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ABSTRACT
Under a reversible semantics, computation steps can be undone.
This paper addresses the integration of reversible semantics into a
process model of multiparty protocols (choreographies). Building
upon themonitors-as-memories approach that we developed in prior
work for reversible binary protocols, we present a reversible process
framework formultiparty communication, which improves on prior
models by seamlessly integrating asynchrony, decoupled rollbacks,
and process passing. As main technical result, we prove that our
multiparty, reversible semantics is causally-consistent.

CCS CONCEPTS
• Theory of computation→ Process calculi; Type structures;
Operational semantics; Program analysis; • Software and its
engineering → Distributed programming languages; Concurrent
programming languages;
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1 INTRODUCTION
This paper is about reversible computation in the context of models
of concurrency for communication-centric software systems, i.e.,
collections of distributed software components whose concurrent
interactions are governed by reciprocal dialogues or protocols.

Building upon process calculi techniques, these models provide a
rigorous footing for message-passing concurrency; on top of them,
many (static) analysis techniques based on (behavioral) types and
contracts have been put forward to enforce key safety and liveness
∗Also with CWI, Amsterdam.
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properties [14]. Reversibility is an appealing notion in concurrency
at large [19], but especially so in communication-centric scenarios:
it may elegantly abstract fault-tolerant communicating systems that
react to unforeseen circumstances (say, local failures) by “undoing”
computation steps so as to reach a consistent previous state.

In communication-centric software systems, protocols specify
the intended communication structures among interacting com-
ponents. We focus on process calculi equipped with behavioral
types, which use those protocols as types to enforce communication
correctness. The interest is in different flavors of protocol confor-
mance, i.e., properties that ensure that each component respects
its ascribed protocol. The integration of reversibility in models of
communication-centric systems has been addressed from various
angles (cf. [2, 20, 26, 27]). Focusing on session types [12, 13] (a well
established class of behavioral types), Tiezzi and Yoshida [26] were
the first to integrate reversibility into a session π -calculus, follow-
ing the seminal approach of Danos and Krivine [6]; in [26], however,
session types are not used in the definition of reversible communi-
cating systems, nor play a role in establishing their properties.

Triggered by this observation, our prior work [20, 22] develops
a monitors-as-memories approach. The idea is to use monitors (run-
time entities that enact protocol actions) as the memories needed
to record and undo communication steps. There is a monitor for
each protocol participant; the monitor includes a session type that
describes the intended protocol. We use a cursor to “mark” the cur-
rent protocol state in the type; the cursor can move to the future
(enacting protocol actions) but also to the past (reversing protocol
actions). The result is a streamlined process framework in which
the key properties of a reversible semantics can be established with
simple proofs, because session types narrow down the spectrum
of possible process behaviors, allowing only those forward and
backward actions that correspond to the declared protocols. The
most significant of such properties is causal consistency [6], consid-
ered as the “right” criterion for reversing concurrent processes [19].
Intuitively, causal consistency ensures that reversible steps lead to
system states that could been have reached by performing forward
steps only. That is, causally consistent reversibility does not lead to
extraneous states, not reachable through ordinary computations.

The framework in [20, 22], however, accounts only for reversible
π -calculus processes implementing binary sessions, i.e., protocols
between exactly two partners. Also, it considers synchronous com-

munication instead of the more general (and practical) asynchronous
(queue-based) communication. Hence, our prior work rules out an
important class of real-life protocols, namely the choreographies
that describe interaction scenarios among multiple parties with-
out a single point of control. In multiparty session types [13], these
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Figure 1: Our process model of multiparty communications.

choreographies are represented by a global type that can be pro-
jected as local types to obtain each participant’s contribution to the
entire interaction. Moving from binary to multiparty sessions is
a significant jump in expressiveness; in fact, global types offer a
convenient declarative description of the entire communication sce-
nario. However, the multiparty case also entails added challenges,
as two levels of abstraction, global and local, should be consid-
ered for (reversible) protocols and their implementations. Hence,
it is far from obvious that our monitors-as-memories approach to
reversibility and causal consistency extend to the multiparty case.

This paper makes the following contributions:
1. We introduce a process model for reversible, multiparty sessions

with asynchrony (as in [16]), process passing [15, 24] and decou-
pled rollbacks (§ 2). We define forward and backward semantics
for multiparty processes by extending the monitors-as-memories
approach to both global types and their implementations.

2. We prove that reversibility in our model is causally consistent
(Theorem 4.18). The proof is challenging as we must appeal to an
alternative reversible semantics with atomic rollbacks, which we
show to coincide with the decoupled rollbacks (Theorem 4.10).

3. We formally connect reversibility at the (declarative) level of
global types and that at the (operational) level of processes mon-
itored by local types with cursors (Theorem 4.22).

We stress that asynchrony, process passing, and decoupled roll-
backs are not considered in prior works [8, 20, 22, 27]. Asynchrony
and decoupled rollbacks are delicate issues in a reversible multi-
party setting—we do not know of other asynchronous calculi with
reversible semantics, nor featuring the same combination of con-
structs. The formal connection between global and local levels of
abstraction (Theorem 4.22) is also unique to our multiparty setting.

Organization. This paper is organized as follows. In § 2, we intro-
duce our process model of reversible choreographies. We illustrate
the model by means of an example in § 3. In § 4 we establish causal
consistency by relating decoupled and atomic semantics, and con-
nect reversibility at global and local levels. § 5 discusses extensions
to our framework, while § 6 contrasts with relatedworks. § 7 collects
some concluding remarks and directions for future work. Omitted
definitions/proofs can be found in an online technical report [21].

2 REVERSIBLE CHOREOGRAPHIES
Fig. 1 depicts the ingredients of our two-level model of choreogra-
phies and configurations/processes. Choreographies are defined in
terms of global types, which declaratively describe a protocol among

two or more participants. A global type can be projected onto each
participant so as to obtain its corresponding local type, i.e., a ses-
sion type that abstracts a participant’s contribution to the global
protocol. (Below we often use ‘choreographies’ and ‘global types’
as synonyms.) The semantics of global types is given in terms of
forward and backward transition systems (Fig. 3). There is a config-
uration for each protocol participant: it includes a located process
that specifies asynchronous communication behavior, subject to a
monitor that enables forward/backward steps at run-time based on
the local type. The semantics of configurations is given in terms of
forward and backward reduction relations (Figs. 6 and 7).

Remark 1 (Colors). Throughout the paper, we use colors to im-

prove readability. In particular, elements in blue belong to a forward

semantics; elements in red belong to a backward semantics.

2.1 Global and Local Types
2.1.1 Syntax. Let us write p, q, r, A, B . . . to denote (protocol)

participants. The syntax of global types (G,G ′, . . .) and local types
(T ,T ′, . . .) is standard [13] and defined as follows:

G,G ′ ::= p→ q : ⟨U ⟩.G | µX .G | X | end

U ,U ′ ::= bool | nat | · · · | T→⋄

T ,T ′ ::= p!⟨U ⟩.T | p?⟨U ⟩.T | µX .T | X | end

Global type p → q : ⟨U ⟩.G says that p may send a value of type
U to q, and then continue as G. we assume that p , q. For the
sake of presentation, here we do not consider labeled choices in
global types; these can be easily accommodated—see § 5 and [21].
Global recursive and terminated protocols are denoted µX .G and
end, respectively. We write pa(G ) to denote the set of participants
in G . Value typesU include basic first-order values (constants), but
also higher-order values: abstractions from names to processes. (We
write ⋄ to denote the type of processes.) Local types p!⟨U ⟩.T and
p?⟨U ⟩.T denote, respectively, an output and input of value of type
U by p. We use α to denote type prefixes p?(U ), p!⟨U ⟩. Terminated
and recursive local types are denoted end and µX .T , respectively.

As usual, we consider only recursive types µX .G (and µX .T )
in which X occurs guarded in G (and T ). We shall take an equi-
recursive view of (global and local) types, and so we consider two
types with the same regular tree as equal.

