activity decreases
by 1 for every publication regardless of the number of
coauthors, and the fitness of that paper does not scale with
the number of coauthors. Thus, we cannot consider metrics
that incorporate the relative contribution of each coauthor
to a paper, like the individual h-index [45] or the SDC
(“sequence-determines-credit”) approach [46] do. Nor do we
consider indices accounting for the quality of the citations in
terms of the collaboration distance between citing and cited
authors [47], as we do not model the presence of research
groups. Finally, we do not consider metrics based on the
eigenvector centrality within the citation network [48], such
as PageRank [49], CiteRank [49], or PhysAuthorRank [50].
This is because the linking probability defined by Eq. (1)
depends only on the fitness of the target paper §, and not
on the fitness of the source paper «. As a result, citations
from a highly valued paper have the same intrinsic value as
citations from an ordinary paper, and differentiating the weight
of incoming citations thus cannot yield any improvements.
Upon calibration on real data, our modeling framework can be
extended to include many of the aforementioned effects and
thus allow more metrics to be evaluated.

IV. RESULTS

We now assess the impact indicators against the “ground
truth” provided by the intrinsic features of researchers in the
model. In particular, we consider four different benchmarks:
two intensive quantities (i.e., not depending on the number
of authored papers), namely researcher ability a; and average
fitness of authored papers f; := Y wic a, Jo/ki, and two ex-
tensive quantities (i.e., accounting for the number of authored
papers), namely researcher ability times productivity a;k; and
total fitness of authored papers f;k;. Note that for each pair
of benchmarks, the first quantity refers to the researchers’
potential, whereas the second one is related to their actually
realized publication output.

To evaluate a given impact indicator, we first use the
ground truth to determine the set of 100 best authors. We
then determine the set of the top 100 best-evaluated authors
according to their impact score. Finally, we count the overlap
O between these two sets of researchers. The relative overlap
0/100, which ranges from O to 1, is then a measure of the
metric’s performance (the higher the overlap, the more suc-
cessful the impact metric in identifying the best researchers),
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FIG. 4. Comparison of the mean precision values achieved by research impact indicators with respect to different ground truth assumptions:
(a) author ability, (b) average fitness of authored papers, (c) author ability times activity, (d) total fitness of authored papers. The horizontal
dotted line marks the performance of the best metric (which is typed with bold letters); the error bars show three times the standard error of the

mean.

which is commonly referred to as precision in information
filtering literature [51]. Since the number of the best authors
who serve as an identification target, 100, is the same as
the top positions that are inspected, another classical metric,
recall, is also equal to O /100. We evaluate precision achieved
by individual metrics on 100 independent model evaluations,
which are then used to compute the average precision and
the standard error of the mean. Note that the results are little
sensitive to choosing different evaluation parameters.

Figure 4 summarizes the metric evaluation results for the
basic model setting described in Sec. II. We see that when
the ground truth is an intensive quantity [author ability in
panel (a) or average fitness of the authored papers in panel
(b)], the simple average citation score E is by far the best
performing indicator among the described group of traditional
performance metrics. When considering extensive ground
truths, the family of A-indices expectedly becomes more
reliable: A, hc, and g are tied for first place. Since in this
basic setting all researchers are in principle active from the
beginning of the simulation, the m-quotient lags behind the
original & because of its uneven handling of researchers who
have few papers and by chance started publishing late. The
recently proposed o-index always performs midway between
the h-index and M (the citation count of the most cited
paper), which suggests that the combination of these two
quantities is not particularly effective in discerning the best
researchers. The x-index does not perform well in any of the
evaluations, mainly due to its reliance on a small subset of
all papers (top 1%), which makes it simultaneously a noisy
and little discriminative metric for evaluation of individuals.
Total citation count C lags behind /-like metrics, which is not
surprising as it is highly sensitive to outliers.

To overcome the observed problems of certain metrics,
we explore some variants that could possibly fare better.
First, to cope with outliers, we introduce the total logarithmic
citation count AC; = )" .. A, log(cy + 1) (the citation count
¢y 1s incremented by 1 to avoid log O for papers with zero
citations) and the mean logarithmic citation count AE; =
AC;/k;.Figure 4 shows that A E matches the good performance
of the mean citation count E for both intensive benchmarks.
By contrast, AC slightly outperforms (approximately by 4%)

the established metrics for the extensive benchmarks, yet it
has to be noted that the total logarithmic citation count is
a considerably simpler metric than % and g. This suggests
that the use of a logarithmic unit of measure is an efficient
way to deal with the skewness of the citation distribution. As
for the m-quotient, its flaw is to allow many young authors
who have only authored one or a few papers to score well,
because their A-indices are divided by their small author age.
While in real use this bias may be avoided by, e.g., selection
committees enforcing explicit conditions on applicants (for
instance, at least 3 years after the Ph.D. defense, or a minimum
number of publications), here we explore a mathematically
grounded solution by formulating a corrected m-quotient:
m{ = (hj/t)(1 =1/ ki), where the second term penalizes
researchers with very few authored papers (for example,
m¢ = 0 for all authors with only one publication). As Fig. 4
shows, such a corrected m-quotient then performs better
than its original version and also outperforms the established
metrics, though to a lesser extent than AC.

Figure S2 in the Supplemental Material [28] further shows
how the performance of individual metrics changes when
individual model assumptions and parameters are varied. We
see that while the choice of parameters has some impact on the
achieved precision values, the best results are always obtained
with the same set of metrics: E and A E with respect to intensive
ground truths, and the family of /-indices and AC with respect
to extensive ground truths. Notably, the best performer AC is
closely followed by the long-standing A-index in all studied
settings, while some other well-performing metrics fall slightly
behind under certain circumstances (e.g., the g-index when the
number of researchers in the simulated system is increased).

