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Abstract

In this contribution, we introduce a network approach for the organization of global
production across national borders, beyond the sequential industry-level metrics pro-
posed in the previous literature. First, we show and argue that several characteristics of
global production processes would be lost in the analysis when assuming that they could
be proxied as linear sequences. Hence, we propose an index that assesses the relevance
of any input for the target output, including its role as an input of inputs. Thereafter,
we exploit an own-built firm-level dataset of about 20,489 U.S. parent companies in-
tegrating more than 154,000 affiliates worldwide. Results show that the technological
relevance of an input in a directed supply network is also a good predictor for: i) the
probability that an input industry is actually integrated within a firm boundary; ii) the
number of affiliates that are controlled by the parent company and active in that input

industry.
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1 Introduction

Production processes are more than ever spatially fragmented, after a process of unbundling
occurred globally, separating the production of intermediates and final goods across national
borders (Hummels et al., 2001; Baldwin, 2006; Baldwin and Lopez-Gonzalez, 2015). Even-
tually, networks of firms can be established, where each stage of production can be vertically
integrated or not within firm boundaries. If a production stage is vertically integrated,
inputs will be exchanged intra-firm. Otherwise, buyers and suppliers will exchange arm’s
length after signing supply contracts. Yet, emerging literature on the determinants and con-
sequences of the global supply chain studies the phenomenon of unbundling assuming that
an ordered and linear sequence exists, from the conception of the product to its distribution
and final use. Albeit an advancement with respect to previous literature, where each stage
of production was considered separately, we argue that a linear organization of production
is not realistic and a network approach allows catching the complexity of actual sourcing
strategies. Production processes are characterized by a multiplicity of linkages and feedback
loops more elaborated than simple circuits or linear flows, as pointed out in Hudson (2004).

The same inputs can be used at several stages of production, not in linear progression,
before reaching the final demand, and the sourcing of an industry can assume different
topological structures. Hence, we measure the distance between each input and the target
output in a directed production network, building an industry-pair measure that takes into
account the contribution of that input at several stages of manufacturing before reaching the
final output. Our Relevance Index is based on the methodology of the personalised PageRank
in Haveliwala (2002), Jeh and Widom (2003), White and Smyth (2003).! In fact, the relative
input industry position and the industry elasticity of substitution together can determine
the choice between making or buying a task by a parent company (Antras and Chor, 2013).
Differently from downstreamness metrics, as in Antras and Chor (2013) and Alfaro et al.
(2017), our index captures the different importance of inputs occupying a similar position,
considering the topology of the technological network, which can be output-specific.

To prove our point, we make use of a firm-level dataset of about 20,489 U.S. parent
companies integrating more than 154,000 affiliates worldwide. Results from our firm-level
analysis show that the relevance of an input in oriented technological networks is also a good
predictor for: i) the probability that an input industry is actually integrated within a firm
boundary; ii) the number of affiliates that are controlled by the parent company and active

in that input industry.

'The Relevance Index ranks all the inputs used in the production of a particular output according to their
the technological importance as elaborated from input-output tables. All the details about the computation
of the index are provided in the Appendix A.1.



This paper is organized as follows. The next section introduces our reference framework.
Then, section 3 discusses the value of considering supply networks instead of supply chains,
introducing our Relevance Index. Section 4 describes the data construction. Section 5

presents the empirical strategy and results. Concluding remarks are offered in Section 6.

2 The Framework

Since the 1980s, many empirical studies have attempted to model the choice of vertical inte-
gration that leads to the formation of firm boundaries, based on the degree of contractibility
of that input and on the institutional environment of the market where companies operate.

The pioneering work of Coase (1937) helped to build a theory of the firm. In fact,
new approaches to understanding what determines a firm’s boundaries borrow from the
theoretical literature on incomplete contracts (Williamson, 1971, 1975, 1979; Grossman and
Hart, 1986) and incorporate these frameworks in general equilibrium models. Acemoglu
et al. (2007) for the first time investigate how the degree of contractual incompleteness
and the extent of technological complementarities between intermediate inputs affect the

2 More recently, Harms et al. (2012) analyse the

choice of technology by headquarters.
offshoring decision of firms whose production process is characterized by a particular sequence
of steps and a non-monotonic variation of transportation costs. Costinot et al. (2012) build
a theory of global supply chains, in which the key feature is that production is sequential
and standardized in structure, and offer a first look at how vertical specialization shapes the
interdependence of countries. On the country dimension, Antras and de Gortari (2017) study
how trade barriers shape the location of production along global value chains. They show
that it is optimal to locate downstream stages of production in relatively central countries.

First of all, we aim at filling the gap in the empirical literature to quantify the position
of production processes in technological networks, providing a complete understanding of
the complex role that inputs play in the entire production network. In this, we improve on
previous measures of positioning along supply chains, as started in contributions by Fally
(2012), Antras et al. (2012), and more recently for bilateral industry-pairs by Alfaro et al.
(2017). For our purpose, we build a Relevance Index based on the methodology of the
personalised PageRank in Haveliwala (2002), Jeh and Widom (2003), White and Smyth
(2003).

Antras and Chor (2013) develop a property-rights model of firms’ boundaries choice along
the value chain, and introduce two measures of industry’s production line position, named

DUse TUse and DownMeasure. They collapse to the [0,1] range the technological process

2For a detailed review of firms’ organization strategies and trade, see Antras and Yeaple (2014).



of production, where 0 indicates the beginning of the production line and 1 the proximity
to the final demand, and construct the two novel measures using the U.S. input-output ta-
bles. The main prediction that emerges from the model is that the position of an input in
the value chain is an important determinant of the ownership structure decisions related to
that input. Moreover, such dependence is established by the size of the elasticity of demand
faced by the final-good producer relative to the elasticity of inputs across production stages.
Production processes are sequential in nature, i.e. downstream stages cannot commence
until upstream stages are completed, therefore the organizational decisions along what most
assume a production line relate to the contract setting more appropriate to secure each stage
input. Usually, firms operate in an environment of incomplete contracts and intermediate
producers along with the final producer bargain over the surplus associated with a partic-
ular stage. Owning a supplier is a source of power for the firm because it enhances its
bargaining power through the residual control rights, but at the same time, it reduces the
incentive of suppliers to invest in the relationship. Another important feature of the analysis
is that along the value chain there is a spillover effect of relation-specific investments made
by upstream suppliers on the incentives to invest of downstream suppliers. As a result, the
Antras and Chor (2013) model suggests that when the average demand elasticity faced by
the final-good producer is high (low) relative to the input substitutability, input stages are
sequential complements (substitutes), and it is optimal for the firm to vertically integrate
relatively downstream (upstream) stages and outsource production stages more upstream
(downstream). Exploiting the theoretical framework of Antras and Chor (2013), Del Prete
and Rungi (2017) test at the firm-level the optimal allocation of property rights along the
supply chain and explore the correlation between the average downstreamness of the inte-
grated affiliates and the one of the parent company (relative to the final demand), taking
into account the output demand elasticity. An important insight in Del Prete and Rungi
(2017) is that the decision-making center, i.e. the parent company, can generally be located
at any of the production stages, meaning that it could also be far from the final consumer.
Under these circumstances, what really matters is the relative position, as opposed to the
absolute position, of each parent company with respect to its affiliates. When considering
the sequence, they find that the position of the integrated stage of production is correlated
with the position of the parent output.

In our contribution, we find evidence for the main prediction of Antras and Chor (2013),
according to which the ownership decisions of a firm depend on the position of an input
industry in the entire production process. However, sourcing strategies are more complex
than how they are described in the model, in fact, different configurations are possible across

industries rather than linear sequences. Consider for example the case of two different in-



dustries present in our data: Electronic computer manufacturing (334111) and Automobile
manufacturing (336111).> According to the DownMeasure from Antras and Chor (2013),
their positioning on the supply chain with respect to final use are respectively, .9589 for the
Electronic computer manufacturing (334111) and .9997 for the Automobile manufacturing
(336111). Although they are both close to the final consumer, we may observe heterogeneous
shapes of the technological networks that lead to their final production.* Our results show
that demand elasticities of final-good producers are not significant determinants of integra-
tion choices if we remove the assumption of a unique linear sequence of stages of production
where the final-output producer is located at the end of the chain. All inputs are comple-
ments in nature, and often they enter the production processes of several outputs at different
moments, so the effort choices of stage suppliers might not be driven by the demand elas-
ticity of a single final-output producer. Instead, following a network perspective, we argue
that the position of an input in the production network of a target output explains better
the firm boundary.