Global and local types are related by projection: following [13],
the projection of global typeG onto participant r, writtenG ↓r, is de-
fined in Fig. 2. Intuitively,G ↓r denotes the (local) contribution of r
to the overall choreographic behavior thatG declaratively specifies.
As such, the projection of a directed communication p→ q : ⟨U ⟩.G ′
onto r depends on r’s involvement, which is reflected locally as
an input or output local type (if r is indeed involved) or as the
terminated local protocol (otherwise). The projection of recursive
choreographies follows a similar principle; recursive variables and
the terminated choreography are projected as expected.

2.1.2 Semantics of Choreographies. The semantics of global
types (Fig. 3) comprises forward and backward transition rules.
To express backward steps, we require some auxiliary notions. We
use global contexts, ranged over by G,G′, . . . with holes •, to record
previous actions:

G ::= • | G[p→ q : ⟨U ⟩.G]
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(p→ q : ⟨U ⟩.G )↓r =




q!⟨U ⟩.(G ↓r) if r = p

p?⟨U ⟩.(G ↓r) if r = q

(G ↓r) if r , q, r , p

(µX .G )↓r =



µX .G ↓r if r occurs in G
end otherwise

X ↓r = X end↓r= end

Figure 2: Projection of a global type G onto a participant r.

(FVal1) G[ ^̂ p→ q : ⟨U ⟩.G] ↪→G[p→ ^̂ q : ⟨U ⟩.G]

(FVal2) G[p→ ^̂ q : ⟨U ⟩.G] ↪→G[p→ q : ⟨U ⟩. ^̂G]

(BVal1) G[p→ ^̂ q : ⟨U ⟩.G]⇀G[ ^̂ p→ q : ⟨U ⟩.G]

(BVal2) G[p→ q : ⟨U ⟩. ^̂G]⇀G[p→ ^̂ q : ⟨U ⟩.G]

Figure 3: Semantics of Global Types (Forward & Backwards).

We also use global types with history, ranged over by H,H′, . . .,
to record the current protocol state. This state is denoted by the
cursor ^̂ , which we introduced in [20]:

H,H′ ::= ^̂G | G ^̂ | p→ ^̂ q : ⟨U ⟩.G | p→ q : ⟨U ⟩. ^̂G

Intuitively, directed exchanges such as p → q : ⟨U ⟩.G have three
intermediate states, characterized by the decoupled involvement
of p and q in the intended asynchronous model. The first state,
denoted ^̂ p → q : ⟨U ⟩.G, describes the situation prior to the
exchange. The second state represents the point in which p has sent
a value of type U but this message has not yet reached q; this is
denoted p → ^̂ q : ⟨U ⟩.G. The third state represents the point in
which q has received the message from p and the continuationG is
ready to execute; this is denoted by p→ q : ⟨U ⟩. ^̂G. Using these
intermediate states is central to precisely characterize the intended
asynchronous semantics for processes.

These intuitions come in handy to describe the forward and
backward transition rules in Fig. 3. For a forward directed exchange
of a value, Rule (FVal1) formalizes the transition from the first
to the second state; Rule (FVal2) denotes the transition from the
second to the third state. Rules (BVal1) and (BVal2) undo the step
performed by Rules (FVal1) and (FVal2), respectively.

2.2 Processes and Configurations
2.2.1 Syntax. The syntax of processes and configurations is

given in Fig. 4. For processes P ,Q, . . . we follow closely the syntax
of HOπ , the core higher-order session π -calculus [15]. The syntax
of configurations builds upon that of processes.

Names a,b, c (resp. s, s ′) range over shared (resp. session) names.
We use session names indexed by participants, denoted s[p], s[q].
Names n,m are session or shared names. First-order values v,v ′ in-
clude base values and constants. Variables are denoted by x ,y, and
recursive variables are denoted by X ,Y . The syntax of values V in-
cludes shared names, first-order values, but also name abstractions

u,w ::= n | x ,y, z n,n′ ::= a,b | s[p]

v,v ′ ::= tt | ff | · · ·

V ,W ::= a,b | x ,y, z | v,v ′ | λx . P

P ,Q ::= u!⟨V ⟩.P | u?(x ).P | P | Q | X | µX .P | V u | (ν n)P | 0

M,N ::= ℓ {a!⟨x⟩.P } | ℓ {a?(x ).P } | M | N | (ν n)M | 0

| ℓ[p] : *P+ | s[p]⌊H · x̃ · σ⌋
♠

| s : (hi ⋆ho ) | k ⌊(V u) , ℓ⌋

♠ ::= ♦ | ♢ h ::= ϵ | h ◦ (p , q , m) m ::= V

α ::= q?(U ) | q!⟨U ⟩

T , S ::= end | α .S

H ,K ::= ^̂ S | S ^̂ | α1. · · · .αn . ^̂ S

Figure 4: Syntax of processes P ,Q , configurationsM,N , local
types T , S , local types with history H ,K . Constructs given in
boxes appear only at run-time.

(higher-order values) λx . P , where P is a process. As shown in [15],
abstraction passing suffices to express name passing (delegation).

Process terms include prefixes for sending and receiving values
V , written u!⟨V ⟩.P and u?(x ).P , respectively. In an improvement
with respect to [20, 22], here we consider parallel composition of
processes P | Q and recursion µX .P (which binds the recursive
variableX in process P ). ProcessV u is the application which substi-
tutes name u on the abstraction V . Constructs for name restriction
(ν n)P and inaction 0 are standard. Session restriction (ν s )P simul-
taneously binds all the participant endpoints in P . We write fv(P )
and fn(P ) to denote the sets of free variables and names in P . We
assume V in u!⟨V ⟩.P does not include free recursive variables X . If
fv(P ) = ∅, we call P closed.

Building upon processes, the syntax of configurationsM,N , . . .
includes constructs for session initiation:
• configuration ℓ {a!⟨x⟩.P } denotes the request of a service identi-
fied with a implemented in P as x ;
• conversely, configuration ℓ {a?(x ).P } denotes service acceptance.
In these constructs, identifiers ℓ, ℓ′, . . . denote a location or site
(as in, e.g., the distributed π -calculus [11]). Locations indexed by
participants, useful in run-time expressions, are denoted ℓ[p], ℓ[q].
Configurations also include inaction 0, parallel compositionM | N ,
name restriction (ν n)M , as well as the following run-time elements:
• Running processes are of the form ℓ[p] : *P+, where ℓ is a location
that hosts a process P that implements participant p.
• Monitors are of the form s[p]⌊H · x̃ · σ⌋

♠ where s is the session
being monitored, p is a participant, H is a history session type
(i.e. a session type with “memory”), x̃ is a set of free variables,
and the store σ records the value of such variables (see Def. 2.1).
These four elements allow us to track the current protocol and
state of the monitored process.
Also, each monitor has a tag ♠, which can be either empty (de-
noted ‘♢’) or full (denoted ‘♦’).When created all monitors have an
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empty tag; a full tag indicates that the running process associated
to the monitor is currently involved in a decoupled reversible step.
We often omit the empty tag (so we write s[p]⌊H · x̃ · σ⌋ instead
of s[p]⌊H · x̃ · σ⌋

♢) and write s[p]⌊H · x̃ · σ⌋
♦ to emphasize the

reversible (red) nature of a monitor with full tag.
• Following [16], we have message queues of the form s : (hi ⋆ho ),
where s is a session, hi is the input part of the queue, and ho
is the output part of the queue. Each queue contains messages
of the form (p , q , m) (read: “message m is sent from p to q”).
As we will see, the effect of an output prefix in a process is to
place the message in its corresponding output queue; conversely,
the effect of an input prefix is to obtain the first message from
its input queue. Messages in the queue are never consumed: a
process reads a message (p , q , m) by moving it from the (tail
of) queue ho to the (top of) queue hi . This way, the delimiter ‘⋆’
distinguishes the past of the queue from its future.
• We use running functions of the form k ⌊(V u) , ℓ⌋ to reverse ap-
plicationsV u. While k is a fresh identifier (key) for this term, ℓ is
the location of the running process that contains the application.

We shall write P andM to indicate the set of processes and configu-
rations, respectively.We call agent an element of the setA =M∪P.
We let P ,Q to range over P; also, we use L,M,N to range overM
and A,B,C to range over A.