Note that the career lengths of evaluated researchers can
substantially vary in practice. This scenario is considered in
Fig. S3 (and a corresponding model description) [28], where
the relative differences between the metrics are similar to
those shown in Fig. 4. Overall, we can conclude that the main
results that we report here are robust with respect to substantial
variations of the model and of its parameters.

We conclude by discussing the choice of optimal bench-
marks against which to evaluate impact indicators. On one
hand, extensive ground truths are more appropriate when
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we assume that all researchers are active for the whole
time period. This is because intensive benchmarks neglect
productivity, and thus they do not penalize gifted but little
active researchers who produce only a few (though very good)
papers. On the other hand, when considering researchers with
a different activity lifetime (see Fig. S3 of the Supplemental
Material [28]), extensive ground truths automatically give
preference to authors who have been active longer, thus using
intensive benchmarks may be more appropriate in this case.
Yet, because of their own nature, intensive criteria are unable
to properly handle authors with very low activity and thus little
citation statistics. Relying on an “intermediate” ground truth
could represent a suitable solution, albeit its precise form is
certainly arbitrary. Our artificial framework makes it easy to
evaluate impact indicators with respect to a different ground
truth assumption. Figures S4 and S5 in the Supplemental
Material [28] show results for two intermediate benchmarks:
researcher ability times square root of productivity a;/k; and
an analogous multiple of the average fitness of the authored
papers fi«/k;. We observe no major changes with respect to
the purely extensive benchmarks, supposedly because activity
values are broadly distributed: even after the square root
is applied, substantial activity is still needed to access the
top 100 of the new ground truth. From the viewpoint of
evaluating researchers, the dual intensive-extensive approach
used here thus seems sufficient. There are some particular
aspects though, such as the ability of a metric to identify young
talented researchers, that can only be captured by ground
truths that specifically target the feature of interest (researchers
active for less than six years, for example). Construction of
such ground truths and their use in the proposed model-based
evaluation framework remain open issues for future research.

V. DISCUSSION

The ongoing proliferation of scientific impact indicators
is facilitated by the critical lack of solid evaluation criteria.
Presently, motivation for new metrics is sometimes only
anecdotal, and their evaluation often relies on outliers analysis
[3,38-40,50]. However, outliers in any metric are almost
inevitably highly successful authors or highly cited papers—
such validation is thus very soft and eliminates only the most
ill-suited metrics. The absence of a “golden standard” (certified
best papers and researchers) for validation of indicators on real
data compels the use of various ad hoc proxies, such as relying
onexperts’ judgment [29]. In this work, building on an artificial
model of citation dynamics, we have established a test bench
where new and old metrics can face their first examination.
The use of a controlled framework allowed us to avoid the
biases present in real citation databases related to coverage
issues and to improper citation practices [4,10,11], and, more
importantly, to have ground truth features to evaluate impact
indicators against in a quantitative way.

Our framework, which generates bibliometric statistics
whose aggregate characteristics closely match those of real
citation data (Fig. 2), is based on a number of assumptions and
simplifications, yet it is open to include additional features of
real citation dynamics. For instance, we could consider several
research areas with different citation rates, which would in turn
allow us to study field normalization for impact indicators. Ad-
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ditionally, while we have intentionally excluded journals, the
review process, and the impact of publishing venue on paper
success, different journals could be included to model impor-
tant aspects for the dynamics of paper popularity, such as high
impact factor journals having a broader readership and attract-
ing more citations for their articles. Moving further, the social
network of researchers plays an important role in real citation
dynamics, and thus in principle we could consider the presence
of both befriended and competing scientists, the structure
of research collaborations that in reality are not formed at
random for every paper as we modeled them here [52], and
the feedback of author reputation on the dynamics of paper
popularity [53]. A strong assumption of our model is the use
of Eq. (1), which determines the citation mechanism. Indeed,
while this formulation was shown to fit real data better than any
other model proposed so far [23], it can of course be improved.
For instance, we could vary the sensitivity of citing papers
to the quality of cited papers, i.e., make high fitness papers
more likely to cite other good papers than low fitness
papers do. Besides making the model more realistic (there is
empirical evidence that highly cited papers do cite other highly
cited papers more often than one would expect, in particular
more often than the badly cited papers do [54]), such a mod-
ification could allow PageRank-like metrics to yield results
superior to simple local metrics such as citation count and
h-index.

Despite these simplifications, our analysis allowed us to
quantitatively assess what impact indicators actually reflect.
We found that the average citation score efficiently measures
author ability, whereas the 4 and g indices and the simpler
cumulative logarithmic citation count AC do capture joint
ability and productivity of researchers. Additionally, we
provided several recommendations for a proper use of the
normalized h-index in the identification of talented young
scientists. While our results are only preliminary, and may
become more robust by equipping the model with more
realistic assumptions, we remark that the issue of studying
what impact indicators do measure is of critical importance
nowadays, as these metrics are currently so widely employed
by selection committees that basically determine “most things
that matter: tenure or unemployment, a postdoctoral grant or
none, success or failure” [8]. However, impact indicators are
“usually well intentioned, not always well informed, often ill
applied” [9]. In other words, while these indicators have been
designed to improve the system, their improper use is putting
the system in danger—primarily by modifying the very aim
of scientists from making discoveries to publishing as many
papers and getting as many citations as possible. In this respect,
simulation scenarios may ease the difficulties in determining
what a given measurement of scientific impact reflects, without
overlooking the fact that in any case impact indicators alone
cannot be used to judge individual scientists.
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