Our paper also contributes to another strand of research set by Carvalho (2014), who de-
scribes the intersectoral linkages of industrial networks in U.S., and who shows how aggregate
fluctuations can be generated and magnified by individual industry shocks when the latter
hit a central industry. Similarly, Acemoglu et al. (2012) show the impact of the economy’s
architecture on macroeconomic fluctuations. At the firm-level, Atalay et al. (2011) theo-
retically and empirically characterize the buyer-supplier network overcoming the scale-free
framework that does not fit actual firm-level buyer-supplier relationships. Further, Oberfield
(2012) proposes a theory of the formation and the evolution of an economy’s production net-
work and studies the speed of transmission of productivity shocks in relation to the centrality
of that industry in the sourcing strategies of other industries. However, none of the previous

works consider firm’s boundaries as an alternative mode of organization of supply networks.

3 From supply chains to networks

3.1 Spiders or snakes?

The intuition behind metrics of supply chains (Fally, 2012; Antras et al., 2012; Alfaro et al.,

2017) relies on the linearity of the technological production process, on a sequence, whereas

3For each sector, we report in parenthesis the 102002 code from U.S. Bureau of Economic Analysis
Input-Output tables.

4A portion of the technological networks of the Electronic computer manufacturing (334111) and Auto-
mobile manufacturing (336111) is showed in the graphs presented in section 3.3.



the connectivity of modern economies suggests that a network perspective fits better the
actual organization of global production processes. We argue that the mutually interactive
and recursive nature of the relationships involved in these processes are better understood
as sophisticated global supply networks.

The engineering of the manufacturing process, typical for each industry, dictates the
way in which different stages of production links, and it can be unbundled (Baldwin and
Venables, 2013). There are two extreme simplified configurations commonly used to describe
the supply chain: a spider and a snake. A spider is a production process in which different
components come together to be assembled in the final output (Fig. 1). The snake structure
requires the process to be a sequence of stages until the final assembly (Fig. 2). The latter
relies on the predetermined order in which operations are performed. Measures of industry
position along the supply chain proposed in the literature consider only the snake dimension.
Instead, all production processes are better thought of as a combination of the snake and

spider structure.

Figure 1: A spider global value chain.

—— | Final
/, assembly

Source: Baldwin and Venables (2013). Each cell is a part, component or final product itself. Each arrow
is the physical movement of parts, components or the good itself. Movements can be within a plant in a
country, or between plants located in different countries.

Figure 2: A snake global value chain.

Final
’ @ > ’ ’ assembly

Source: Baldwin and Venables (2013). Each cell is a production stage at which value is added to a product for
final consumption. Each arrow is the physical movement of parts, components or the good itself. Movements
can be within a plant in a country, or between plants located in different countries.

Before we introduce our metric, we show here how different production networks are from
sequential supply chains. We elaborate the following analysis starting from the U.S. Bureau

of Economic Analysis (BEA) Input-Output tables.® A simple way to account for the spider

°In fact, we follow Antras and Chor (2013) and Carvalho (2014) in the data choice. We use the



dimension, i.e. the width of the production process, is to count the number of effective inputs
that are put together for assembling the final output.® The higher number of effective inputs
used to produce a target output, the more complex the mechanism of production. In Fig.
3, we report the distribution of inputs needed by each industry, where the most complex
industry is General state and local government service (S00700) and the simplest is Funds,
Trust, and other financial vehicles (525000).

Figure 3: The ‘spiderness’ of the supply chain.
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Source: Own elaboration. Reported number of inputs used by the 426 102002 industries from U.S. 2002 I-O
tables.
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Industries along the supply chain might be very different in their input structures; there-
fore when measuring their positioning, it should also be taken it into account. In Fig. 4,
we measure the similarity between pairs of industries, as indicated by the dominance of the

orange colour.” The most similar industries, with a score of about 0.876 are Automobile

Commodity-by-Industry Direct Requirements tables after Redefinitions. The input-output account reports
the amount of the commodity required to produce one dollar of the industry’s output of 426 different indus-
tries in U.S.. We use the publicly-available 2002 I-O tables at 6-digit 102002 code level because it provides
a level of industry detail close to NAICS rev. 2012 industry classification codes at 6-digit.

5We compute the number of effective inputs borrowing the formula of the Herfindahl index and taking

the inverse, as follows:

1
Ci = i (1)

with H; =), d?j, and d;; is the direct requirement coefficient from industry providing input ¢ to the industry
producing the final output j, in the 2002 input-output tables from the U.S. Bureau of Economic Analysis.
"We use the Jaccard similarity index which compares elements for two sets to see which members are

shared and which are distinct. In our case, we compare the input’s structure of pairwise industries k; and ;.
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manufacturing (336111) and Light truck and utility vehicle manufacturing (336112), while
the least, with a score of 0.006 are Funds, trusts, and other financial vehicles (525000) and
Light truck and utility vehicle manufacturing (336112).

Figure 4: Pairwise similarity between industries.
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Source: Own elaboration. Reported similarity input structure for 426 pairwise industries at 6-digit 102002
codes. Labels of only 25 industries. The intense orange colour indicates that two industries are very similar
regarding the inputs used.

3.2 Supply Networks

In a broader perspective, the economy can be seen as a thick network where heterogeneous
nodes are industries, and heterogeneous and directed edges are economic transactions be-
tween these industries.

The network visualization in Fig. 5 helps us catching the actual complexity and all the

dimensions of the sourcing strategies, at the industry-level. We assume that input-output

It ranges from O to 1. The higher the value, the more similar the two sets of inputs Ps, and P, respectively.

The formula is:
B > min(Ps,, PSJ.)
7 Y max(Py,, Py))

(2)

T &

where s are the 426 102002 industries in the U.S. Bureau of Economic Analysis classification.



Figure 5: Input-Output Network.

Electronic computer manufacturing

Automobile manufacturing

Manufacturing
Services
Primary

@ Extraction

Source: Own elaboration on the U.S. 2002 I-O tables, BEA. Reported input transactions above 1%.
Visualization: Gephi software, Force Atlas layout (Jacomy et al., 2011).

linkages represent the backbones of standard technologies, such that correlation in input
usage exists across countries, especially when countries share the same technology frontier.®
The entire production network is reported, where industries are nodes and each non-zero
entry for input requirements implies a directed edge, i.e. a flow of input is needed to produce
an output. We end up with 51,768 edges. For the empirical analysis that follows, in particular
for the construction of our metric, we retain both the information of inputs required to
produce an output and the weights associated with each link. We consider all links, including
those representing very small transactions to keep the analysis more accurate.” The whole
set of industries can be sorted into four macro categories: manufacturing (with a density of
65.49%), services (27.46%), primary (4.46%), extraction (2.58%). Interestingly, the yellow

8Further assumptions when using I-O tables are the existence of a homogeneous production function for
all firms in an industry, and the possibility to neglect economies of scale. Moreover, the extension of U.S. I-O
tables to other countries different from U.S. requires assuming that cross country factor price equalization
holds. See also Acemoglu et al. (2009), and Fan and Lang (2000) for previous works extending U.S. tables.
For example, automobile makers will always require tires, glass, plastic and steel wherever, but size of firms
and product quality may change also within the same industry.

9We point out that discarding some inputs with little real value prevents the analysis to keep track of
those inputs that could have a relevant role in the supply network. For example, inputs appearing several
times in the production process, or essential and inelastic one which still may have a high economic value.



nodes, which have the most industries are in the manufacturing sector, but the larger orange
nodes are in the service sector.