2.2.2 A Decoupled Semantics for Configurations. We define a
reduction relation on configurations, coupled with a structural con-
gruence on processes and configurations. Our reduction semantics
defines a decoupled treatment for reversing communication actions
within a protocol. Reduction is thus defined as −→⊂ M × M,
whereas structural congruence is defined as ≡ ⊂ P2 ∪ M2. We
require auxiliary definitions for contexts, stores, and type contexts.

Evaluation contexts are configurations with one hole ‘•’, as de-
fined by the following grammar:

E ::= • | M | E | (ν n) E

General contexts C are processes or configurations with one hole •:
they are obtained by replacing one occurrence of 0 (either as a
process or as a configuration) with •. A congruence on processes
and configurations is an equivalenceℜ that is closed under general
contexts: PℜQ =⇒ C[P]ℜC[Q] and MℜN =⇒ C[M]ℜC[N ].
We define ≡ as the smallest congruence on processes and configu-
rations that satisfies the axioms in Fig. 5. Most axioms are standard
and/or similar to those for the π -calculus [25]; the exception is
ℓ[r] : *(ν a)P+ ≡ (ν a)ℓ[r] : *P+, which allows a bound name to
cross the boundaries of a running process, thus relating processes
and configurations. A relationℜ on configurations is evaluation-
closed if it satisfies the following rules:

(Ctx)
MℜN

E[M]ℜE[N ]
(Eqv)

M ≡ M ′ M ′ℜN ′ N ′ ≡ N

MℜN

The state of monitored processes is formalized as follows:

Definition 2.1. A store σ is a mapping from variables to values.
Given a store σ , a variable x , and a value V , the update σ [x 7→ V ]

A | 0 ≡ A A | B ≡ B | A A | (B | C ) ≡ (A | B) | C

A | (ν n)B ≡ (ν n) (A | B) (n < fn(P )) (ν n)0 ≡ 0

µX .P ≡ P {µX .P/X } A ≡ B if A ≡α B
ℓ[r] : *(ν a)P+ ≡ (ν a)ℓ[r] : *P+

Figure 5: Structural Congruence

and the reverse update σ \ x are defined as follows:

σ [x 7→ V ] =



σ ∪ {(x ,V )} if x < dom(σ )
undefined otherwise

σ \ x =



σ1 if σ = σ1 ∪ {(x ,V )}

σ otherwise

Together with local types with history, the following notion of type
context allows us to keep the current protocol state inside monitors:

Definition 2.2. Let k,k ′, . . . denote fresh name identifiers. We
define type contexts as (local) types with one hole, denoted “•”:

T,S ::= • | α .T | k .T | (ℓ, ℓ1, ℓ2).T

Type contexts k .T and (ℓ, ℓ1, ℓ2).T will be instrumental in formal-
izing reversibility of name applications and thread spawning, re-
spectively, which are not described by local types. This way, we
will often have monitors of the form s[p]⌊T [ ^̂ S] · x̃ · σ⌋

♠, where
T and S describe past and future protocol steps for p, respectively.

Abstraction passing can implement a form of session delegation,
for received abstractions λx . P can contain free session names (in-
dexed by participant identities). The following definition identifies
those names:

Definition 2.3. Let h and p be a queue and a participant, respec-
tively. Also, let {(q1 , p , λx1. P1), . . . , (qk , p , λxk . Pk )} denote the
(possibly empty) set of messages in h containing abstractions sent
to p. We write roles(p,h) to denote the set of participant identities
occurring in P1, . . . , Pk .

The reduction relation −→ is defined as the union of the forward
and backward reduction relations, denoted ↠ and ⇝ , respectively.
That is, −→= ↠ ∪ ⇝ . Relations ↠ and ⇝ are the smallest
evaluation-closed relations satisfying the rules in Figs. 6 and 7.
We indicate with −→∗, ↠∗ , and ⇝∗ the reflexive and transitive
closure of−→, ↠ and ⇝ , respectively.We first discuss the forward
reduction rules (Fig. 6), omitting empty tags ♢:
▶ Rule (Init) initiates a choreographyG with n participants. Given

the composition of one service request and n − 1 service accepts
(all along a, available in different locations ℓi ), this rule sets up
the run-time elements: running processes and monitors—one
for each participant, with empty tag (omitted)—and the empty
session queue. A unique session identifier (s in the rule) is also
created. The processes are inserted in their respective running
structures, and instantiated with an appropriate session name.
Similarly, the local types for each participant are inserted in
their respective monitor, with the cursor ^̂ at the beginning.

▶ Rule (Out) starts the output of value V from p to q. Given an
output-prefixed process as running process, and a monitor with
a local type supporting an output action, reduction adds the
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(Init)
pa(G ) = {p1, · · · , pn } ∀pi ∈ pa(G ).G ↓pi= Ti

ℓ1 {a!⟨x1 : T1⟩.P1} |
∏

i ∈{2, · · · ,n }
ℓi {a?(xi : Ti ).Pi } ↠ (ν s ) *.

,

∏
i ∈{1, · · · ,n }

ℓi [pi ] : *Pi {s[pi ]/xi } + | s[pi ]⌊ ^̂Ti · xi · [xi 7→ a]⌋ | s : (ϵ ⋆ϵ )+/
-

(Out)
p = r ∨ p ∈ roles(r,hi )

ℓ[r] : *s[p]!⟨V ⟩.P + | s[p]⌊T [ ^̂ q!⟨U ⟩.S] · x̃ · σ⌋ | s : (hi ⋆ho )
↠

ℓ[r] : *P + | s[p]⌊T [q!⟨U ⟩. ^̂ S] · x̃ · σ⌋ | s : (hi ⋆ho ◦ (p , q , σ (V )))

(In)
p = r ∨ p ∈ roles(r,hi )

ℓ[r] : *s[p]?(y).P + | s[p]⌊T [ ^̂ q?⟨U ⟩.S] · x̃ · σ⌋ | s : (hi ⋆ (q , p , V ) ◦ ho )
↠

ℓ[r] : *P + | s[p]⌊T [q?⟨U ⟩. ^̂ S] · x̃ ,y · σ [y 7→ V ]⌋ | s : (hi ◦ (q , p , V )⋆ho )

(Beta)
σ (V ) = λx . P

ℓ[p] : *(V w ) + | s[p]⌊T [ ^̂ S] · x̃ · σ⌋ ↠ (ν k )
(
ℓ[p] : *P {σ (w )/x }+ | k ⌊(V w ) , ℓ⌋ | s[p]⌊T [k . ^̂ S] · x̃ · σ⌋

)
(Spawn)

ℓ[p] : *P | Q + | s[p]⌊T [ ^̂ S] · x̃ · σ⌋ ↠ (ν ℓ1, ℓ2)
(
ℓ[p] : *0 + | ℓ1[p] : *P + | ℓ2[p] : *Q + | s[p]⌊T [(ℓ, ℓ1, ℓ2). ^̂ S] · x̃ · σ⌋

)
Figure 6: Decoupled semantics for configurations: Forward reduction (↠ ).

(RInit)
pa(G ) = {p1, · · · , pn } ∀pi ∈ pa(G ).G ↓pi= Ti Qi = Pi {s[pi ]/xi }

(ν s ) *.
,

∏
i ∈{1, · · · ,n }

ℓi [pi ] : *Qi + | s[pi ]⌊ ^̂Ti · xi · [xi 7→ a]⌋♢ | s : (ϵ ⋆ϵ )+/
-
⇝ ℓ1 {a!⟨x1 : T1⟩.P1} |

∏
i ∈{2, · · · ,n }

ℓi {a?(xi : Ti ).Pi }

(RollS)
s[p]⌊T [q?⟨U ⟩. ^̂T ] · x̃ · σ1⌋

♢
| s[q]⌊S [p!⟨U ⟩. ^̂ S] · ỹ · σ2⌋

♢
| s : (hi ⋆ho )

⇝

s[p]⌊T [q?⟨U ⟩. ^̂T ] · x̃ · σ1⌋
♦
| s[q]⌊S [p!⟨U ⟩. ^̂ S] · ỹ · σ2⌋

♦
| s : (hi ⋆ho )

(ROut)
p = r ∨ p ∈ roles(r,hi )