To characterize this network, capturing graph-theoretic properties, we provide a quick
overview of some basic network statistics. The first issue we address concerns the connectiv-
ity. More specifically, we explore the extent to which industries are more or less connected,
regarding the number of links and interaction intensity. We have that the fraction of the
actual links over the potential links, thus the density is 0.286, indicating a rather high degree
of connectivity if we consider the overall set of links, meaning in our perspective that the
supply network is rather tangled. The increasing fragmentation of production, as well as the
reduction of transportation costs, make it easy to provide even small components from spa-
tially farther suppliers. Furthermore, this is confirmed by the diameter of 4, which suggests
that the length of the longest geodesic path between any pair of nodes is very short, and the
average path length is even shorter, about 1.716, pointing out to a small-world nature of the
supply networks. Indeed, the input-output network exhibits clustering patterns, i.e. there is
a high probability that if industry k; and k; interact and, the latter interacts with industry k.,
then in turn industry k; and k. interact. The average clustering coefficient is 0.576. We now
turn the attention to node-specific indicators, in particular, we consider the number of each
industry’s links. Node size in Fig. 5 gives an idea of the distribution across macro categories.
The in-degree of an industry k;, defined as the number of distinct input-demand transac-
tions, ranges from 45 to 296. The highest numbers of incoming links supply a lot of services’
industries, among others, Retail trade (4A0000), Scientific research and development services
(541700), General state and local government services (S00700), Wholesale trade (420000).
On the other hand, the out-degree, thus the number of distinct output-supply transactions,
ranges from 1 to 425. As expected, Wholesale trade (420000) provides inputs to many indus-
tries, as well as all transportation’s industries, Telecommunications (517000), Electric power
transmission and generation (221100), among others. Besides, information on node strength
is given by the weighted degree, which is based on the number of edges and their weights. In
the input-output network, the average weighted degree equals 0.571. The higher is the node
strength, the higher is the intensity of interactions mediated by that node. It is interesting to
note that two nodes with the same degree can be associated with two different strength. For
example, this is the case of Computer storage device manufacturing (334112) and Surgical
and medical instrument manufacturing (339112), which both have a degree of 156, but the
former has a weighted degree of 1.087, while the latter of 0.609. In other words, it means
that the flow of inputs directed to the Computer storage device manufacturing (334112) is
greater than the one received by Surgical and medical instrument manufacturing (339112).

In our data, the industry Management of companies and enterprises (541610) is the one with

10



the highest weighted degree, followed by Wholesale trade (420000).

Another important feature is the identification of the main industries in the global pro-
duction network, through node centrality measures. We refer to the global notion of cen-
trality, i.e. a node is central if it has a strategic position in the overall network structure.
The betweenness centrality, defined as the proportion of all the shortest paths between any
two nodes passing through a given node, can be regarded as a measure of a node’s control
over the flow between others. In sociological terms, it measures the extent to which a node
plays the role of a ‘broker’ in the network. For instance, in the input-output network under
examination, critical industries according to this measure are Scientific research and devel-
opment services (541700), Retail trade (4A0000), Nonresidential maintenance and repair
(500203), Management of companies and enterprises (541610), Food services and drinking
places (722000), Wholesale trade (420000), along with others.

The focal point of our analysis relies on the stage structure of each industry in directed
technological networks. We argue that each node has a complex structure upstream. For
instance, consider Electronic computer manufacturing (334111) and Automobile manufac-
turing (336111), we can pull out those nodes from the overall network and represent their
particular input-output structure separately. In the next section, we clarify the potential of
this more advanced analysis, and we provide a visualization of these two networks. Broadly
speaking, we believe that the more realistic perspective of complex production networks,
rather than simple sequences, calls for analytical tools that can characterize their properties,

therefore pointing out to a richer characterization of evolving production structures.

3.3 A Relevance Index for the sourcing of inputs

We propose a new industry-pair measure, which reflects the position in the supply network
of direct and indirect inputs for the production of an output, in a network perspective,
based on input-output tables. Our aim is to catch the production staging position of each
input, moreover, its relevance for the orientation of the technological process, when vertical
structures of production may require its usage recursively before completing the process.
The recent developments in network science provide a rich toolbox for analyzing the
relationship between a pair of nodes in a network.'® The easiest way is to check if there exists
a link between two nodes or evaluate the link weight between them if the network is weighted.
To have a more sophisticated idea of how closely the two nodes are related by taking into

account both direct and indirect connections, one may consider measuring the shortest path

10Geveral measures of centrality, catching the absolute position of a node in the network, are well-defined
and implemented. See Freeman et al. (1979), Katz (1953), Brin and Page (2012) and Kleinberg (1999) for
the most used.
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length (Newman, 2010) or the communicability (Estrada and Hatano, 2008) between them.
More explicitly, White and Smyth (2003) propose some algorithms to quantify the relative
importance of one node with respect to another based on weighted paths and Markov chains.
In this context, we build on the methodology of the personalized PageRank!'! in Haveliwala
(2002), Jeh and Widom (2003), White and Smyth (2003), to estimate the relative importance
of industries. Unlike the regular PageRank, which evaluates each node’s global importance,
the personalized PageRank enables us to evaluate and rank each node with respect to a root
node.

The proposed industry-pair measure, we called Relevance Indez, is constructed using the
U.S. I-O tables issued by BEA in 2002. For each pair of 102002 codes, we identify the direct
requirement coefficient d,;, i.e. the input from industry k; used in the production of industry
k;’s output.'? The Relevance Index, RI(i|r) = m,, is computed using the personalized

PageRank algorithm with respect to the root node r, as follows:
m = (1 —a)Pm_1 + ae, (3)

P is the normalized direct requirement matrix!'3, e, is a column vector with all its elements
as Os with the exception of the rth element which equals 1 and represents the selected root
node. The parameter o which lies in [0,1] is the tuning parameter.!* In our framework,
a can be interpreted as a distance parameter and by choosing a rather high value, inputs

closely (directly or indirectly) related to the target output will be more important in the

1 The approach undelying the personalized PageRank is that of Markov Chain. A graph is viewed as a
stochastic process, specifically a first-order Markov chain, where the edges are labeled by the probabilities
of transitiong from one node at time ¢ to another node at time ¢ + 1. For a detailed description see the
Appendix A.1.

12By column-normalizing the direct requirement coefficients of the input-output table, after removing
the final demand and the external value-added, the analogy with the transition probabilities in the Markov
chains is easily employed. While excluding the value-added contribution of the final output, the intrinsic
(second round) value-added in its intermediate inputs does not affect the analysis since we are interested in
the relative importance of the direct and indirect inputs.

13Elements of matrix P are the transition probabilities of passing from a node 3 to a node j.

14The parameter «, defined as the ‘back’ probability in White and Smyth (2003), represents the probability
to go back to the root node at each time-step. Higher values of @ mean that the ‘random surfer’, which
can be interpreted as a ‘purchasing agent’ in our context, can travel short distances, implying that further
nodes are seldom visited, so at the end, the average time spent on those nodes, which proxies their relative
importance, should be little. The choice of this parameter is empirical, and in this study we show that we
can choose an «; peculiar to each input, according to one of its characteristic, such as the contractibility. For
instance, a more contractible input (higher «;), i.e. not sold on an exchange nor reference priced, is more
likely to be considered by the ‘purchasing agent’ for possible integration within firm’s boundaries.

12



final ranking.'> Imposing the steady-state condition 7, = m,_; = 7., the solution of (3) is:
RI(i|r) =7, = o[l — (1 — a)P] e, (4)

where 7, is the vector of probabilities, ranking all the inputs used in the production of a
target output. The Relevance Index lies in the |0,1] range by construction, where values are
assigned to each node proportionally to its economic distance from the root node.!®

The new metric, which proxies the technological importance of inputs against the pro-
ducer of the final output, has several desirable properties that guarantee its use as a measure
of production position in global supply networks. Firstly, it allows capturing the different
strength of inputs at the same distance from the target output, considering their upstream
structure. Each input can be seen as the output of its production process embedded in a
network, therefore inputs with the same distance to the final output have a different history
behind, which shapes the future relationship with the final output. Secondly, inputs enter
the production process directly and indirectly, and possibly more than once. Therefore the
positioning of an input also rests on recursive power dynamics. We argue that our measure
is able to capture an important feature of the complex structure of production processes.
The index varies for each input-output pair and can be directly mapped to parent-affiliate
pairs.