ℓ[r] : *P + | s[p]⌊T [q!⟨U ⟩. ^̂ S] · x̃ · σ⌋
♦
| s : (hi ⋆ (p, q,V ) ◦ ho ) ⇝ ℓ[r] : *s[p]!⟨V ⟩.P + | s[p]⌊T [ ^̂ q!⟨U ⟩.S] · x̃ · σ⌋

♢
| s : (hi ⋆ho )

(RIn)
p = r ∨ p ∈ roles(r,hi )

ℓ[r] : *P + | s[p]⌊T [q?⟨U ⟩. ^̂ S] · x̃ ,y · σ⌋
♦
| s : (hi ◦ (q, p,V )⋆ho )

⇝

ℓ[r] : *s[p]?(y).P + | s[p]⌊T [ ^̂ q?⟨U ⟩.S] · x̃ · σ \ y⌋
♢
| s : (hi ⋆ (q, p,V ) ◦ ho )

(RBeta)
(ν k )

(
ℓ[p] : *Q+ | k ⌊(V w ) , ℓ⌋ | s[p]⌊T [k . ^̂ S] · x̃ · σ⌋

)
⇝ ℓ[p] : *(V w ) + | s[p]⌊T [ ^̂ S] · x̃ · σ⌋

(RSpawn)

(ν ℓ1, ℓ2)
(
ℓ[p] : *0+ | ℓ1[p] : *P + | ℓ2[p] : *Q + | s[p]⌊T [(ℓ, ℓ1, ℓ2). ^̂ S] · x̃ · σ⌋

)
⇝ ℓ[p] : *P | Q + | s[p]⌊T [ ^̂ S] · x̃ · σ⌋

Figure 7: Decoupled semantics for configurations: Backwards reduction (⇝ ).



PPDP’17, October 9–11, 2017, Namur, Belgium C. AMezzina and J. A. Pérez

message (p , q , σ (V )) to the output part of the session queue
(where σ is the current store). Also, the cursor within the local
type is moved accordingly. In this rule (but also in several other
rules), premise p = r ∨ p ∈ roles(r,hi ) allows performing
actions on names previously received via abstraction passing.

▶ Rule (In) allows a participant p to receive a value V from q: it
simply takes the first element of the output part of the queue
and places it in the input part. The cursor of the local type and
state in the monitor for p are updated accordingly.

▶ Rule (Beta) handles name applications. Reduction creates a fresh
identifier (k in the rule) for the running function, which keeps
(i) the structure of the process prior to application, and (ii) the
identifier of the running process that “invokes” the application.
Notice that k is recorded also in the monitor: this is necessary to
undo applications in the proper order. To determine the actual
abstraction and the name applied, we use σ .

▶ Rule (Spawn) handles parallel composition. Location ℓ is “split”
into running processes with fresh identifiers (ℓ1, ℓ2 in the rule).
This split is recorded in the monitor.

Now we comment on the backward rules (Fig. 7) which, in most
cases, change the monitor tags from ♢ into ♦:

◀ Rule (RInit) undoes session establishment. It requires that local
types for every participant are at the beginning of the protocol,
and empty session queue and process stacks. Run-time elements
are discarded; located service accept/requests are reinstated.

◀ Rule (RollS) starts to undo an input-output synchronization
between p and q. Enabled when there are complementary session
types in the two monitors, this rule changes the monitor tags
from ♢ to ♦. This way, the undoing of input and output actions
occurs in a decoupled way. Rule (RollC) is the analog of (RollS)
but for synchronizations originated in labeled choices.

◀ Rule (ROut) undoes an output. This is only possible for amonitor
tagged with ♦, exploiting the first message in the input queue.
After reduction, the process prefix is reinstated, the cursor is
adjusted, the message is removed from the queue, the monitor
is tagged again with ♢. Rule (RIn) is the analog of Rule (ROut).
In this case, we also need to update the state of store σ .

◀ Rule (RBeta) undoes β-reduction, reinstating the application.
The running function disappears, using the information in the
monitor (k in the rule). Rule (RSpawn) undoes the spawn of a
parallel thread, using the identifiers in the monitor.

We now illustrate our reversible process model with an example.

3 EXAMPLE: THE THREE-BUYER PROTOCOL
We illustrate our framework by presenting a reversible variant of
the Three-Buyer protocol (see, e.g., [5]) with abstraction passing
(code mobility), one of the distinctive traits of our framework.

The protocol involves three buyers—Alice (A), Bob (B), and Carol
(C)—who interact with a Vendor (V) as follows:

1. Alice sends a book title to Vendor, which replies back to Alice and
Bob with a quote. Alice tells Bob how much she can contribute.

2. Bob notifies Vendor and Alice that he agrees with the price, and
asks Carol to assist him in completing the protocol. To delegate
his remaining interactions with Alice and Vendor to Carol, Bob
sends her the code she must execute.

3. Carol continues the rest of the protocol with Vendor and Alice
as if she were Bob. She sends Bob’s address (contained in the
mobile code she received) to Vendor.

4. Vendor answers to Alice and Carol (who represents Bob) with
the delivery date.
We formalize this protocol is as the global type G below. We

write p → {q1, q2} : ⟨U ⟩.G as a shorthand notation for p → q1 :
⟨U ⟩.p → q2 : ⟨U ⟩.G (and similarly for local types). We write {{⋄}}
to denote the type end→⋄, associated to a thunk process λx . P with
x < fn(P ), written {{P }}. A thunk is an inactive process; it can be
activated by applying to it a dummy name of type end, denoted ∗.
This way, we have ({{P }} ∗)↠ P .

G = A→ V : ⟨title⟩.V→ {A, B} : ⟨price⟩.A→ B : ⟨share⟩.
B→ {A, V} : ⟨OK⟩.
B→ C : ⟨share⟩.B→ C : ⟨{{⋄}}⟩.
B→ V : ⟨address⟩.V→ B : ⟨date⟩.end

where price and share are base types treated as integers, and title,
OK, address, and date are base types treated as strings.

Then we have the following projections of G onto local types:

G ↓V = A?⟨title⟩.{A, B}!⟨price⟩.B?⟨OK⟩.B?⟨address⟩.B!⟨date⟩.end
G ↓A = V!⟨title⟩.V?⟨price⟩.B!⟨share⟩.B?⟨OK⟩.end
G ↓B = V?⟨price⟩.A?⟨share⟩.{A, V}!⟨OK⟩.C!⟨share⟩.C!⟨{{⋄}}⟩.

V!⟨address⟩.V?⟨date⟩.end
G ↓C = B?⟨share⟩.B?⟨{{⋄}}⟩.end

We now give processes for each participant:

Vendor = d!⟨x : G ↓V⟩.x?(t ).x !⟨price (t )⟩.x !⟨price (t )⟩.
x?(ok ).x?(a).x !⟨date⟩.0

Alice = d?(y : G ↓A).y!⟨‘Logicomix’⟩.y?(p).y!⟨h⟩.y?(ok ).0
Bob = d?(z : G ↓B).z?(p).z?(h).z!⟨ok⟩.z!⟨ok⟩.z!⟨h⟩.

z!
〈
{{z!⟨‘Lucca, 55100’⟩.z?(d ).0}}

〉
.0

Carol = d?(w : G ↓C).w?(h).w?(code ).(code ∗)

where price (·) returns a value of type price given a title. Observe
how Bob’s implementation sends part of its protocol to Carol in the
form of a thunk containing his session name and address. This is
how abstraction passing may serve to implement session delegation.

The whole system, given by configuration M below, is obtained
by placing these process implementations in appropriate locations:

M = ℓ1 {Vendor} | ℓ2 {Alice} | ℓ3 {Bob} | ℓ4 {Carol}

FromM , the session starts with an application of Rule (Init):

M↠ (ν s )
(
ℓ1[V] : *V1{s[V]/x } + | s[V]⌊ ^̂G ↓V · x · [x 7→ d]⌋♢

| ℓ2[A] : *A1{s[A]/y} + | s[A]⌊ ^̂G ↓A · y · [y 7→ d]⌋♢

| ℓ3[B] : *B1{s[B]/z} + | s[B]⌊ ^̂G ↓B · z · [z 7→ d]⌋♢

| ℓ4[C] : *C1{s[C]/w } + | s[C]⌊ ^̂G ↓C ·w · [w 7→ d]⌋♢

| s : (ϵ ⋆ϵ )
)
= M1

where V1, A1, B1, and C1 stand for the continuation of processes
Vendor, Alice, Bob, and Carol after the service request/declaration.
So, e.g.,A1 = y!⟨‘Logicomix’⟩.y?(p).y!⟨h⟩.y?(ok ).0. Notice also how
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session initialization instantiates variable z in the thunk contained
in Bob’s implementation with endpoint s[B]. We use configuration
M1 to illustrate some forward and backward reductions.