In Fig. 6, we report a portion of two extracted supply networks, namely the Electronic
computer manufacturing (334111) and the Automobile manufacturing (336111) networks.
According to the downstreamness measure (Antras and Chor, 2013), their positioning on
the supply chain is .9589 for the Electronic computer manufacturing (334111) and .9997 for
the Automobile manufacturing (336111). Although they are both close to final demand,
a network perspective captures the heterogeneous shape of the directed technological net-
works. In Fig. 6a, the yellow node represents the computer sector, while green nodes are
some of the industries producing its inputs. The dimension of each node is given by the
Relevance Indez, which measures the distance between each input and the target output,
taking into account the contribution of that input at several stages before reaching the fi-
nal output, and its role as an input of inputs. The industries featuring the highest values
of the metric for the Electronic computer manufacturing (334111) are Computer storage
device manufacturing (334112), Printed circuit assembly manufacturing (334418), Semicon-

ductor and related device manufacturing (334413), Software publishers (511200), Computer

15The distance factor is important to take into account the ‘dispersion’ in usage of the metric, although
flexibility is provided to employ several assumptions on the magnitude of the dispersion process (e.g., ‘knowl-
edge dispersion’ as in the case of innovation diffusion and technological spillover).

16Details about the construction and the computation of the Relevance Index are provided in the Appendix
Al
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terminals and other computer peripheral equipment manufacturing (33411A), Telecommuni-
cations (517000), Management, scientific, and technical consulting services (541610), Other
electronic component manufacturing (334419), Software, audio, and video media reproduc-
ing (33461A), and Scientific research and development services (541700) among others. On
the other hand, some industries which result more important for the Automobile manufac-
turing (336111) sector are Motor vehicle parts manufacturing (336300), Iron and steel mills
and ferroalloy manufacturing (331110), Semiconductor and related device manufacturing
(334413), Truck transportation (484000), Other plastics product manufacturing (32619A),
Turned product and screw, nut, and bolt manufacturing (332720), Glass product manu-
facturing (327215), Other engine equipment manufacturing (333618), Motor vehicle body
manufacturing (336211), along with others. In both cases, the ‘nearest’ inputs with possi-
bly a high technological relevance are amongst the basic components to final outputs. In
both extracted networks, we observe the presence of Wholesale trade (420000), which high-
lights the fact that these industries resort to an intermediate process in the distribution of
merchandise. Additionally, they significantly interact with Real estate (531000), Manage-
ment of companies and enterprises (550000), and Monetary authorities and depository credit
intermediation (52A000) industries.
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Figure 6: A visual comparison of two extracted networks.
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4 Data and Sample Construction

Our firm-level data are sourced from the Orbis database, by Bureau Van Dijk (BvDEP),
gathering financial and ownership information on millions of firms located worldwide. In
particular, we collect information on U.S. parent companies and their affiliates operating in
210 countries. We end up with a sample of 20,489 U.S. parents controlling at least 154,836
firms active in a variety of industries at the end of the year 2015.'” The selection of U.S.
parents is made coherently with the choice of using the U.S. Input-Output tables. Among
them, 11.4% of parents lead a multinational group with at least one affiliate located abroad.
On average, a representative U.S. parent controls 9.57 affiliates. In Table 1, we provide
descriptives of the size distribution of U.S. parent companies included in the sample.'® Small

and medium-sized parents account for 83.73% of the dataset.

Table 1: Size distribution of U.S. parent companies.

Size category ~ Number %
Small 9,927 48.45
Medium 7,229 35.28
Medium-large 2,001 9.77
Large 939  4.58
Very large 393  1.92
Total 20,489 100

Affiliates from our sample can be active in any industry: manufacturing (28.86%), services
(69%), primary (0.29%), extraction (1.85%). Approximately 19% of companies integrated
by U.S. parents are located outside the United States. In Table 2, we provide the geographic
coverage of our sample by main hosting countries/areas. Not surprisingly, the global supply
networks originate mainly in OECD economies, where the 96% of affiliates are based. Euro-
pean Union economy hosts the largest number of firms after the United States, where U.S.

parent companies still invest the most, possibly from one state to another. Within Europe,

1"The Orbis database enables the identification of an wultimate owner and its linkages with affiliates
worldwide. An ultimate owner is broadly defined as a shareholder (individual, family, public authority) that
is on top of any ownership path, i.e. it can not be owned by any other shareholder in nature or by law (Rungi
et al., 2017). To build our sample identifying firm boundaries, we follow international standards (Altomonte
and Rungi, 2013; UNCTAD, 2016; Rungi et al., 2017), in which the observation unit is the link between an
affiliate company and a parent, coming out from the direct or indirect equity participation of the latter when
the absolute majority of votes (> 50.01%) is reached. We adopt a network approach which allows taking
into account both the direct control at the parent-level and the indirect control through affiliates controlling
sub-affiliates at different hierarchical levels. Cross-participations are neglected.

18We classify firms by size based on a combination of criteria: revenues, or total assets, or number of
employees, or capitalization, or listed on the stock exchange.

16



Germany, United Kingdom, and Netherlands attract a significant share of foreign affiliates
providing especially service activities. Whereas, several Canadian companies supply U.S.
multinationals with final and intermediate goods. The less active geographic areas of the

supply networks in which U.S. parents are embedded are Russia, Middle East, and Africa.

Table 2: Sample geographic coverage of affiliates.

Country Final goods Intermediate goods Services Total
Affiliates % Affiliates % Affiliates % Affiliates %

United States 20,571 16.34 24,590 19.53 80,729 64.13 125,890 100
European Union 1,934 1145 2,084 12.34 12,872  76.21 16,890 100
of which:
Germany 273 13.17 306 14.76 1,494  72.07 2,073 100
France 171 11.03 213 13.73 1,167 75.24 1,551 100
United Kingdom 563 11.44 624 12.68 3,734 75.88 4,921 100
Ttaly 136 19.37 139 19.80 427  60.83 702 100
Netherlands 158  6.77 171 7.33 2,005  85.90 2,334 100
Canada 980 30.36 923 28.59 1,325 41.05 3,228 100
Russia 18 11.69 30 19.48 106  68.83 154 100
Asia 251  15.02 312 18.66 1,109 66.32 1,672 100
of which:
Japan 87 11.52 76 10.07 592 7841 755 100
China 92 12.06 66 8.65 605 79.29 763 100
India 122 15.66 149 19.13 508 65.21 779 100
Africa 67 14.17 93 19.66 313 66.17 473 100
Middle East 82 18.22 80 17.78 288 64 450 100
South America 221 12.10 395 21.63 1,210 66.27 1,826 100
of which:
Argentina 24 8.08 70 23.57 203 68.35 297 100
Brazil 137 14.59 219 23.32 583  62.09 939 100
Mexico 98 23.28 154 36.58 169 40.14 421 100
Australia 123 14.20 157 18.13 586  67.67 866 100
Rest of the world 489 16.49 585 19.72 1,892  63.79 2,966 100
Total 24,834 16.04 29,403 18.99 100,599 64.97 154,836 100

For the purpose of our analysis, we map parents’ and affiliates’ industry affiliation at
4-digit NAICS rev.2012 into industries from 2002 U.S. I-O tables produced by BEA.'? After

19We use and re-elaborate U.S. BEA correspondence tables from NAICS to 2002 I-O codes at 6-digit
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matching the primary activities, we combine firm-level data with industrial metrics well-
grounded in the literature of firm boundaries. Demand elasticity for the industry that sells
or buys an input is sourced from Broda and Weinstein (2006); metrics of sector position on
supply chains based on U.S. I-O tables (DUse TUse and DownMeasure) are sourced from
Antras and Chor (2013); a measure of contractibility, ranking industries by the easiness to
contract with a supplier is retrieved from Antras and Chor (2013), based on the methodology
of Nunn (2007). Finally, we complement the dataset with our industry-pair metric, namely

the Relevance Index, by matching each affiliate-parent observation corresponding activities.

5 Empirical strategy and results

Our aim is twofold. First, we test whether the relevance of an input in supply network can
explain the ‘make or buy’ choice by a parent company. Second, we investigate the economic
weight of each sector proxied by the number of integrated affiliates for a relevant input

industry.

5.1 The choice of vertical integration

To test vertical integration, we adopt a parent-level fixed effects conditional logit model, as
in Del Prete and Rungi (2017), as follows 2°:

dijye; = Bo + BrRIgw; + B2Dy, + Bs1(pr; > pmed) - Dr; + Bal(pr; > Pmed) - Rlgk,
+ B5Ck; + Vi + Eig)kik;

(5)

where d,(;) is a binary variable equal to 1 if the ith affiliate active in input industry &; is inte-
grated by the jth parent company mainly operating in output industry k; and 0 otherwise.
We also consider input industries that could have been integrated, but which eventually
were not, relying on the methodology of Fan and Lang (2000).2! RI, kik; 1s our industry-pair
Relevance Index, described in section 3.3, reflecting the technological position of the input ¢
with respect to the target output 7, i.e. its technological relevance. Dy, is the absolute down-
streamness measure from Antras and Chor (2013) indexing the position of an input industry

k; in the value chain, with larger values corresponding to stages further downstream (closer

(I02002) to merge firm and industry-level information at different levels of disaggregation.

20See McFadden (1974) for more details and Head et al. (1995) for an application.

2'We combine information on parents’ reported primary activity at 4-digit NAICS rev.2012 with 2002
U.S. I-O tables. In particular, we derive all possible industries’ combinations using the 425 102002 sectors
(102002 industry 814000 ‘Private Households’ has been excluded) and we match them with the main industry
in which each parent is active.
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to final end product). 1(p; > pmeq) is a latent variable based on the elasticity of demand
faced by the parent company, taking the value 1 in the case of complements’ industries and 0
in the case of substitutes’ industries according to the theory of Antras and Chor (2013). CY,
is the contractibility for actual and potential affiliates’ activities following the methodology
of Nunn (2007) which proxies the average specificity of the input being transacted. Finally,

7; are a full set of parent-level fixed effects. Standard errors are clustered by parent.

Table 3: Fixed effects conditional logit baseline estimation results.

Dep. Var.: Yes/No (1) (2) (3) 4) (5) (6) (7)
Input ¢ integrated by parent j
CL CL CL CL CL CL CL
Relevance Indexy, k; 12.8%** 12.9%** 11.3%** 11.0%** 10.2%** 9.81%** 9.56***
(0.029) (0.030) (0.051) (0.052) (0.070) (0.12) (0.12)
Complementsy,; *Relevance Indexg, 1.63%** 0.34* 2.57H**
' (0.11) (0.18) (0.17)
Downstreamnessy, S0.81FFK L1 I8KKKF 1 400K .37k -0.10 -2.06%**
(0.030)  (0.055)  (0.073)  (0.069) (0.099) (0.16)
Complementskj *Downstreamnessy, 0.18%* 0.15 0.044 -0.42%** 0.51%*
(0.082)  (0.11) (0.11) (0.15) (0.22)
Contractibilityy, -0.87FFF 0.94%** -1.49%** -0.39%**
(0.035) (0.034) (0.066) (0.046)
Observations 8,564,068 8,402,090 2,856,445 2,173,242 2,173,242 867,531 975,114
Pseudo R-squared (McFadden’s) 0.405 0.409 0.234 0.294 0.297 0.215 0.324
Parent-level FE Yes Yes Yes Yes Yes Yes Yes
Parent BEC category All All All All All Final goods  Intermediates

Errors clustered by parent in parentheses * p-value<0.1, ** p-value<0.05, *** p-value<0.01.

We present nested results in Table 3. Results show that all else equal, with a unit in-
crease in the Relevance Index, the odds of suppliers being integrated versus being potentially
outsourced increase (by a factor ¢/1). That is to say, a more relevant supplier, i.e. in a
more strategic position with a high technological relevance, as identified from the relative
distance from its output in the supply network, is more likely to be integrated by the par-
ent company. When we control for the role of the elasticity of substitution in interaction
with the Relevance Index, we find that its marginal effect is positive and significant in all
specifications. Therefore, it seems that when the output demand is elastic or inputs are
not particularly substitutable, for a firm could be optimal to incorporate strategic suppliers
which may not honour their contractual commitment while contracting with the others more
prone to undertake relation-specific investments. The effect is positive and significant in all
specifications, and it is stronger for final goods parents, i.e. downstream parents, when com-
pared to intermediate goods parents, i.e. midstream parents. Then, we find that the absolute
positioning of an input with respect to final use on a supply chain, i.e. the downstreamness,
seems to have a weaker explanatory power in integration choices. In particular, we find that

overall parents tend to integrate fewer production stages closer to final demand, but this
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is particularly true for intermediate goods producer, while the coefficient loses significance
restricting the sample to midstream parents. Further, the marginal effect of the parent de-
mand elasticity combined with the downstreamness is overall not significant. However, when
we differentiate in columns (6) and (7) the output of parents between final and intermediate
goods, we find higher propensity toward integration of suppliers further downstream from
midstream parents when the output demand is somewhat elastic. On the contrary, a negative
marginal effect of Complementsy,, on Downstreamnessy, is observed for downstream parents,
which is not in line with the model’s prediction of Antras and Chor (2013). Interestingly,
the coefficient of Contractibilityy, is negative and significant at 1% level. As expected, the
degree of contractibility plays a central role in integration decisions (Broda and Weinstein,
2006). In particular, restricting to our analysis, the more input is customized to a specific
output production, the lower should be the relative contractual frictions by suppliers, hence

establishing arm’s length contracts should be the optimal choice.

5.2 Technological relevance and multiple affiliates

We can observe from our sample that more than one affiliate performs a production stage
within a firm boundary. That is, a parent can establish more than one affiliate in an input
industry. We test here whether the number of affiliates active in an input industry depends
on the technological relevance of that input in the production network. We use a negative

binomial regression model to estimate the following equation:

NiGiyk; = Bo + BiRIgk; + B2Dy, + Bs1(pr; > pmea) + Bal(pr; > Pmed) - Dr,

(6)

where now, we model Nj( )i, as a count variable indicating the number of integrated affiliates
operating in input’s industry k;. In addition to explanatory variables as in (5), we include in
Size; the parent size categories (small, medium, medium-large, large, very large). Standard
errors are clustered by parent.

Results in Table 4, show that a unit change in the Relevance Index increases the expected
number of integrated affiliates in an industry &; (by a factor ), holding all other variables
constant. In other words, as suppliers provide directly or indirectly important inputs for
the production of the final output, thus they have a high technological relevance, parents
internally establish more than one producer of those inputs. Moreover, we find that the
demand elasticities are not a significant driver of intensity integration as also pointed out
in Rungi et al. (2017). The marginal effect of demand elasticity on Downstreamness;, and

the Relevance Indexy,r; are both not significant. Interestingly, the coefficient of input con-
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Table 4: Negative binomial baseline estimation results.