FromM1 we could either undo the reduction (using Rule (RInit))
or execute the communication from Alice to Vendor (using two
rules: (Out) and (In)). This latter option would be as follows:

M1↠ (ν s ) ( ℓ2[A] : *s[A]?(p).s[A]!⟨h⟩.s[A]?(ok ).0+

| s[A]⌊V!⟨title⟩. ^̂ V?⟨price⟩.B!⟨share⟩.B?⟨OK⟩.end · y · [y 7→ d]⌋♢

| N2 | s : (ϵ ⋆ (A , V , ‘Logicomix’)) ) = M2

where N2 stands for the running processes and monitors for Vendor,
Bob, and Carol, not involved in the reduction. We now have:

M2↠ (ν s ) ( ℓ1[V] : *s[V]!⟨price (t )⟩.s[V]!⟨price (t )⟩.s[V]?(ok ).

s[V]?(a).s[V]!⟨date⟩.0+

| s[V]⌊A?⟨title⟩. ^̂ {A, B}!⟨price⟩.TV · x , t · σ3⌋
♢
| N3

| s : ((A , V , ‘Logicomix’)⋆ϵ ) ) = M3

where σ3 = [x 7→ d], [t 7→ ‘Logicomix’] is the resulting store,
TV = B?⟨OK⟩.B?⟨address⟩.B!⟨date⟩.end, and N3 stands for the par-
ticipants not involved in the reduction. Observe that the cursors in
monitors s[V] and s[A] have evolved, and that message from A to V
has now been moved to the input queue.

We illustrate reversibility by showing how to return toM1 start-
ing from M3. We need to apply three rules: (RollS), (RIn), and
(ROut). Reversibility is decoupled in the sense that there is no fixed
order in which the latter two rules should be applied; below we
give just a possible sequence. First, Rule (RollS) modifies the tags
of monitors s[V] and s[A], leaving the rest unchanged:

M3⇝ (ν s ) ( ℓ1[V] : *s[V]!⟨price (t )⟩.s[V]!⟨price (t )⟩.s[V]?(ok ).

s[V]?(a).s[V]!⟨date⟩.0+

| s[V]⌊A?⟨title⟩. ^̂ {A, B}!⟨price⟩.TB · x , t · σ3⌋
♦

| ℓ2[A] : *s[A]?(p).s[A]!⟨h⟩.s[A]?(ok ).0+

| s[A]⌊T4 [ ^̂ V?⟨price⟩.B!⟨share⟩.B?⟨OK⟩.end] · y · [y 7→ d]⌋♦

| N4 | s : ((A , V , ‘Logicomix’)⋆ϵ ) ) = M4

where T4 [•] = V!⟨title⟩.• and , as before,N4 represents participants
not involved in the reduction.M4 has several possible forward and
backward reductions. One particular reduction uses Rule (RIn) to
undo the input at V:

M4⇝ (ν s ) ( ℓ1[V] : *s[V]?(t ).s[V]!⟨price (t )⟩.s[V]!⟨price (t )⟩.

s[V]?(ok ).s[V]?(a).s[V]!⟨date⟩.0+

| s[V]⌊ ^̂ A?⟨title⟩.{A, B}!⟨price⟩.TB · x · [x 7→ d]⌋♢

| ℓ2[A] : *s[A]?(p).s[A]!⟨h⟩.s[A]?(ok ).0+

| s[A]⌊T4 [ ^̂ V?⟨price⟩.B!⟨share⟩.B?⟨OK⟩.end] · y · [y 7→ d]⌋♦

| N4 | s : (ϵ ⋆ (A , V , ‘Logicomix’)) ) = M5

Just as an application of Rule (RollS) need not be immediately
followed by an application of Rule (RIn), an application of Rule (RIn)

need not be immediately followed by an application of Rule (ROut).
A particular reduction fromM5 undoes the output at A:

M5⇝ (ν s ) ( ℓ1[V] : *s[V]?(t ).s[V]!⟨price (t )⟩.s[V]!⟨price (t )⟩.

s[V]?(ok ).s[V]?(a).s[V]!⟨date⟩.0+

| s[V] ⌊̂^A?⟨title⟩.{A, B}!⟨price⟩.TB · x · [x 7→ d]⌋♢

| ℓ2[A] : *s[A]!⟨‘Logicomix’⟩.s[A]?(p).s[A]!⟨h⟩.s[A]?(ok ).0+

| s[A] ⌊̂^V!⟨title⟩.V?⟨price⟩.B!⟨share⟩.B?⟨OK⟩.end · y · [y 7→ d]⌋♢

| N4 | s : (ϵ ⋆ϵ ) ) = M6

Clearly, M6 = M1. Summing up, the synchronization realized by
the (forward) reduction sequenceM1↠M2↠M3 can be reversed
by the (backward) reduction sequenceM3⇝M4⇝M5⇝M6.

To illustrate abstraction passing, let us assume that M3 above
follows a sequence of forward reductions until the configuration:

M7 = (ν s ) ( ℓ3[B] : *s[B]!
〈
{{s[B]!⟨‘Lucca, 55100’⟩.s[B]?(d ).0}}

〉
.0+

| s[B]⌊T7 [ ^̂ C!⟨{{⋄}}⟩.V!⟨address⟩.V?⟨date⟩.end] · z,p,h · σ7⌋
♢

| ℓ4[C] : *s[C]?(code ).(code ∗)+

| s[C]⌊T8 [ ^̂ B?⟨{{⋄}}⟩.end] ·w,h · σ8⌋
♢
| N5 | s : (h7⋆ϵ ) )

where T7 [•], σ7, T8 [•], σ8, and h7 capture past interactions as
follows:

T7 [•] = V?⟨price⟩.A?⟨share⟩.{A, V}!⟨OK⟩.C!⟨share⟩.•
σ7 = [z 7→ d], [p 7→ price (‘Logicomix’)], [h 7→ 120]

T8 [•] = B?⟨share⟩. • σ8 = [w 7→ d], [h 7→ 120]
h7 = (A , V , ‘Logicomix’)
◦ (V , A , price (‘Logicomix’)) ◦ (V , B , price (‘Logicomix’))
◦ (A , B , 120) ◦ (B , A , ‘ok’) ◦ (B , V , ‘ok’) ◦ (B , C , 120)

IfM7↠ ↠M8 by using Rules (Out) and (In) we would have a
higher-order communication:

M8 = (ν s ) ( ℓ3[B] : *0+

| s[B]⌊T7 [C!⟨{{⋄}}⟩. ^̂ V!⟨address⟩.V?⟨date⟩.end] · z,p,h · σ7⌋
♢

| ℓ4[C] : *(code ∗)+

| s[C]⌊T8 [B?⟨{{⋄}}⟩. ^̂ end] ·w,h, code · σ9⌋
♢

| N5 | s : (h7 ◦ (B , C , {{s[B]!⟨‘Lucca, 55100’⟩.s[B]?(d ).0}})⋆ϵ ) )

where σ9 = σ8[code 7→ {{s[B]!⟨‘Lucca, 55100’⟩.s[B]?(d ).0}}]. We now
may apply Rule (Beta) to obtain the actual code sent from B to C:

M8↠ (ν s ) (ν k ) ( ℓ4[C] : *s[B]!⟨‘Lucca, 55100’⟩.s[B]?(d ).0 + | N6

| s[B]⌊T7 [C!⟨{{⋄}}⟩. ^̂ V!⟨address⟩.V?⟨date⟩.end] · z,p,h · σ7⌋
♢

| k ⌊(code ∗) , ℓ4⌋ | s[C]⌊T8 [B?⟨{{⋄}}⟩.k . ^̂ end] ·w,h, code · σ9⌋
♢

| s : (h7 ◦ (B , C , {{s[B]!⟨‘Lucca, 55100’⟩.s[B]?(d ).0}})⋆ϵ ) ) = M9

where N6 is for the rest of the system. Notice that this reduction has
added a running function on a fresh k , which is also used within
the type stored in the monitor s[C].