Dop. Var. n® o o 6 o @ ®
N. integrated affiliates
in industry k; NBRM NBRM NBRM NBRM NBRM NBRM NBRM NBRM
Relevance Indexy,, 0.39%** (0.39%** (.55%*F*  (.32% 0.47 1.13%%%* 1.46%** 1.19%%*
(0.11)  (0.11)  (0.16)  (0.18)  (0.31)  (0.12) (0.24) (0.18)
Complcmcntsk]*Rclevancc Indexy,, -0.26 0.046 -0.35 0.14
(0.37) (0.16) (0.30) (0.23)
Downstreamnessy, 0.29%%  0.53%  L.11%**  1.16%0F  (.75%* 1.43%%* 0.017
(0.14)  (0.27)  (0.31)  (0.29)  (0.15) (0.22) (0.41)
Complements,; 0.35%* 0.11 0.18 -0.15 0.024 -0.35%
(0.20)  (0.22)  (0.20)  (0.11) (0.22) (0.20)
Complementsk] *Downstreamness, -0.38 -0.23 -0.29 0.018 -0.060 0.22
(0.35)  (0.39)  (0.37)  (0.19) (0.32) (0.43)
Contractibilityy, 0.81%F**  (.84%F*F (. 47%** -0.021 0.63***
(0.10)  (0.10)  (0.062) (0.18) (0.086)
Medium parent 0.77%%* 0.78%*** 0.76%**
(0.013) (0.023) (0.022)
Medium-large parent 1.55%** 1.48%** 1.62%%*
(0.030)  (0.051) (0.045)
Large parent 2.2]%** 2.11%** 2.31%**
(0.040)  (0.055) (0.063)
Very large parent 2. 72%%* 2.79%** 2.65%F*
(0.056)  (0.085) (0.072)
Constant 1.44%%%  1.27*¥% 1 05%F* (. 74%FF  (0.68%FF _0.7T1¥** -1.16%+* -0.41%*
(0.038)  (0.084) (0.16)  (0.18)  (0.17)  (0.085) (0.15) (0.18)
In(cr) (Dispersion) 0.45%F% 0. 44%%%  (.39%FF  0.43%**  (.43%FF 0. 15%F* -0.090 -0.17%%*
(0.025) (0.025) (0.029) (0.034) (0.033) (0.037) (0.058) (0.054)
Observations 29621 29,535 12,512 9,446 9446 9,446 4,032 4,201
Pseudo R-squared 0.001 0.002 0.003 0.011 0.011 0.134 0.128 0.141
BEC category of parent All All All All All All Final goods Intermediates

Errors clustered by parent in parentheses * p-value<0.1, ** p-value<0.05, *** p-value<0.01
Small parent is set as base category.
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tractibility is positive and significant, although mainly for midstream parents. One possible
explanation could be that proposed by Nunn and Trefler (2008) in the framework of foreign
supplier’s inputs. That is, an improvement in the degree of contractibility has two effects:
the ‘standard’ effect that encourages arm’s length contract because it is easier to reach a deal
with a supplier also abroad thanks to reduced contractual uncertainties; and the ‘surprise’
effect that causes the most productive arm’s length relationships to be vertically integrated,
hence increasing the number of integrated affiliates producing a certain input. Which one
of the two effects dominates is an empirical question, and from our sample, the surprising
effect seems to prevail. Finally, as expected, the larger the size of the parent the higher is
the number of integrated affiliates in industry k;. For instance, medium size parents have
2.16 (e%77) affiliates more in industry k; than small parents, while very large parents have

almost 15 (e*™) more.

5.3 Robustness checks

We explore the robustness of the results across different sample compositions. In Table 5
and Table 6, we repeat the exercise for the fixed effect conditional logit and the negative
binomial models. In the first and second columns, we include only observations where the
industry of the actual or potential affiliate is different from the industry of the parent; in
the third and fourth columns, we consider just manufacturing actual or potential affiliates;
in columns (5) and (6) we alternatively compute the variable Complements,; as a latent
variable equal to 1 if p; > «;, where o; is the median elasticity of input industries, a closer
definition of the Antras and Chor (2013) model; finally, in the last columns we restrict the
sample to the top 100 inputs of each parent’s output, as from the contribution indicated by
the direct requirement coefficient in the U.S. 2002 I-O tables. The baseline results for the
Relevance Indez still hold, although the magnitude and the significance varies according to

the different subsamples.

22



Table 5: Fixed effects conditional logit estimation results, different sample compositions.

Dep. Var.: Yes/No (1) (2) (3) (4) (5) (6) (7) (8)
Input ¢ integrated by parent j
Industry k; Industry k; Only Only Output Output  Top 100 Top 100
manuf manuf & & inputs inputs
Industry k; Industry k; affiliates affiliates input elast input elast
Relevance Indexy,; 48.6%** 8.31%¥* 8.48%** 5.82%** 10.3%** 8.38%H* 8.44%¥* R ok
(1.17) (0.15) (0.11) (0.12) (0.063) (0.16) (0.083) (0.46)
Downstreamnessy, -0.70%#* -LOTFRx 0. 42%FF  _0.14% -1.52%** -0.65%F*  -0.28%F  (0.50%**
(0.079) (0.051)  (0.082)  (0.082)  (0.076) (0.062)  (0.14)  (0.11)
Complementsy,, *Downstreamnessy, 0.0080 0.25%** -0.46%** -0.19 0.36*** 0.50%** 0.89%**  ().96***
(0.13) (0.079) (0.13) (0.13) (0.11) (0.10) (0.26) (0.17)
Contractibilityy, -1.19%** -0.447%#* -0.99* -0.57*
(0.047) (0.035) (0.035) (0.042)
Complements;, *Relevance Indexy,y,; — -11.2%** 3.69%** 2.40%** 6.63%** 2.11%%* 4.03%** 2.09%F*%  2,08%*
(1.93) (0.52) (0.13) (0.70) (0.11) (0.56) (0.14) (0.82)
Observations 1,198,376 2,856,445 1,286,016 1,286,016 2,173,242 2,173,242 309,633 521,276
Pseudo R-squared (McFadden’s) 0.029 0.113 0.228 0.112 0.298 0.137 0.426 0.158
Parent-level fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
alpha variable No Yes No Yes No Yes No Yes
Errors clustered by parent in parentheses * p-value<0.1, ** p-value<0.05, *** p-value<0.01.
Table 6: Negative binomial estimation results, different sample compositions.
Dop. Var. M ® & O ) © GEEG)
N. integrated affiliates
in industry k; Industry k; Industry k; Only Only Output Output Top 100 Top 100
# #* manuf manuf & & inputs inputs
Industry k; Industry k; affiliates affiliates input elast input elast
Relevance Index,y; 0.61 -1.73 1.18***  1.61%** 0.83%** 2.42%%* 1.14%%%  3.01%**
(3.34) (1.73) (0.11)  (0.19) (0.14) (0.60) (0.13)  (0.48)
Downstreamness, 1.01%%* 0.41%* 0.76%%*  (.39%** 0.55%** 0.43%%* 0.76%** 0.33
(0.19) (0.18) (0.12)  (0.12) (0.16) (0.15) (0.20)  (0.21)
Complementsy, -0.12 -0.041 -0.17 -0.18 -0.024 0.11 -0.36*%**  -0.082
(0.14) (0.15) 0.12)  (0.12) (0.12) (0.11) 0.13)  (0.13)
Complementsy, *Downstreamnessy, 0.025 -0.015 0.056 0.15 -0.0062 -0.096 -0.32 -0.050
(0.25) (0.25) (0.20)  (0.20) (0.19) (0.19) (0.25)  (0.26)
Contractibilityy, 0.647%%* 0.49%%* 0.24%%* 0.61%%*
(0.11) (0.063) (0.078) (0.054)
Complements;,; *Relevance Indexy,, -3.51 1.59 -0.045  -0.62%** -0.072 -1.83%%* 0.61%**  _1 71%%*
(4.04) (2.61) (0.15)  (0.21) (0.18) (0.61) (0.18)  (0.48)
Medium parent 0.71%** 0.64%** 0.77%*%  (.75%** 0.77%*%* 0.77%** 0.78%¥% (. 73%**
(0.017) (0.015)  (0.013)  (0.012)  (0.014) (0.013)  (0.016)  (0.016)
Medium-large parent 1.29%% 1.03%** 1.56%%*%  1.50%** 1.59%%* 1.58%** 1.66%%*  1.34%%*
(0.039) (0.032)  (0.030)  (0.028)  (0.035) (0.034)  (0.034)  (0.031)
Large parent 1.83%** 1.55%** 2.22%¥F 9 J4HH* 2.25%%* 2.23%** 2.46***  1.95%%*
(0.050) (0.037)  (0.040)  (0.038)  (0.044) (0.044)  (0.051)  (0.038)
Very large parent 2.22%%% 2.06%** 2.73¥xK 2 GTHHK 2.79%** 2.7TH*H 2.99%3¥ 2 HAHRk
(0.064) (0.051)  (0.056)  (0.057)  (0.053) (0.054)  (0.088)  (0.066)
Constant -0.61%%* -0.21%* S0.74FFF _0.33%FFF  _(.50%F* -0.36FFF Q. 78FFF  _(.40%F*
(0.11) (0.10) (0.071)  (0.064)  (0.095) (0.087)  (0.090)  (0.094)
In(c) (Dispersion) 0.070* 0.087** -0.15%** Q. 11FFF 0. 11%* -0.093**  -0.45%***  _0.19%F*
(0.037) (0.034)  (0.037)  (0.038)  (0.042) (0.043)  (0.042)  (0.036)
Observations 6,074 9140 9,446 9446 6,296 6296 6,203 8607
Pseudo R-squared 0.085 0.060 0.134 0.128 0.136 0.134 0.178 0.118
alpha variable No Yes No Yes No Yes No Yes

Errors clustered by parent in parentheses * p-value<0.1, ** p-value<0.05, *** p-value<0.01.
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Besides, we explore our results using an alternative formula to compute the Relevance
Index, where we set the tuning parameter, now «; equals to the contractibility value of each
input when available.?? Results in Table 5 confirm that more vertical integration occurs when
an input has been detected to be important in the oriented supply network. Eventually, Table

6 corroborates the increasing number of affiliates active in the relevant industry.

Table 7: Fixed effects conditional logit with «; in the computation of the Relevance Index.

Dep. Var.: Yes/No (1) (2) (3) (4) (6) (7)
Input 7 integrated by parent j
CL CL CL CL CL CL
Relevance Indexy,, 13.3%%* 13.5%%* 9. 77k** 8.31°F** 9.94%** 6.56%**
(0.044) (0.047) (0.16) (0.15) (0.39) (0.15)
Downstreamnessy, S0.76*FX 0,96 **  _1.01%** 0.24 4% -2.20%%%
(0.031)  (0.052)  (0.051) (0.083) (0.10)
Complements;, *Downstreamnessy, 0.19%* 0.25%** -0.47F** 0.67***
(0.078)  (0.079) (0.11) (0.15)
Complements, *Relevance Indexy,, 3.69%** 13.7%%% 3.8
(0.52) (2.66) (0.39)
Observations 8,564,068 8,402,090 2,856,445 2,856,445 1,139,175 1,275,295
Pseudo R-squared (McFadden’s) 0.358 0.362 0.110 0.113 0.073 0.162
Parent-level fixed effects Yes Yes Yes Yes Yes Yes
BEC category of parent All All All All Final goods Intermediates

Errors clustered by parent in parentheses * p-value<0.1, ** p-value<0.05, *** p-value<0.01.

22Gee the Appendix A.1 for more details.
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Table 8: Negative

binomial regressions with «; in the computation of the Relevance Indez.

Dep. Var. @ 6 @ 06 © @ ®
N. integrated affiliates
in industry k; NBRM NBRM NBRM NBRM NBRM NBRM NBRM NBRM
Relevance Indexy,, 0.49%*%%  (0.49%*%*  0.91%*%* (.91%** 0.74 2.97H%* 6.14%** 1.72%%*
(0.10)  (0.097) (0.12)  (0.12)  (0.70)  (0.49) (1.23) (0.37)
Downstreamnessy, 0.27** 0.50* 0.50* 0.48* 0.41%* 1.32%** -0.46
(0.14) (0.29) (0.29) (0.28) (0.16) (0.31) (0.34)
Complementsy, 0.19 0.19 0.18 -0.0048 0.14 -0.19
(0.21)  (0.21)  (0.20)  (0.12) (0.25) (0.18)
Complementski*Downstreamnesskl -0.25 -0.25 -0.24 -0.053 -0.12 0.17
(0.36)  (0.36)  (0.35)  (0.20) (0.36) (0.39)
Complements;, *Relevance Indexy,z, 0.18 S1.7THR* -5.34%%* -0.48
(0.71)  (0.49) (1.23) (0.38)
Medium parent 0.72%%* 0.74%** 0.72%**
(0.013) (0.022) (0.020)
Medium-large parent 1.29%%* 1.28%%* 1.39%%*
(0.027) (0.046) (0.041)
Large parent 1.85%** 1.83%** 1.99%**
(0.031) (0.045) (0.051)
Very large parent 2.42%** 2.56%** 2.40%**
(0.043) (0.070) (0.052)
Constant 1.42%%F  1.26%%*% 1. 10%**  1.10%%*  1.11%¥%%  _0.40%** -1.08%** 0.037
(0.035) (0.083)  (0.17) (0.17) (0.16) (0.090) (0.22) (0.15)
In(a) (Dispersion) 0.44%*%% 0.44%F*  (.38%** (. 38***F ().38*** -0.040 -0.028 -0.015
(0.025) (0.025) (0.031) (0.031) (0.031) (0.033) (0.054) (0.046)
Observations 20621 29,535 12,512 12,512 12,512 12,512 5,490 5,413
Pseudo R-squared 0.002 0.003 0.006 0.006 0.006 0.099 0.097 0.104
BEC category of parent All All All All All All Final parent Intermediates

Errors clustered by parent in parentheses * p-value<0.1, ** p-value<0.05,

Small parent is set as base category.
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6 Conclusion

In this contribution, we first argue that the assumption of linearity for the technological
production process is not realistic. A network approach is more appropriate, to catch the
complexity of sourcing strategies originated by the unbundling of production of final products
from the production of intermediate inputs. First, global supply networks go beyond such
linearity incorporating all kind of configurations that are possibly variable across industries.
Second, they encompass all relevant sets of direct and indirect relationships capturing the
multi-dimension nature of production. We show that each industry along what is assumed
to be a supply chain actually can hide complex production functions, in which some inputs
can play a role at different moments of the intermediate manufacturing, before reaching
final consumers. As a consequence, production networks can differ across industries because
sourcing strategies are implicitly heterogeneous.

In this framework, we introduce a new industry-pair measure, the Relevance Index, which
reflects the position in the supply network of direct and indirect inputs for the production
of an output. We aim at capturing the technological relevance of inputs of inputs within
a production network, which depends on the extent to which an input is accessible and
replaceable. Moreover, we consider a higher weight should be given to inputs that serve
more than one supply network at the same time or enter the production process at multiple
stages. Thereafter, we show how network-based measures fit better than chain-like metrics
in explaining firm boundaries. We build our empirical analysis on the property-rights model
of the firm boundaries by Antras and Chor (2013). In particular, we test the validity of the
Relevance Indez on explaining the role of production stages performed by affiliates integrated
into the firm boundaries. First, we find that our measure is a good predictor of vertical
integration decisions which are the outcome of formally organized rules and conventions.
Second, we notice more affiliates will be vertically integrated into a relevant input industry.
Overall, we find evidence of the main prediction of Antras and Chor (2013) model, according
to which the ownership decisions of a firm depend on the position of an input industry in
the entire production process. However, we notice that the elasticity of demand faced by the
parent is not a significant determinant of integration choices if we remove the assumption of
a linear sequence of stages of production where the final-output producer is located at the
end.

Further research on the organization of supply networks should investigate more the
dynamic nature of firms’ boundaries geographically and organizationally. Until now, we are
considering choices neutral to country-level factors and the evolution of production networks

over time is not taken into account.
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A Appendix

A.1 DMeasures of the relative importance of a node

In our contribution, we emphasise the measures of node importance in a network relative to
a set of root nodes. In particular, we argue that the relevance of any input for the production
of an output influences the ‘make or buy’ decision of a parent company in a multinational
setting. The main limitation of using ‘global’ measures in this context, as highlighted by
White and Smyth (2003), is that using algorithms such as PageRank, root nodes are not
given any preferential treatment in the ranking. Furthermore, using such an approach, all
the nodes in a sub-network with well-defined root nodes are ranked around a root node
and not with respect to it. These limitations have motivated the work presented in this
paper, where measures of relative importance which consider a set of prior root nodes are
investigated.