The reductionM8↠M9 completes the code mobility from B to
C: the now active thunk will execute B’s implementation from C’s
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location. Observe that Bob’s identity B is “hardwired” in the sent
thunk; there is no way for C to execute the code by referring to a
participant different from B. This justifies the premise p = r ∨ p ∈
roles(r,hi ) present in Rules (Out) and (In) (and in their backward
counterparts): when executing previously received mobile code, the
participant mentioned in the location (i.e., C) and that mentioned in
the located process (i.e., B) may differ. Further forward reductions
fromM9 will modify the cursor in the type stored in monitor s[B]
based on the process located at ℓ4[C].

Having introduced our process model and its reversible seman-
tics, we now move on to establish its key properties.

4 MAIN RESULTS
We now establish our main result: we prove that reversibility in our
model of choreographic, asynchronous communication is causally
consistent. We proceed in three steps:
a) First, we introduce an alternative atomic semantics and show

that it corresponds, in a tight technical sense, to the decoupled
semantics in § 2.2.2 (Theorems 4.7 and 4.10).

b) Second, in the light of this correspondence, we establish causal
consistency for the atomic semantics, following the approach of
Danos and Krivine [7] (Theorem 4.18).

c) Finally, we state a fine-grained, bidirectional connection between
the semantics of (high-level) global types with the decoupled
semantics of (low-level) configurations (Theorem 4.22).

As a result of these steps, we may transfer causal consistency to
choreographies expressed as global types.

4.1 Atomic Semantics vs. Decoupled Semantics
Our main insight is that causal consistency for asynchronous com-
munication can be established by considering a coarser synchronous
reduction relation. We define atomic versions of the forward and
backward reduction relations, relying on the rules in Fig. 8.

The forward atomic reduction, denoted⇛, is the smallest evalua-
tion-closed relation that satisfies Rule (AC) (Fig. 8), together with
Rules (Init), (Beta), and (Spawn) (Fig. 6). Similarly, the backward
atomic reduction, denoted⇚, is the smallest evaluation-closed rela-
tion that satisfies Rule (RAC) (Fig. 8), together with Rules (RInit),
(RBeta), and (RSpawn) (Fig. 7). We then define the atomic reduction
relation↣ as⇛ ∪⇚.

We start by introducing reachable configurations:

Definition 4.1. A configurationM is initial ifM ≡ (ν ñ)
∏

i ℓi {Pi }.
A configuration is reachable, if it is derived from an initial configu-
ration by using −→. A configuration is atomically reachable, if it is
derived from an initial configuration by using↣.

To relate the decoupled semantics −→ (cf. § 2.2.2) with the atomic
reduction ↣ (just defined), we introduce the concept of stable
configuration. Roughly speaking, in a stable configuration there are
no “ongoing” reduction steps. In the forward case, an ongoing step
is witnessed by non-empty output queues (which should eventually
become empty to complete a synchronization); in the backward
case, an ongoing step is witnessed by a marked monitor (which
should be eventually unmarked when a synchronization is undone).
This way, e.g., in the example of § 3 configurationsM3 andM7 are

stable, whereasM2 andM4 are not stable. Reduction↣ will move
between stable configurations only. We therefore have:

Definition 4.2. A configurationM is stable, written sb(M ), if

M ≡
∏
i
ℓi {Pi } | (ν sã)

(∏
j
ℓj [pj ] : *Pj + |

s[pi ]⌊Ti · x̃i · σi⌋
♢
| s : (h1⋆ϵ )

)
Reduction −→ does not preserve stability, but it can be recovered:

Lemma 4.3. GivenM a stable configuration then

• ifM↠N with ¬sb(N ) then there exists an N ′ such that N ↠N ′

and sb(N ′);
• ifM⇝N with¬sb(N ) then there exists anN ′ such thatN ⇝ ⇝N ′

and sb(N ′).

We may then have:

Corollary 4.4. If sb(M ) andM −→∗ N with ¬sb(N ), then there
exists an N ′ such that N −→∗ N ′ with sb(N ′).

Proof. By induction on the reduction sequenceM −→∗ N . □

We now show the Loop lemma [7], which ensures that every reduc-
tion step can be reverted. This lemma will be crucial both in proving
a correspondence between atomic and decoupled semantics, and in
showing causal consistency of the atomic semantics.

Lemma 4.5 (Loop). LetM,N be stable and atomically reachable

configurations. ThenM⇛N if and only if N⇚M .

Proof. By induction on the derivation ofM⇛N for the if direc-
tion, and on the derivation of N⇚M for the converse. □

The following lemma allow us to “rearrange” atomic reduction
steps; it will be useful to connect atomic and decoupled reductions.

Lemma 4.6 (Swap). LetM be a reachable configuration, then:

• IfM↠∗ N1 using Rule (Out), and N1↠N2 by using Rule (In) then
M↠ ↠N ↠∗ N2, for some N ;

• IfM⇝∗ N1 using Rule (ROut), and N1⇝N2 by using Rule (RIn)

thenM⇝ ⇝N ⇝∗ N2, for some N .

The following theorem is a first connection between decoupled and
atomic reductions; its proof is immediate from their definitions:

Theorem 4.7 (Relating −→ and↣). Let M and N be stable

configurations. We have :

• M⇛N if and only if eitherM↠N orM↠ ↠N ;

• M⇚N if and only if eitherM⇝N orM⇝ ⇝ ⇝N .

We now embark ourselves in providing a tighter formal connection
between −→ and↣, using back-and-forth barbed bisimulations [18].
We shall work with binary relations on configurations, written
ℜ ⊆ M ×M. We now adapt the classical notion of barbs [25] to
our setting: rather than communication subjects (which are hid-
den/unobservable names in intra-session communications), it suf-
fices to use participant identities as observables:

Definition 4.8 (Barbs). A reachable configurationM has a barb
p, writtenM ⇂p, ifM ≡ (ν ñ) (N | ℓ[r] : *P + | s[p]⌊S[ ^̂T ] · x̃ · σ⌋ )
where P ≡ s[p]!⟨V ⟩.Q | R and T = q!⟨U ⟩.T1.
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(AC)
p = r1 ∨ p ∈ roles(r1,hi ) q = r2 ∨ q ∈ roles(r2,hi )

ℓ1[r1] : *s[p]!⟨V ⟩.P + | s[p]⌊T [ ^̂ q!⟨U ⟩.S] · x̃ · σ⌋ | ℓ2[r2] : *s[q]?(y).Q + | s[q]⌊S [ ^̂ p?⟨U ⟩.T ] · x̃ · σ⌋ | s : (hi ⋆ho )
⇛

ℓ1[r1] : *P + | s[p]⌊T [q!⟨U ⟩. ^̂ S] · x̃ · σ⌋ | ℓ2[r2] : *Q + | s[q]⌊S [p?⟨U ⟩. ^̂T ] · x̃ ,y · σ [y 7→ V ]⌋ | s : (hi ◦ (q , p , V )⋆ho )

(RAC)
p = r1 ∨ p ∈ roles(r1,hi ) q = r2 ∨ q ∈ roles(r2,hi )

ℓ1[r1] : *P + | s[p]⌊T [q!⟨U ⟩. ^̂ S] · x̃ · σ⌋ | ℓ2[r2] : *Q + | s[q]⌊S [p?⟨U ⟩. ^̂T ] · x̃ ,y · σ [y 7→ V ]⌋ | s : (hi ◦ (q , p , V )⋆ho )
⇚

ℓ1[r1] : *s[p]!⟨V ⟩.P + | s[p]⌊T [ ^̂ q!⟨U ⟩.S] · x̃ · σ⌋ | ℓ2[r2] : *s[p]?(y).Q + | s[q]⌊S [ ^̂ p?⟨U ⟩.T ] · x̃ · σ⌋ | s : (hi ⋆ho )

Figure 8: Atomic semantics for configurations: Forward and backward reduction (⇛ and⇚).

Notice that our definition of barbs is connected to the notion of
stability: since inM ⇂p we require a monitor with empty tag, this
ensures that p is not involved in an ongoing backward step. In a
way, this allows us to consider just forward barbs (as in [1]).

We now adapt the definition of weak barbed back-and-forth (bf)
bisimulation and congruence [18] in order to work with decoupled
and atomic reduction semantics:

Definition 4.9. A relationℜ is a (weak) barbed bf simulation if
wheneverMℜN

(1) M ⇂p implies N −→∗⇂p;
(2) M⇛M1 implies N ↠ ∗N1, withM1ℜN1;
(3) M⇚M1 implies N ⇝ ∗N1, withM1ℜN1.

A relation ℜ is a (weak) barbed bisimulation if ℜ and ℜ−1 are
weak bf barbed simulations. The largest weak barbed bisimulation
is (weak) barbed bisimilarity, noted ≈.M and N are (weakly) barbed
congruent, written ·≈, if for each contextC such thatC[M] andC[N ]
are atomically reachable configurations, then C[M] ≈ C[N ].

We now may state our second connection between decoupled and
atomic reductions:

Theorem 4.10. For any atomically reachable configurationM , we

have thatM
·
≈ M .

Proof (Sketch). It suffices to show that the following relation
is a bf weak bisimulation:

ℜ = {(M,N ) |M↠ ∗N via Rule (Out) ∧
M⇝ ∗N via Rule (ROut)}

The analysis uses Corollary 4.4, Theorem 4.7, the Loop and Swap
Lemmas (Lemmas 4.5 and 4.6). See [21] for details. □

By observing that the set of atomic configurations is a subset of
reachable configurations, this result can also be stated as full ab-
straction. Let f be the (injective, identity) mapping from atomically
reachable configurations to reachable configurations. We then have:

Corollary 4.11 (Full Abstraction). Let f be the injection from

atomically reachable configurations to reachable configurations, and

letM,N be two atomically reachable configurations. Then we have

f (M )
·
≈ f (N ) if and only ifM

·
≈ N .

Proof. From Theorem 4.10 we haveM ·
≈ f (M ) and N

·
≈ f (N ).

The thesis follows then by transitivity of ·≈. □

The results above ensure that the loss of atomicity preserves
the reachability of configurations yet does not make undesired
configurations reachable.

4.2 Causal Consistency
Theorems 4.7 and 4.10 allow us to focus on the atomic reduction
↣ for the purposes of establishing causal consistency. We adapt
the approach of [7] (developed for a reversible CCS) to our higher-
order sessionπ -calculuswith asynchronous communication. Causal
consistency concerns traces of transitions:

Definition 4.12. A transition t is a triplet of the form t : M
η
=⇒ N

whereM ↣ N and the transition stamp η is defined as follows:
• η = {ℓ1, · · · , ℓn }, if Rule (Init) or (RInit) is used;
• η = {p, q}, if Rule (AC) or (RAC) is used;
• η = {ℓ, p}, if one of Rules (Beta), (Spawn), (RBeta) or (RSpawn)
is used.

Given t : M
η
=⇒ N , we say M and N are its source and target

(written src(t ) and trg(t )), respectively. A transition t : M
η
=⇒ N

is forward ifM⇛N and backward ifM⇚N . Given t : M
η
=⇒ N , its

inverse, denoted t•, is the transition t• : N
η
=⇒ M . Two transitions

are coinitial if they have the same source; cofinal if they have the
same target; composable if the target of the first one is the source
of the other. Given coinitial transitions t1 : M

η1
==⇒ N1 and t2 :

M
η2
==⇒ N2, we define t2/t1 (read “t2 after t1”) as N1

η2
==⇒ N3, i.e., the

transition with stamp η2 that starts from the target of t1. A trace

is a sequence of pairwise composable transitions. We let t and ρ
range over transitions and traces, respectively. Notions of target,
source, composability and inverse extend naturally to traces. We
write εM to denote the empty trace with source M , and ρ1; ρ2 to
denote the composition of two composable traces ρ1 and ρ2. Two
important classes of transitions are conflicting and concurrent ones:

Definition 4.13. Two coinitial transitions t1 : M
η1
==⇒ M1 and

t2 : M
η2
==⇒ M2 are said to be in conflict if η1∩η2 , 0. Two transitions

are concurrent if they are not in conflict.



PPDP’17, October 9–11, 2017, Namur, Belgium C. AMezzina and J. A. Pérez

A property that a reversible semantics should enjoy is the so-called
Square Lemma [7], which may be informally described as follows.
Assume a configuration from which two transitions are possible: if
these transitions are concurrent then the order in which they are
executed does not matter, and the same configuration is reached.

Lemma 4.14 (Sqare). If t1 : M
η1
==⇒ M1 and t2 : M

η2
==⇒ M2 are

coinitial and concurrent transitions, then there exist cofinal transitions

t2/t1 = M1
η2
==⇒ N and t1/t2 = M2

η1
==⇒ N .

Definition 4.15. We define ≍ as the least equivalence between
traces that is closed under composition and that obeys: i) t1; t2/t1 ≍
t2; t1/t2; ii) t ; t• ≍ εsrc(t ) ; iii) t•; t ≍ εtrg(t ) .

Intuitively, ≍ says that: (a) given two concurrent transitions, the
traces obtained by swapping their execution order are equivalent;
(b) a trace consisting of opposing transitions is equivalent to the
empty trace. The proof of causal consistency follows that in [7], but
with simpler arguments because of our simpler transition stamps.
The following lemma says that, up to causal equivalence, traces can
be rearranged so as to reach the maximum freedom of choice, first
going only backwards, and then going only forward.

Lemma 4.16 (Rearranging). Let ρ be a trace. There are forward

traces ρ ′, ρ ′′ such that ρ ≍ ρ ′•; ρ ′′.

Proof. By lexicographic induction on the length of ρ and on
the distance between the beginning of ρ and the earliest pair of
opposing transitions in ρ. The analysis uses both the Loop Lemma
(Lemma 4.5) and the Square Lemma (Lemma 4.14). □

If trace ρ1 and forward trace ρ2 start from the same configura-
tion and end up in the same configuration, then ρ1 may contain
some “local steps”, not present in ρ2, which must be eventually
reversed—otherwise there would be a difference with respect to
ρ2. Hence, ρ1 could be shortened by removing such local steps and
their corresponding reverse steps.

Lemma 4.17 (Shortening). Let ρ1, ρ2 be coinitial and cofinal

traces, with ρ2 forward. Then, there exists a forward trace ρ ′1 of length
at most that of ρ1 such that ρ ′1 ≍ ρ1.

Proof. By induction on the length of ρ1, using Square and Re-
arranging Lemmas (Lemmas 4.14, 4.16). The proof uses the forward
trace ρ2 as guideline for shortening ρ1 into a forward trace, relying
on the fact that ρ1, ρ2 share the same source and target. □

We may now state our main result:

Theorem 4.18 (Causal consistency). Let ρ1 and ρ2 be coinitial
traces, then ρ1 ≍ ρ2 if and only if ρ1 and ρ2 are cofinal.

Proof. The ‘if’ direction follows by definition of ≍ and trace
composition. The ‘only if’ direction uses Square, Rearranging and
Shortening Lemmas (Lemmas 4.14, 4.16, 4.17). □

4.3 Connecting Reversible Choreographies and
Reversible Configurations

We now relate choreographies and configurations to connect the
two levels of abstraction for reversible global protocols. For conve-
nience, we focus on first-order global types (i.e., without abstraction

(Sw1)
{p1, q1 }#{p2, q2 }

p1 → q1 : ⟨U1⟩.(p2 → q2 : ⟨U2⟩.G ) ≈sw
p2 → q2 : ⟨U2⟩.(p1 → q1 : ⟨U1⟩.G )

Figure 9: Swapping on global typesG. We write A#B if A and
B are disjoint sets.

passing), relying on a simple characterization of thewell-formed pro-

cesses that implement a given local type. We write P ▷◁ x T to denote
that P implements the local type T along variable x—see [21] for a
definition. We may then define the configurations that implement
a global type with history. First, an auxiliary definition:

Definition 4.19. We say the global typewith historyH is reachable
if it can be obtained from a global typeG via a sequence of ↪→ and
⇀ transitions (cf. Fig. 3).