Given a directed graph G and two nodes r and i, where r, ¢ € G, RI(i|r) is defined
as the Relevance Index of a node with respect to the root node. There are two common
approaches to measure the relative importance of a node with respect to a target (root)
node in a network. A first approach is to consider the notion of distance according to which
two nodes are related if there exists a path that links them, with the relative relevance
decreasing as the path length increases. In this case, a relevant question is how to choose the
set of paths between the node ¢ and the node j. Considering the shortest paths only leads
in many cases to a poor approximation, since other nodes along the path are ignored despite
that they could add more importance to 7 relative to 5. Alternatively, evaluating paths of a
fixed length and without edges nor nodes in common may be a better approximation, but
then the relative importance is calculated only on a small set of paths in the neighbourhood
of the target node. A second approach is to treat the network as a stochastic process, using
first-order Markov chains. It is based on the idea of a single ‘token’ visiting the nodes of a
graph randomly an infinite number of times. The ‘token’ moves to the next node according
to a stochastic function that takes into account the properties of the current node. The
average fraction of time spent by the ‘token’ on any node, i.e. the persistence probability,
can be interpreted as the importance of this node with respect to all other nodes in the
network. That is the idea behind the PageRank algorithm.

A personalised version of the PageRank has been proposed by Haveliwala (2002), Jeh
and Widom (2003), White and Smyth (2003), where personalised ranks of the root nodes are
introduced to take into account the prior knowledge. Three different type of probabilities

are defined a priori:
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- Pr = (p1,-.,p|n|) is the vector of prior probabilities attached to every node, where R
is the set of root nodes and p; = ﬁ for 1 € R, and p; = 0 otherwise, so that p; > 0

and Zz lpl

- « is the back probability, i.e. the probability to jump back to the root set, and it has

to be chosen in the [0, 1] range;

- pilj) = Doult 7 is the probability of transitioning from node j to node i in one step.

From the original formulation of the PageRank:

Cpr(i) = —l—fZ D, CPR (J) (7)

jes; ut

where S; is the set of the source nodes that link to the node i, D, (j) is the out-degree of the
node 7, and f is the residual probability to account for nodes with zero out-degree, usually
set equal to 0.85. Given RI(i|r) = w(i), we can modify the previous formula by adding the

probabilities defined a priori, as follows:
m(i)y=(1—a (ZP ilj)m 1) +ap; (8)
JES;

where the choice of « is subjective and different values reflect the bias in the ranking process.

Proposed algorithm adaptation
The probabilities defined a priori are:

- e, = (€1, ...,en]) is the column vector of prior probabilities attached to every node,

where e; = 1 if i = r, and e; = 0 otherwise, so that e¢; > 0 and Elﬂ e; = 1;

- the back probability « chosen in the in the [0,1] range is interpreted as a distance

factor which penalises nodes far away from the root node;

- P is the Markov matrix where each element is the transition probability from node i
to node j. In particular, each entry d;; is the direct requirement coefficient retrieved
from the U.S. BEA input-output tables, i.e. the amount of the commodity required to

produce one unit of the industry’s output.

In our framework, a node i is considered as an input in the technological production pro-

cess of a target output, represented by the root node r. The proposed PageRank adjustment,
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named the Relevance Index, can be computed for all pairs of nodes i — r, as follows:
T < (1 — Oé)PTftfl + e, (9)

Since we are interested in the steady-state condition 7, = m_; £ r,, the above relation
becomes
. = (1 —a)Pm, + ae,, (10)

for which the solution is
m, =a[l - (1 —a)P] e, (11)

The final result is a matrix composed of persistence probability vectors, i.e. m,, where
each column contains the ranking of all the inputs used in the production of a particular
output according to their importance.

The parameter « specifies the degree to which the computation is biased toward prior
probabilities. The value of « is empirically chosen, and it spreads uniformly over the rank.
For a = 1, a meaningless distribution is concentrated in the root nodes, while other nodes
have a null value. Conversely, as a tends to 0, root nodes become irrelevant to the final
ranking.

We choose to use v = 0.5 heuristically in our computations, after inspecting the values of
the Relevance Index for several values of a.. In general, for well-connected networks the value
of a becomes irrelevant. The input-output networks, examined in this paper, have a rather
high degree of connectivity, as confirmed by the density measure. Therefore the choice of «
should not bias the analysis.

As a further robustness check, we substitute a with a vector «; in the above relation
(9), allowing the parameter to change across the inputs. The alternative Relevance Index
formula is:

= (1 —o)Pm1 + e, (12)

In the empirical analysis we set «; equals to the contractibility values of each input when

available, and we choose to use a; = 0.5 heuristically otherwise in our computation.
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B Data Appendix

B.1 Variables Description

Downstreamness: This variable is calculated by Antras and Chor (2013) based on data
from the 2002 U.S. I-O tables. They propose two alternative measures the ‘downstream-
ness’ of an industry in a production process. The DUse TUse is the ratio of aggregate
direct use to aggregate total use of a particular input industry i, where the direct use
is the value of goods from industry ¢ to industry j to produce goods for final use, while
the total use is the value of goods from industry ¢ used either directly or indirectly in
producing industry’s j output for final use. The higher is the DUse TUse for a given
industry ¢, the most of the contribution occurs relatively far downstream. Alternatively,
the DownMeasure corresponds to a weighted index of the average position in the value
chain at which an industry’s output is used, with the weights being given by the ratio of

the use of that industry’s output in that position relative to the total output of that industry.

Demand elasticity: It was computed by Antras and Chor (2013) based on the widely
used U.S. import demand elasticities for Harmonized System ten digit (HS10) products
computed by Broda and Weinstein (2006). These were merged with a comprehensive list of
HS10 codes from Pierce and Schott (2012). For each HS10 code missing an elasticity value,
they assigned a value equal to the trade-weighted average elasticity of the available HS10
codes with which it shared the same first nine digits. This was done successively up to codes
that shared the same first two digits, to fill in as many HS10 elasticities as possible. Using
the I0-HS concordance provided by the BEA with the 2002 U.S. I-O tables, they then took
the trade-weighted average of the HS10 elasticities within each 102002 category. At each
stage, the weights used were the total value of U.S. imports by HS10 code from 1989- 2006,
calculated from Feenstra et al. (2002). This yielded import elasticities for the industry that
sells the input in question. For the average buyer elasticity, they took a weighted average of
the elasticities of industries that purchase the input in question, with weights equal to these

input purchase values as reported in the 2002 U.S. I-O tables.

Complements (Substitutes): We follow the procedure set by Antras and Chor (2013)
in splitting the parents’ industries into complements and substitutes. Using demand
elasticity from Broda and Weinstein (2006) and elaborated by Antras and Chor (2013),
we check when the elasticity is respectively higher or lower than the sample median. In
a robustness check, the subset of parents’ industries with above-median (below-median)

affiliates” demand elasticity are labelled as complements (substitutes).
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Contractibility: Nunn (2007) proposes a measure of contract intensity based on the
proportion of an industry’s intermediate inputs that are customized, i.e. neither reference
priced nor traded on an organized exchange. He builds on the classification of goods of
Rauch (1999) which identifies goods sold on organized exchanges, reference priced in trade
publications, and all residuals assumed to be customized. Then, using U.S. I-O Use tables
he infers the extent to which each industry’s intermediate inputs are relation-specific. In

our analysis, we use the measure of Contractibility computed by Antras and Chor (2013)
using the 2002 U.S. I-O tables.

Size: It is computed at the parent level from our sample, sourced from the Orbis
database. The size categories (small, medium, medium-large, large, very large) are based on
a combination of criteria: revenues, or total assets, or number of employees, or capitalization,

or listed on the stock exchange.

B.2 Descriptive Statistics

Table 9: Control variables.

Obs. mean median sd min max
Relevance Index (o = 0.5) 146,934  0.25 0.04 0.26 0 0.64
Relevance Index (o) 146,934 0.24 0.03 0.28 0 0.93
Parents

Elasticity of substitution 6,900  7.56 424 832 130 84.19

Affiliates

Downstreamness 152,892  0.56 0.50 0.21 0.22 1
Elasticity of substitution 59,666  9.13 4.75 12.14 1.30 108.50
Contractibility 59,666  0.29 0 0.41 0 1
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