Definition 4.20. LetG be a global type, with pa(G ) = {p1, · · · , pn }.
We say that configurationM initially implements G if we have

M ≡ (ν s )
( ∏
i ∈{1, · · · ,n }

ℓi [pi ] : *Pi {s[pi ]/xi } + |

s[pi ]⌊ ^̂G ↓pi · xi · σi⌋ | s : (ϵ ⋆ϵ )
)

with Pi ▷◁ xi G ↓pi , for all i ∈ {1,· · ·,n}, for some stores σ1, . . . ,σn . A
configuration N implements the global type with history H, written
N ▷◁ H, if there existM,G such that (i) H is reachable from G, (ii)
M initially implements G, and (iii) N is reachable fromM .

The last ingredient required is a swapping relation over global
types, denoted ≈sw, which enables behavior-preserving transfor-
mations among causally independent communications.

Definition 4.21 (Swapping). We define ≈sw as the smallest con-
gruence on G that satisfies the rules in Fig. 9 (where we omit the
symmetric of (Sw1)). We extend ≈sw to global types with history
H as follows: G[ ^̂G1] ≈sw G′[ ^̂G2] if G[end] ≈sw G′[end] and
G1 ≈sw G2.

We may now relate (i) transitions in the semantics of (high-level)
global types (with history) with (ii) reductions in the semantics of
their (low-level) process implementations. We writeM⇝ j M ′ to
denote a sequence of j ≥ 0 reduction steps (if j = 0 thenM = M ′).

Theorem 4.22. Let H be a reachable, first-order global type with

history (cf. § 2.1.2).

a) IfM ▷◁ H and H ↪→H′ thenM↠M ′ andM ′ ▷◁ H′, for someM ′.
If M ▷◁ H and H⇀H′ then M⇝ j M ′ (with j = 1 or j = 2) and
M ′ ▷◁ H′, for someM ′.

b) SupposeM ▷◁ H. For all configurations Ni such thatM↠Ni there

exist Hi ,H′i ,H
′′
, and M ′, such that H ≈sw Hi ↪→H′i , Ni ▷◁ H′i ,

Ni↠∗M ′, H′i ↪→
∗ H′′, andM ′ ▷◁ H′′ (and similarly for ⇝ , ⇀ ).

Proof. By induction on the transitions/reductions. See [21] for
details. □

Theorem 4.22 captures an asymmetry between global types and
configurations. While Part (a) shows that a configuration closely
mimics the behavior of its associated global type, Part (b) shows that
a configuration may have more immediate behaviors than those
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described its associated global type: this is because a configuration
may include several independent (and immediate) reductions (Ni
above), which are matched by the global type only up to swapping.

Summing up, we have that Theorem 4.18 ensures that reversibil-
ity in the atomic semantics is causally consistent. Theorem 4.10
transfers this result to decoupled semantics; since by Theorem 4.22
decoupled semantics defines a sound local implementation, we con-
clude that reversibility for global types is also causally consistent.

5 EXTENSIONS
We briefly discuss extensions to our framework (name passing,
interleaved protocols, types, labeled choices) that would allow us
to relate it with known typed frameworks for monitored networks
(without reversibility) based on multiparty sessions [3].

Name passing. As already mentioned, our framework does not
include name passing, which is known to be representable, in a fully
abstract way, using name abstractions [15]. Primitive support for
name passing is not difficult, but would entail notational burden.

Interleaved sessions. The framework presented here handlers
process implementations for a single multiparty session. To support
multiple, interleaved sessions we could adapt the approach we
developed in [20, 22], which allows reversing different sessions
simply by recording the sequence in which they are established.

Types. We do not foresee difficulties to strengthen Theorem 4.22
to cover global types with higher-order values. Such an extension
would entail replacing P ▷◁ x T with a type system for multiparty,
higher-order sessions, which could be obtained by adapting known
type systems for binary, higher-order sessions [15, 23].

Labeled Choices. We have not considered global types of the form
p → q : {li : Gi }i ∈I which, given a finite index set I and pairwise
different labels li , specify that: p may choose label li , communicate
this selection to q, and then continue as choreography Gi .

Accommodating standard forms of labeled choices is straight-
forward but entails additional technical machinery, which we have
omitted here for the sake of readability—see [21] for full details.
Main required additions are in global/local types, as well as in pro-
cesses and their reduction semantics, for we use running processes
of the form ℓ[p] : *C ; P+, where C is a list of processes that allows
us to record/reinstate the discarded labeled alternatives. Each of
the reduction semantics given (↠ , ⇝ ,⇛, and⇚) extends accord-
ingly, with expected modifications in auxiliary notions (e.g., type
contexts), and using additional reduction rules. Proofs of our main
results require minimal and/or unsurprising modifications.

6 RELATEDWORK
Reversibility in concurrency has received much attention recently.
An overview of the literature on the intersection between reversibil-
ity and behavioral contracts/types appears in [22, § 7]. Within this
research line, the works most related to ours are [4, 8, 27].

Tiezzi and Yoshida [27] study the cost of implementing different
ways of reversing binary and multiparty sessions; since they work
in a synchronous setting, these alternatives are simpler or incompa-
rable to our asynchronous, decoupled rollback. Dezani-Ciancaglini

and Giannini [8] develop typed multiparty sessions with check-

points, points in the global protocol to which computation may
return. While our reversible actions are embedded in/guaranteed
by the semantics, rollbacks in [8] should specify the name of the
checkpoint to which computation should revert. Defining reversibil-
ity in [8] requires modifying both processes and types. In contrast,
we consider standard untyped processes and local types (with cur-
sors) as monitors. While we show causal consistency with a direct
proof, in [8] causal consistency follows indirectly, as a consequence
of typing. Reversibility in our model is fine-grained in that we
allow reversible actions concerning exactly two of the protocol
participants; in [8] when a checkpoint is taken, also parties not re-
lated with that choice are forced to return to a checkpoint. Building
upon [8], Castellani et al. [4] have recently proposed a synchro-
nous calculus of concurrent, reversible multiparty sessions, which
is more expressive than standard calculi for multiparty sessions.
This new calculus is equipped with a type system that ensures fi-
delity, forward and backward progress, as well as causal consistency,
which in [4] is distinguished from the stronger full reversibility that
we establish here for our asynchronous model, i.e., the ability to
get back to an exact past state by deleting all its effects.

7 CONCLUDING REMARKS
We presented a process framework of reversible, multiparty asyn-
chronous communication, built upon session-based concurrency.
As illustrated in § 3, the distinguishing features of our framework
(decoupled rollbacks and abstraction passing, including delegation)
endow it with substantial expressiveness, improving on prior works.

Our processes/configurations are untyped, but their (reversible)
behavior is governed by monitors derived from local (session) types.
In our view, our monitored approach to reversibility is particularly
appropriate for specifying and reasoning about systems with com-
ponents whose behavior may not be statically analyzed (e.g., legacy
components or services available as black-boxes). A monitored ap-
proach is general enough to support also the analysis of reversible
systems that combine typed and untyped components.

We proved that our reversible semantics is causally consistent,
which ensures that reversing a computation leads to a state that
could have been reached by performing only forward steps. The
proof is challenging (and, in our view, also interesting), as we must
resort to an alternative atomic semantics for rollbacks (Fig. 8). We
then connected reversibility at the level of process/configurations
with that at the level of global types, therefore linking the op-
erational and declarative specifications typical of choreographic
approaches to correct communication-centric software systems.

In future work, we plan to extend our framework with so-called
reversibilitymodes [22], which implement controlled reversibility [17]
by specifying how many times a particular protocol step can be
reversed—zero, one, or infinite times (currently all actions can be
reversed infinite times). In a related vein (and following [4, 8]), we
plan to explore variants of our model in which certain protocol
branches are “forgotten” after they have been reversed. This modi-
fication is delicate, because it would weaken the notion of causal
consistency; in particular, relating (i) states reached via a rollback
and (ii) previous past states would require special care—we believe
that a notion of subtyping [9, 10] could ease this task.
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